ON A CLASS OF QUASILINEAR ELLIPTIC SYSTEMS IN \mathbb{R}^{N} INVOLVING CRITICAL SOBOLEV EXPONENTS

(COMMUNICATED BY VICENTIU RADULESCU)

G.A.AFROUZI, T.A.ROUSHAN

Abstract

We study here a class of quasilinear elliptic systems involving the p-Laplacian operator. Under some suitable assumptions on the nonlinearities, we show the existence result by using a fixed point theorem.

1. Introduction and Preliminaries

This paper is concerned with the existence of nontrivial solution to the quasilinear elliptic system of the form

$$
\left\{\begin{array}{lc}
-\Delta_{p} u=f(x)|u|^{p^{*}-2} u+\lambda \frac{\partial F}{\partial u}(x, u, v), & \text { in } \mathbb{R}^{N}, \tag{1.1}\\
-\Delta_{q} v=g(x)|v|^{q^{*}-2} v+\mu \frac{\partial F}{\partial v}(x, u, v), & \text { in } \mathbb{R}^{N}, \\
u(x), v(x) \rightarrow 0, \quad \text { as }|x| \rightarrow+\infty &
\end{array}\right.
$$

where Δ_{p} is the so called p-Laplacian operator, i.e. $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) . f, g$ and F are real-valued functions satisfying some assumptions; u and v are unknown real valued functions defined in \mathbb{R}^{N} and belonging to appropriate function spaces; λ and μ are positive parameters, which can be taken equal to 1 , and the parameters p and q are real numbers satisfying $2 \leq p, q<N$. The real number $p^{*}=\frac{N p}{N-p}$ designates the critical Sobolev exponent of p.
In recent years, several authors use different methods to solve quasilinear equations or systems defined in bounded or unbounded domains. Djellit and Tas [6] investigated a system such as (1.1) by employing variational approach.
In this work, motivated by [A. Djellit, S. Tas. On some nonlinear elliptic systems. Nonl. Anal. 59 (2004), 695-706], we show an existence result by using a fixed point theorem due to Bohnenblust-Karlin.
This paper is divided into three sections, organized as follows: in Section 2,we give some notation and hypotheses; Section 3 is devoted to establish an existence theorem.

[^0]
2. Notation and hypotheses

We denote by $D^{1, m}\left(\mathbb{R}^{N}\right)$ the completion of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ in the norm

$$
\|u\|_{1, m} \equiv\|\nabla u\|_{m}=\left(\int_{\mathbb{R}^{N}}|\nabla u|^{m} d x\right)^{\frac{1}{m}} ; \quad 1<m<N .
$$

It is well known that $D^{1, m}\left(\mathbb{R}^{N}\right)$ is a uniformly convex Banach space and may be written as

$$
D^{1, m}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{m^{*}}\left(\mathbb{R}^{N}\right) ; \quad \nabla u \in\left(L^{m}\left(\mathbb{R}^{N}\right)\right)^{N}\right\}
$$

Moreover, we have the following Sobolev constant defined by

$$
S_{m} \equiv C^{-m}(N, m)=\inf \left\{\frac{\|u\|_{1, m}^{m}}{\|u\|_{m^{*}}^{m}}, \quad u \in D^{1, m}\left(\mathbb{R}^{N}\right) \backslash\{0\}\right\}
$$

We denote Z by the product space $Z \equiv D^{1, p}\left(\mathbb{R}^{N}\right) \times D^{1, q}\left(\mathbb{R}^{N}\right)$ with the norm $\|(u, v)\|_{Z}=\|u\|_{1, p}+\|v\|_{1, q} ; \quad Z^{*}$ is the dual space of Z equipped with the dual norm $\|.\|_{*}$.
In addition, let T and N be two operators defined from Z into Z^{*} by

$$
T(u, v)(w, z)=\int_{\mathbb{R}^{N}}|\nabla u|^{p-2} \nabla u \nabla w d x+\int_{\mathbb{R}^{N}}|\nabla v|^{q-2} \nabla v \nabla z d x
$$

and

$$
\begin{aligned}
N(u, v)(w, z)= & \int_{\mathbb{R}^{N}}\left[\left(f(x)|u|^{p^{*}-2} u+\lambda \frac{\partial F}{\partial u}(x, u, v)\right) w\right. \\
& \left.+\left(g(x)|v|^{q^{*}-2} v+\mu \frac{\partial F}{\partial v}(x, u, v)\right) z\right] d x, \quad \forall(u, v),(w, z) \in Z
\end{aligned}
$$

Now, we recall the fixed point theorem due to Bohnenblust-Karlin (see [11]).
Theorem 2.1.([11]) Let Z be a Banach space, let $B \subset Z$ be a nonempty, closed, convex set and let $S: B \rightarrow 2^{B}$ be a set-valued mapping satisfying
(a) for each $U \in Z$, the set $S U$ is nonempty, closed and convex,
(b) S is closed,
(c) the set $S(B)=\bigcup_{U \in B} S U$ is relatively compact.

