THE KOMATU INTEGRAL OPERATOR AND STRONGLY CLOSE-TO-CONVEX FUNCTIONS

(COMMUNICATED BY CLAUDIO CUEVAS)

M. K. AOUF

Abstract

In this paper we introduce some new subclasses of strongly close-to-convex functions defined by using the Komatu integral operator and study their inclusion relationships with the integral preserving properties.

Theorem[section] [theorem]Lemma [theorem]Proposition [theorem]Corollary Remark

1. Introduction

Let A_{1} denote the class of functions of the form :

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z:|z|<1\}$. If $f(z)$ and $g(z)$ are analytic in U, we say that $f(z)$ is subordinate to $g(z)$, written $f \prec g$ or $f(z) \prec g(z)$, if there exists a Schwarz function $w(z)$ in U such that $f(z)=g(w(z))$.

A function $f(z) \in A_{1}$ is said to be starlike of order η if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\eta \quad(z \in U) \tag{1.2}
\end{equation*}
$$

for some $\eta(0 \leq \eta<1)$. We denote by $S^{*}(\eta)$ the subclass of A_{1} consisting of functions which are starlike of order η in U. Also a function $f(z) \in A_{1}$ is said to be convex of order η if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\eta \quad(z \in U) \tag{1.3}
\end{equation*}
$$

for some $\eta(0 \leq \eta<1)$. We denote by $C(\eta)$ the subclass of A_{1} consisting of all functions which are convex of order η in U.

[^0]It follows from (1.2) and (1.3) that

$$
\begin{equation*}
f(z) \in C(\eta) \Leftrightarrow z f^{\prime}(z) \in S^{*}(\eta) \tag{1.4}
\end{equation*}
$$

The classes $S^{*}(\eta)$ and $C(\eta)$ are introduced by Robertson [17] (see also Srivastava and Owa [21]).

Let $f(z) \in A_{1}$ and $g(z) \in S^{*}(\eta)$. Then $f(z) \in K(\gamma, \eta)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}>\gamma \quad(z \in U) \tag{1.5}
\end{equation*}
$$

where $0 \leq \gamma<1$ and $0 \leq \eta<1$. Such functions are called close-to-convex functions of order γ and type η. The class $K(\gamma, \eta)$ was introduced by Libera [8] (see also Noor and Alkhorasani [13] and Silverman [19]).

If $f(z) \in A_{1}$ satisfies

$$
\begin{equation*}
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}-\eta\right)\right|<\frac{\pi}{2} \beta \quad(z \in U) \tag{1.6}
\end{equation*}
$$

for some $\eta(0 \leq \eta<1)$ and $\beta(0<\beta \leq 1)$, then $f(z)$ is said to be strongly starlike of order β and type η in U. We denote this by $S^{*}(\beta, \eta)$.

If $f(z) \in A_{1}$ satisfies

$$
\begin{equation*}
\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\eta\right)\right|<\frac{\pi}{2} \beta \quad(z \in U) \tag{1.7}
\end{equation*}
$$

for some $\eta(0 \leq \eta<1)$ and $\beta(0<\beta \leq 1)$, then we say that $f(z)$ is strongly convex of order β and type η in U. We denote this class by $C(\beta, \eta)$ (see also Liu [10] and Nunokawa [14]). In particular, the classes $S^{*}(\beta, 0)$ and $C(\beta, 0)$ have been extensively studied by Mocanu [12] and Nunokawa [14].

It follows from (1.6) and (1.7) that

$$
\begin{equation*}
f(z) \in C(\beta, \eta) \Leftrightarrow z f^{\prime}(z) \in S^{*}(\beta, \eta) \tag{1.8}
\end{equation*}
$$

Also we note that $S^{*}(1, \eta)=S^{*}(\eta)$ and $C(1, \eta)=C(\eta)$.
Recently, Komatu [7] introduced a certain integral operator $I_{a}^{\lambda}(a>0 ; \lambda \geq 0)$ defined by

$$
\begin{gather*}
I_{a}^{\lambda} f(z)=\frac{a^{\lambda}}{\Gamma(\lambda)} \int_{0}^{1} t^{a-2}\left(\log \frac{1}{t}\right)^{\lambda-1} f(z t) d t \tag{1.9}\\
\left(z \in U ; a>0 ; \lambda \geq 0 ; f \in A_{1}\right) .
\end{gather*}
$$

Thus, if $f(z) \in A_{1}$ is of the form (1.1), it is easily seen from (1.9) that

$$
\begin{equation*}
I_{a}^{\lambda} f(z)=z+\sum_{k=2}^{\infty}\left(\frac{a}{a+k-1}\right)^{\lambda} a_{k} z^{k} \quad(a>0 ; \lambda \geq 0) . \tag{1.10}
\end{equation*}
$$

Using the above relation, it is easy verify that

$$
\begin{equation*}
z\left(I_{a}^{\lambda+1} f(z)\right)^{\prime}=a I_{a}^{\lambda} f(z)-(a-1) I_{a}^{\lambda+1} f(z) \quad(a>0 ; \lambda \geq 0) \tag{1.11}
\end{equation*}
$$

We note that:
(i) For $a=1$ and $\lambda=n$ (n is any integer), the multiplier transformation $I_{1}^{n} f(z)=$ $I^{n} f(z)$ was studied by Flett [5] and Salagean [18];
(ii) For $a=1$ and $\lambda=-n\left(n \in N_{0} \in\{0,1,2, \ldots\}\right)$, the differential operator $I_{1}^{-n} f(z)=D^{n} f(z)$ was studied by Salagean [18];
(iii) For $a=2$ and $\lambda=n$ (n is any integer), the operator $I_{2}^{n} f(z)=L^{n} f(z)$ was studied by Uralegaddi and Somanatha [22];
(iv) For $a=2$, the multiplier transformation $I_{2}^{\lambda} f(z)=I^{\lambda} f(z)$ was studied by Jung et al. [6].

For $a>0$ and $\lambda \geq 0$, let $K_{\lambda}^{a}(\gamma, \delta, \eta, A, B)$ be the class of functions $f(z) \in A_{1}$ satisfying the condition

$$
\begin{equation*}
\left|\arg \left(\frac{z\left(I_{a}^{\lambda} f(z)\right)^{\prime}}{I_{a}^{\lambda} g(z)}-\gamma\right)\right|<\frac{\pi}{2} \delta \quad(0 \leq \gamma<1 ; 0<\delta \leq 1 ; z \in U) \tag{1.12}
\end{equation*}
$$

for some $f(z) \in S_{\lambda}^{a}(\eta, A, B)$, where

$$
\begin{align*}
S_{\lambda}^{a}(\eta, A, B)= & \left\{g \in A_{1}: \frac{1}{1-\eta}\left(\frac{z\left(I_{a}^{\lambda} g(z)\right)^{\prime}}{I_{a}^{\lambda} g(z)}-\eta\right) \prec \frac{1+A z}{1+B z}\right\} \\
& (0 \leq \eta<1 ;-1 \leq B<A \leq 1 ; z \in U) \tag{1.13}
\end{align*}
$$

We note that $K_{0}^{a}(\gamma, 1, \eta, 1,-1)=K(\gamma, \eta)$. We also note that $K_{0}^{a}(0, \delta, 0,1,-1)$ is the class of strongly close-to-convex functions of order δ in the sense of Pommerenke [16]. Also the class $S_{0}^{a}(\eta, A, B)=S(\eta, A, B)$ was studied by Aouf [1].

In the present paper, using the technique of Cho [3], we give some argument properties of analytic functions belonging to A_{1} which contain the basic inclusion relationships among the classes $K_{\lambda}^{a}(\gamma, \delta, \eta, A, B)$. The integral preserving properties in connection with the operators I_{a}^{λ} defined by (1.10) are also considered. Furthermore, we obtain the previous results given by Bernardi [2] and Libera [9] as special cases.

2. Main Results

In proving our main results, we need the following lemmas.
Lemma 1. [4]. Let $h(z)$ be convex univalent in U with $h(0)=1$ and $\operatorname{Re}\{\nu h(z)+$ $\mu\}>0(\nu, \mu \in C)$. If $p(z)$ is analytic in U with $p(0)=1$, then

$$
p(z)+\frac{z p^{\prime}(z)}{\nu p(z)+\mu} \prec h(z) \quad(z \in U)
$$

implies

$$
p(z) \prec h(z) \quad(z \in U) .
$$

Lemma 2. [11]. Let $h(z)$ be convex univalent in U and $w(z)$ be analytic in U with $\operatorname{Re} w(z) \geq 0$. If $p(z)$ is analytic in U and $p(0)=h(0)$, then

$$
p(z)+w(z) z p^{\prime}(z) \prec h(z) \quad(z \in U)
$$

implies

$$
p(z) \prec h(z) \quad(z \in U) .
$$

Lemma 3. [15]. Let $p(z)$ be analytic in U with $p(0)=1$ and $p(z) \neq 0$ in U. If there exist two points $z_{1}, z_{2} \in U$ such that

$$
\begin{equation*}
-\frac{\pi}{2} \alpha_{1}=\arg p\left(z_{1}\right)<\arg p(z)<\arg p\left(z_{2}\right)=\frac{\pi}{2} \alpha_{2} \tag{2.1}
\end{equation*}
$$

for some $\alpha_{1}, \alpha_{2}\left(\alpha_{1}, \alpha_{2}>0\right)$ and for all $z\left(|z|<\left|z_{1}\right|=\left|z_{2}\right|\right)$, then we have

$$
\begin{equation*}
\frac{z_{1} p^{\prime}\left(z_{1}\right)}{p\left(z_{1}\right)}=-i \frac{\alpha_{1}+\alpha_{2}}{2} m \quad \text { and } \quad \frac{z_{2} p^{\prime}\left(z_{2}\right)}{p\left(z_{2}\right)}=i \frac{\alpha_{1}+\alpha_{2}}{2} m \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
m \geq \frac{1-|c|}{1+|c|} \quad \text { and } \quad c=i \tan \frac{\pi}{4}\left(\frac{\alpha_{2}-\alpha_{1}}{\alpha_{1}+\alpha_{2}}\right) \tag{2.3}
\end{equation*}
$$

At first, with the help of Lemma 1, we obtain the following :
Proposition 4. Let $a \geq 1$ and $h(z)$ be convex univalent in U with $h(0)=1$ and $\operatorname{Re} h(z)>0$. If a function $f(z) \in A_{1}$ satisfies the condition

$$
\frac{1}{1-\eta}\left(\frac{z\left(I_{a}^{\lambda} f(z)\right)^{\prime}}{I_{a}^{\lambda} f(z)}-\eta\right) \prec h(z) \quad(0 \leq \eta<1 ; z \in U)
$$

then

$$
\frac{1}{1-\eta}\left(\frac{z\left(I_{a}^{\lambda+1} f(z)\right)^{\prime}}{I_{a}^{\lambda+1} f(z)}-\eta\right) \prec h(z) \quad(0 \leq \eta<1 ; z \in U) .
$$

Proof. Let

$$
\begin{equation*}
p(z)=\frac{1}{1-\eta}\left(\frac{z\left(I_{a}^{\lambda+1} f(z)\right)^{\prime}}{I_{a}^{\lambda+1} f(z)}-\eta\right)(z \in U) \tag{2.4}
\end{equation*}
$$

where $p(z)$ is analytic function in U with $p(0)=1$. By using (1.11), we get

$$
\begin{equation*}
a-1+\eta+(1-\eta) p(z)=a \frac{I_{a}^{\lambda} f(z)}{I_{a}^{\lambda+1} f(z)} \tag{2.5}
\end{equation*}
$$

Differentiating (2.5) logarithmically with respect to z and multiplying by z, we obtain

$$
p(z)+\frac{z p^{\prime}(z)}{a-1+\eta+(1-\eta) p(z)}=\frac{1}{1-\eta}\left(\frac{z\left(I_{a}^{\lambda} f(z)\right)^{\prime}}{I_{a}^{\lambda} f(z)}-\eta\right) \quad(z \in U)
$$

By using Lemma 1 , it follows that $p(z) \prec h(z)$, that is,

$$
\frac{1}{1-\eta}\left(\frac{z\left(I_{a}^{\lambda+1} f(z)\right)^{\prime}}{I_{a}^{\lambda+1} f(z)}-\eta\right) \prec h(z) \quad(z \in U) .
$$

Taking $h(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$, in Proposition 1, we have
Corollary 5. The inclusion relation, $S_{\lambda}^{a}(\eta, A, B) \subset S_{\lambda+1}^{a}(\eta, A, B)$, holds for any $a>0$ and $\lambda \geq 0$.

Proposition 6. Let $h(z)$ be convex univalent in U with $h(0)=1$ and $\operatorname{Re} h(z)>0$. If a function $f(z) \in A_{1}$ satisfies the condition

$$
\frac{1}{1-\eta}\left(\frac{z\left(I_{a}^{\lambda} f(z)\right)^{\prime}}{I_{a}^{\lambda} f(z)}-\eta\right) \prec h(z) \quad(0 \leq \eta<1 ; z \in U),
$$

then

$$
\frac{1}{1-\eta}\left(\frac{z\left(I_{a}^{\lambda} L_{\theta} f(z)\right)^{\prime}}{I_{a}^{\lambda} L_{\theta} f(z)}-\eta\right) \prec h(z) \quad(0 \leq \eta<1 ; z \in U)
$$

where $L_{\theta}(f)$ is the integral operator defined by

$$
\begin{equation*}
L_{\theta}(f)=L_{\theta} f(z)=\frac{\theta+1}{z^{\theta}} \int_{0}^{z} t^{\theta-1} f(t) d t \quad(\theta \geq 0) \tag{2.6}
\end{equation*}
$$

Proof. From (2.6), we have

$$
\begin{equation*}
z\left(I_{a}^{\lambda} L_{\theta} f(z)\right)^{\prime}=(\theta+1) I_{a}^{\lambda} f(z)-\theta I_{a}^{\lambda} L_{\theta}(f)(z) \tag{2.7}
\end{equation*}
$$

Let

$$
p(z)=\frac{1}{1-\eta}\left(\frac{z\left(I_{a}^{\lambda} L_{\theta} f(z)\right)^{\prime}}{I_{a}^{\lambda} L_{\theta} f(z)}-\eta\right) \quad(z \in U)
$$

where $p(z)$ is analytic function in U with $p(0)=1$. Then, by using (2.7), we have

$$
\begin{equation*}
\theta+\eta+(1-\eta) p(z)=(\theta+1) \frac{I_{a}^{\lambda} f(z)}{I_{a}^{\lambda} L_{\theta}(f)(z)} \tag{2.8}
\end{equation*}
$$

Differentiating (2.8) logarithmically with respect to z and multiplying by z, we have

$$
p(z)+\frac{z p^{\prime}(z)}{\theta+\eta+(1-\eta) p(z)}=\frac{1}{1-\eta}\left(\frac{z\left(I_{a}^{\lambda} f(z)\right)^{\prime}}{I_{a}^{\lambda} f(z)}-\eta\right) \quad(z \in U)
$$

Therefore, by using Lemma 1, we obtain that

$$
\frac{1}{1-\eta}\left(\frac{z\left(I_{a}^{\lambda} L_{\theta} f(z)\right)^{\prime}}{I_{a}^{\lambda} L_{\theta} f(z)}-\eta\right) \prec h(z)(z \in U) .
$$

Taking $h(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$, in Proposition 2, we have immediately
Corollary 7. If $f(z) \in S_{\lambda}^{a}(\eta, A, B)$, then $L_{\theta}(f) \in S_{\lambda}^{a}(\eta, A, B)$, where $L_{\theta}(f)$ is the integral operator defined by (2.6).

We now derive:
Theorem 8. Let $f(z) \in A_{1}$ and $0<\delta_{1}, \delta_{2} \leq 1,0 \leq \gamma<1$. If

$$
-\frac{\pi}{2} \delta_{1}<\arg \left(\frac{z\left(I_{a}^{\lambda} f(z)\right)^{\prime}}{I_{a}^{\lambda} g(z)}-\gamma\right)<\frac{\pi}{2} \delta_{2}
$$

for some $g(z) \in S_{\lambda}^{a}(\eta, A, B)$, then

$$
-\frac{\pi}{2} \alpha_{1}<\arg \left(\frac{z\left(I_{a}^{\lambda+1} f(z)\right)^{\prime}}{I_{a}^{\lambda+1} g(z)}-\gamma\right)<\frac{\pi}{2} \alpha_{2}
$$

where α_{1} and $\alpha_{2}\left(0<\alpha_{1}, \alpha_{2} \leq 1\right)$ are the solutions of the equations
$\delta_{1}= \begin{cases}\alpha_{1}+\frac{2}{\pi} \tan ^{-1}\left\{\frac{\left(\alpha_{1}+\alpha_{2}\right)(1-|c|) \cos \frac{\pi}{2} t_{1}}{2\left(\frac{(1-\eta)(1+A)}{1+B}+\eta+a-1\right)(1+|c|)+\left(\alpha_{1}+\alpha_{2}\right)(1-|c|) \sin \frac{\pi}{2} t_{1}}\right\} & \text { for } B \neq-1, \\ \alpha_{1} & \text { for } B=-1,\end{cases}$
and
$\delta_{2}= \begin{cases}\alpha_{2}+\frac{2}{\pi} \tan ^{-1}\left\{\frac{\left(\alpha_{1}+\alpha_{2}\right)(1-|c|) \cos \frac{\pi}{2} t_{1}}{2\left(\frac{(1-\eta)(1+A)}{1+B}+\eta+a-1\right)(1+|c|)+\left(\alpha_{1}+\alpha_{2}\right)(1-|c|) \sin \frac{\pi}{2} t_{1}}\right\} & \text { for } B \neq-1, \\ \alpha_{2} & \text { for } B=-1,\end{cases}$
where c is given by (2.3) and

$$
\begin{equation*}
t_{1}=\frac{2}{\pi} \sin ^{-1}\left(\frac{(1-\eta)(1-B)}{(1-\eta)(1-A B)+(\eta+a-1)\left(1-B^{2}\right)}\right) \tag{2.11}
\end{equation*}
$$

Proof. Let

$$
p(z)=\frac{1}{1-\gamma}\left(\frac{z\left(I_{a}^{\lambda+1} f(z)\right)^{\prime}}{I_{a}^{\lambda+1} g(z)}-\gamma\right)
$$

Using the identity (1.11) and simplifying, we have

$$
\begin{equation*}
[(1-\gamma) p(z)+\gamma] I_{a}^{\lambda+1} g(z)=a I_{a}^{\lambda} f(z)-(a-1) I_{a}^{\lambda+1} f(z) \tag{2.12}
\end{equation*}
$$

Differentiating (2.12) with respect to z and multiplying by z, we obtain

$$
\begin{equation*}
(1-\gamma) z p^{\prime}(z) I_{a}^{\lambda+1} g(z)+[(1-\gamma) p(z)+\gamma] z\left(I_{a}^{\lambda+1} g(z)\right)^{\prime}=a z\left(I_{a}^{\lambda} f(z)\right)^{\prime}-(a-1) z\left(I_{a}^{\lambda+1} f(z)\right)^{\prime} \tag{2.13}
\end{equation*}
$$

Since $g(z) \in S_{\lambda}^{a}(\eta, A, B)$, from Corollary 1, we know that $g(z) \in S_{\lambda+1}^{a}(\eta, A, B)$. Let

$$
q(z)=\frac{1}{1-\eta}\left(\frac{z\left(I_{a}^{\lambda+1} g(z)\right)^{\prime}}{I_{a}^{\lambda+1} g(z)}-\eta\right) \quad(z \in U)
$$

Then, using the identity (1.11) once again, we have

$$
\begin{equation*}
(1-\eta) q(z)+\eta+a-1=a \frac{I_{a}^{\lambda} g(z)}{I_{a}^{\lambda+1} g(z)} . \tag{2.14}
\end{equation*}
$$

From (2.13) and (2.14), we obtain

$$
\frac{1}{1-\gamma}\left(\frac{z\left(I_{a}^{\lambda} f(z)\right)^{\prime}}{I_{a}^{\lambda} g(z)}-\gamma\right)=p(z)+\frac{z p^{\prime}(z)}{(1-\eta) q(z)+\eta+a-1}
$$

while, by using the result of Silverman and Silvia [20], we have

$$
\begin{equation*}
\left|q(z)-\frac{1-A B}{1-B^{2}}\right|<\frac{(A-B)}{1-B^{2}} \quad(z \in U ; B \neq-1) \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\{q(z)\}>\frac{1-A}{2} \quad(z \in U ; B=-1) \tag{2.16}
\end{equation*}
$$

Then, from (2.15) and (2.16), we obtain

$$
(1-\eta) q(z)+\eta+a-1=\rho e^{i \frac{\pi \varphi}{2}}
$$

where

$$
\left\{\begin{array}{l}
\frac{(1-\eta)(1-A)}{1-B}+\eta+a-1<\rho<\frac{(1-\eta)(1+A)}{1+B}+\eta+a-1 \\
-t_{1}<\varphi<t_{1} \quad \text { for } B \neq-1
\end{array}\right.
$$

when t_{1} is given by (2.11), and

$$
\left\{\begin{array}{l}
\frac{(1-\eta)(1-A)}{2}+\eta+a-1<\rho<\infty \\
-1<\varphi<1 \quad \text { for } B=-1
\end{array}\right.
$$

Here, we note that $p(z)$ is analytic in U with $p(0)=1$ and $\operatorname{Re} p(z)>0$ in U by applying the assumption and Lemma 2 with $w(z)=\frac{1}{(1-\eta) q(z)+\eta+a-1}$. Hence $p(z) \neq 0$ in U. If there exist two points $z_{1}, z_{2} \in U$ such that the condition
(2.1) is satisfied, then (by Lemma 3) we obtain (2.2) under the restriction (2.3). At first, for the case $B \neq-1$, we obtain :

$$
\begin{aligned}
& \arg \left(p\left(z_{1}\right)+\frac{z_{1} p^{\prime}\left(z_{1}\right)}{(1-\eta) q\left(z_{1}\right)+\eta+a-1}\right) \\
= & -\frac{\pi}{2} \alpha_{1}+\arg \left(1-i \frac{\alpha_{1}+\alpha_{2}}{2} m\left(\rho e^{i \frac{\pi \pi}{2}}\right)^{-1}\right) \\
\leq & -\frac{\pi}{2} \alpha_{1}-\tan ^{-1}\left\{\frac{\left(\alpha_{1}+\alpha_{2}\right) m \sin \frac{\pi}{2}(1-\varphi)}{2 \rho+\left(\alpha_{1}+\alpha_{2}\right) m \cos \frac{\pi}{2}(1-\varphi)}\right\} \\
\leq & -\frac{\pi}{2} \alpha_{1}-\tan ^{-1}\left\{\frac{\left(\alpha_{1}+\alpha_{2}\right)(1-|c|) \cos \frac{\pi}{2} t_{1}}{2\left(\frac{(1-\eta)(1+A)}{1+B}+\eta+a-1\right)(1+|c|)+\left(\alpha_{1}+\alpha_{2}\right)(1-|c|) \sin \frac{\pi}{2} t_{1}}\right\} \\
= & -\frac{\pi}{2} \delta_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& \arg \left(p\left(z_{2}\right)+\frac{z_{2} p^{\prime}\left(z_{2}\right)}{(1-\eta) q\left(z_{2}\right)+\eta+a-1}\right) \\
\geq & \frac{\pi}{2} \alpha_{2}+\tan ^{-1}\left\{\frac{\left(\alpha_{1}+\alpha_{2}\right)(1-|c|) \cos \frac{\pi}{2} t_{1}}{2\left(\frac{(1-\eta)(1+A)}{1+B}+\eta+a-1\right)(1+|c|)+\left(\alpha_{1}+\alpha_{2}\right)(1-|c|) \sin \frac{\pi}{2} t_{1}}\right\} \\
= & \frac{\pi}{2} \delta_{2}
\end{aligned}
$$

where we have used the inequality (2.3), and δ_{1}, δ_{2} and t_{1} are given by (2.9), (2.10) and (2.11), respectively. Similarly, for the case $B=-1$, we obtain

$$
\arg \left(p\left(z_{1}\right)+\frac{z_{1} p^{\prime}\left(z_{1}\right)}{(1-\eta) q\left(z_{1}\right)+\eta+a-1}\right) \leq \frac{-\pi}{2} \alpha_{1}
$$

and

$$
\arg \left(p\left(z_{2}\right)+\frac{z_{2} p^{\prime}\left(z_{2}\right)}{(1-\eta) q\left(z_{2}\right)+\eta+a-1}\right) \geq \frac{\pi}{2} \alpha_{2} .
$$

These are contradiction to the assumption of Theorem 1. This completes the proof of Theorem 1.

Taking $\delta_{1}=\delta_{2}=\delta$ in Theorem 1, then we obtain :
Corollary 9. The inclusion relation, $K_{\lambda}^{a}(\gamma, \delta, \eta, A, B) \subset K_{\lambda+1}^{a}(\gamma, \delta, \eta, A, B)$ holds for any $a>0$ and $\lambda \geq 0$.

Taking $\lambda=0, a=1$ and $\delta_{1}=\delta_{2}=\delta$ in Theorem 1, we obtain :
Corollary 10. Let $f(z) \in A_{1}$. If

$$
\left|\arg \left(\frac{z f^{\prime}(z)}{g(z)}-\gamma\right)\right|<\frac{\pi}{2} \delta \quad(0 \leq \gamma<1,0<\delta \leq 1)
$$

for some $g \in S(\eta, A, B)$, then

$$
\left|\arg \left(\frac{f(z)}{I_{1}^{1} g(z)}-\gamma\right)\right|<\frac{\pi}{2} \alpha
$$

where $\alpha(0<\alpha \leq 1)$ is the solution of the equation :

$$
\delta= \begin{cases}\alpha+\frac{2}{\pi} \tan ^{-1}\left(\frac{\alpha \cos \frac{\pi}{2} t_{1}}{\left(\frac{1-\eta)(1+A)}{1+B}+\eta\right)+\alpha \sin \frac{\pi}{2} t_{1}}\right), & \text { for } B \neq-1 \\ \alpha & \text { for } B=-1\end{cases}
$$

where t_{1} is given by (2.11) with $a=1$.
Putting $\lambda=\gamma=0, a=1, B \rightarrow A(A<1)$, and $g(z)=z$ in Theorem 1, we obtain

Corollary 11. Let $f(z) \in A_{1}$ and $0<\delta_{1}, \delta_{2} \leq 1$. If

$$
-\frac{\pi}{2} \delta_{1}<\arg f^{\prime}(z)<\frac{\pi}{2} \delta_{2},
$$

then

$$
-\frac{\pi}{2} \alpha_{1}<\arg \frac{f(z)}{z}<\frac{\pi}{2} \alpha_{2}
$$

where α_{1} and $\alpha_{2}\left(0<\alpha_{1}, \alpha_{2} \leq 1\right)$ are the solutions of the equations:

$$
\delta_{1}=\alpha_{1}+\frac{2}{\pi} \tan ^{-1} \frac{\left(\alpha_{1}+\alpha_{2}\right)(1-|c|)}{2(1+|c|)}
$$

and

$$
\delta_{2}=\alpha_{2}+\frac{2}{\pi} \tan ^{-1} \frac{\left(\alpha_{1}+\alpha_{2}\right)(1-|c|)}{2(1+|c|)}
$$

Next, we prove
Theorem 12. Let $f(z) \in A_{1}$ and $0<\delta_{1}, \delta_{2} \leq 1,0 \leq \gamma<1$. If

$$
\frac{-\pi}{2} \delta_{1}<\arg \left(\frac{z\left(I_{a}^{\lambda} f(z)\right)^{\prime}}{I_{a}^{\lambda} g(z)}-\gamma\right)<\frac{\pi}{2} \delta_{2}
$$

for some $g(z) \in S_{\lambda}^{a}(\eta, A, B)$, then

$$
\frac{-\pi}{2} \alpha_{1}<\arg \left(\frac{z\left(I_{a}^{\lambda} L_{\theta}(f)(z)\right)^{\prime}}{I_{a}^{\lambda} L_{\theta}(g)(z)}-\gamma\right)<\frac{\pi}{2} \alpha_{2}
$$

where $L_{\theta}(f)$ is defined by (2.6), and α_{1} and $\alpha_{2}\left(0<\alpha_{1}, \alpha_{2} \leq 1\right)$ are the solutions of the equations :
$\delta_{1}= \begin{cases}\alpha_{1}+\frac{2}{\pi} \tan ^{-1}\left\{\frac{\left(\alpha_{1}+\alpha_{2}\right)(1-|c|) \cos \frac{\pi}{2} t_{2}}{2\left(\frac{(1-\eta)(1+A)}{1+B}+\eta+\theta\right)(1+|c|)+\left(\alpha_{1}+\alpha_{2}\right)(1-|c|) \sin \frac{\pi}{2} t_{2}}\right\} & \text { for } B \neq-1, \\ \alpha_{1} & \text { for } B=-1,\end{cases}$
and
$\delta_{2}= \begin{cases}\alpha_{2}+\frac{2}{\pi} \tan ^{-1}\left\{\frac{\left(\alpha_{1}+\alpha_{2}\right)(1-|c|) \cos \frac{\pi}{2} t_{2}}{2\left(\frac{(1-\eta)(1+A)}{1+B}+\eta+\theta\right)(1+|c|)+\left(\alpha_{1}+\alpha_{2}\right)(1-|c|) \sin \frac{\pi}{2} t_{2}}\right\} & \text { for } B \neq-1, \\ \alpha_{2} & \text { for } B=-1,\end{cases}$
where c is given by (2.3) and t_{2} is given by

$$
\begin{equation*}
t_{2}=\frac{2}{\pi} \sin ^{-1}\left\{\frac{(1-\eta)(A-B)}{(1-\eta)(1-A B)+(\eta+\theta)\left(1-B^{2}\right)}\right\} \tag{2.17}
\end{equation*}
$$

Proof. Let

$$
p(z)=\frac{1}{1-\gamma}\left(\frac{z\left(I_{a}^{\lambda} L_{\theta}(f)(z)\right)^{\prime}}{I_{a}^{\lambda} L_{\theta}(g)(z)}-\gamma\right) \quad(z \in U)
$$

Since $g(z) \in S_{\lambda}^{a}(\eta, A, B)$, we have from Corollary 2 that $L_{\theta}(g) \in S_{\lambda}^{a}(\eta, A, B)$. Using (2.7) we obtain

$$
[(1-\gamma) p(z)+\gamma] I_{a}^{\lambda} L_{\theta}(g)(z)=(\theta+1) I_{a}^{\lambda} f(z)-\theta I_{a}^{\lambda} L_{\theta}(f)(z)
$$

Then, by a simple calculation, we get

$$
\begin{gathered}
(1-\gamma) z p^{\prime}(z)+[(1-\gamma) p(z)+\gamma][(1-\eta) q(z)+\eta+\theta]= \\
(\theta+1) \frac{z\left(I_{a}^{\lambda} f(z)\right)^{\prime}}{I_{a}^{\lambda} L_{\theta}(g)(z)}
\end{gathered}
$$

where

$$
q(z)=\frac{1}{1-\eta}\left(\frac{z\left(I_{a}^{\lambda} L_{\theta}(g)(z)\right)^{\prime}}{I_{a}^{\lambda} L_{\theta}(g)(z)}-\eta\right)
$$

Hence we have

$$
\frac{1}{1-\eta}\left(\frac{z\left(I_{a}^{\lambda} f(z)\right)^{\prime}}{I_{a}^{\lambda} g(z)}-\eta\right)=p(z)+\frac{z p^{\prime}(z)}{(1-\eta) q(z)+\eta+\theta} .
$$

The remaining part of the proof of Theorem 2 is similar to that of Theorem 1 and so we omit it.

Taking $\delta_{1}=\delta_{2}=\delta$ in Theorem 2, we have
Corollary 13. Let $f(z) \in A_{1}$ and $0 \leq \gamma<1,0<\delta \leq 1$. If

$$
\left|\arg \left(\frac{z\left(I_{a}^{\lambda} f(z)\right)^{\prime}}{I_{a}^{\lambda} g(z)}-\gamma\right)\right|<\frac{\pi}{2} \delta
$$

for some $g(z) \in S_{\lambda}^{a}(\eta, A, B)$, then

$$
\left|\arg \left(\frac{z\left(I_{a}^{\lambda} L_{\theta}(f)(z)\right)^{\prime}}{I_{a}^{\lambda} L_{\theta}(g)(z)}-\gamma\right)\right|<\frac{\pi}{2} \alpha
$$

where $L_{\theta}(f)$ is defined by (2.6), and $\alpha(0<\alpha \leq 1)$ is the solution of the equation:

$$
\delta= \begin{cases}\alpha+\frac{2}{\pi} \tan ^{-1}\left(\frac{\alpha \cos \frac{\pi}{2} t_{2}}{\left(\frac{(1-\eta)(1+A)}{1+B}+\eta+\theta\right)+\alpha \sin \frac{\pi}{2} t_{2}}\right), & \text { for } B \neq-1 \\ \alpha & \text { for } B=-1\end{cases}
$$

where t_{2} is given by (2.17).
From Corollary 6, we see easily the following corollary.
Corollary 14. $f(z) \in K_{\lambda}^{a}(\gamma, \delta, \eta, A, B) \Longrightarrow L_{\theta}(f) \in K_{\lambda}^{a}(\gamma, \alpha, \eta, A, B)$, where $L_{\theta}(f)$ is the integral operator defined by (2.6) and α is the solution of equation in Corollary 6.

Taking $\lambda=0, \delta=1, A=1$ and $B=-1$ in Corollary 7, we obtain :

Corollary 15. Let $f(z) \in A_{1}$. If

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}>\gamma \quad(0 \leq \gamma<1)
$$

then

$$
\operatorname{Re}\left\{\frac{z\left(L_{\theta}(f)(z)\right)^{\prime}}{L_{\theta}(g)(z)}\right\}>\gamma \quad(0 \leq \gamma<1)
$$

where $L_{\theta}(f)$ is the integral operator defined by (2.6) and $g(z) \in S^{*}(\eta)(0 \leq \eta<1)$.
Remark 1. Taking $\lambda=\gamma=\eta=0, A=\delta=1$ and $B=-1$ in Corollary 7, we obtain the classical result obtained by Bernardi [2], which implies the result studied by Libera [8].
2.1. Acknowledgements. The author would like to thank the referee of the paper for his helpful suggestions.

References

[1] M. K. Aouf, On a class of p-valent starlike functions of order α, Internat. J. Math. Math. Sci. 104 (1987) 733-744.
[2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 35 (1969) 429-446.
[3] N. E. Cho, The Noor integral operator and strongly close-to-convex functions, J. Math. Anal. Appl. 283 (2003) 202-212.
[4] P. Enigenberg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a Briot-Bouquet differential subordination, in: General Inequalities, Vol. 3, Birkhauser, Basel (1983) 339-348.
[5] T. M. Flett, The dual of an inequality of Hardy and littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972) 746-765.
[6] I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameters families of integral operators, J. Math. Anal. Appl. 176 (1993) 138-147.
[7] Y. Komatu, On analytical prolongation of a family of operators, Math. (Cluj) 3255 (1990) 141-145.
[8] R. J. Libera, Some radius of convexity problems, Duke Math. J. 31 (1964) 143-158.
[9] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965) 755-758.
[10] J. -L. Liu, The Noor integral and strongly starlike functions, J. Math. Anal. Appl. 261 (2001) 441-447.
[11] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981) 157-171.
[12] P. T. Mocanu, Alpha-convex integral operators and strongly starlike functions, Studia Univ. Babes-Bolyai Math. 34 (1989) 18-24.
[13] K. I. Noor and H. A. Alkhorasani, Properties of close-to-convexity preserved by some integral operarors, J. Math. Anal. Appl. 112 (1985) 509-516.
[14] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993) 234-237.
[15] M. Nunokawa, S. Owa, H. Saitoh, N. E. Cho and N. Takahashi, Some properties of analytic functions at extremal points for arguments, preprint, 2003.
[16] Ch. Pommerenke, On close-to-convex analytic functions, Trans. Amer. Math. Soc. 114 (1965) 176-186.
[17] M. S. Robertson, On the theory of univalent functions, Ann. Math. 37 (1936) 374-408.
[18] S. G. Salagean, Subclasses of univalent functions, Lecture Notes in Math. 1013, SpringerVerlag, Berlin, Heidelberg and New York, (1983) 362-372.
[19] H. Silverman, On a class of close-to-convex schilcht functions, Proc. Amer. Math. Soc. 36 (1972) 477-484.
[20] H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math. 37 (1985) 48-61.
[21] H. M. Srivastava and S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Company, Singapore, New Jersey, London and Hong Kong, 1992.
[22] B. A. Uralegaddi and C. Somanatha, Certain classes of univalent function, in: H. M. Srivastava and S. Owa (Eds.) Current Topics in Analytic Function Theory, World Scientific Company, Singapore, New Jersey, London and Hong Kong, (1992) 371-374.

Department of Mathematics,, Faculty of Science,, Mansoura University,, Mansoura 35516, EGYpt.

E-mail address: mkaouf127@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Komatu integral operator, strongly close-to-convex.
 © 2011 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted May 20, 2011. Published July 5, 2011.