Then S has a fixed point in B i.e. there is $U \in B$ such that $U \in S U$.
Our aim is to find the condition of the above theorem. The fixed points of the setvalued mapping S are precisely the weak solutions of system (1.1). In other words, we state the existence of a pair $(u, v) \in Z$ such that $T(u, v)(w, z)=N(u, v)(w, z)$, $\forall(w, z) \in Z$, under the following assumptions.
(H1) f and g are positive and bounded functions.
(H2) $F \in C^{1}\left(\mathbb{R}^{N}, \mathbb{R}, \mathbb{R}\right)$ and $F(x, 0,0)=0$.
(H3) For all $U=(u, v) \in \mathbb{R}^{2}$ and for almost every $x \in \mathbb{R}^{N}$

$$
\begin{aligned}
& \left|\frac{\partial F}{\partial u}(x, U)\right| \leq a_{1}(x)|U|^{p_{1}-1}+a_{2}(x)|U|^{p_{2}-1} \\
& \left|\frac{\partial F}{\partial v}(x, U)\right| \leq b_{1}(x)|U|^{q_{1}-1}+b_{2}(x)|U|^{q_{2}-1} \\
& \text { where } 1<p_{1}, q_{1}<\min (p, q), \quad \max (p, q)<p_{2}, q_{2}<\min \left(p^{*}, q^{*}\right) \\
& a_{i} \in L^{\alpha_{i}}\left(\mathbb{R}^{N}\right) \cap L^{\beta_{i}}\left(\mathbb{R}^{N}\right), \quad b_{i} \in L^{\gamma_{i}}\left(\mathbb{R}^{N}\right) \cap L^{\delta_{i}}\left(\mathbb{R}^{N}\right), \quad i=1,2 . \\
& \alpha_{i}=\frac{p^{*}}{p^{*}-p_{i}}, \quad \gamma_{i}=\frac{q^{*}}{q^{*}-q_{i}}, \quad \beta_{i}=\frac{p^{*} q^{*}}{p^{*} q^{*}-p^{*}\left(p_{i}-1\right)-q^{*}} \\
& \delta_{i}=\frac{p^{*} q^{*}}{p^{*} q^{*}-q^{*}\left(q_{i}-1\right)-p^{*}} .
\end{aligned}
$$

3. Existence of solutions

The goal of this section is to establish the following result.
Theorem 3.1. Under hypotheses $\left(H_{1}\right)-\left(H_{3}\right)$, the equation $T(u, v)=N(u, v)$ has a solution in Z.

First, two preliminary results. The first one concerns the properties of the operator T while the second one describes the property of the operator N.

Lemma 3.2. The operator T is monotone, hemicontinuous, coercive and satisfies the following property:

$$
\begin{equation*}
\left[\left(u_{n}, v_{n}\right) \rightharpoonup(u, v), T\left(u_{n}, v_{n}\right) \rightarrow T(u, v)\right] \Rightarrow\left(u_{n}, v_{n}\right) \rightarrow(u, v) \tag{3.1}
\end{equation*}
$$

Proof. Let us denote by T_{p} the operator defined from $D^{1, p}\left(\mathbb{R}^{N}\right)$ into $\left(D^{1, p}\left(\mathbb{R}^{N}\right)\right)^{*}$ by

$$
T_{p}(u) w=\int_{\mathbb{R}^{N}}|\nabla u|^{p-2} \nabla u \cdot \nabla w d x, \quad \forall u, w \in D^{1, p}\left(\mathbb{R}^{N}\right)
$$

and T_{q} the corresponding one with p replaced by q.
Observe that $T(u, v)(w, z)=T_{p}(u) w+T_{q}(v) z, \forall(u, v),(w, z) \in Z . T_{p}, T_{q}$ are duality mappings on $D^{1, p}\left(\mathbb{R}^{N}\right)$ and $D^{1, q}\left(\mathbb{R}^{N}\right)$ corresponding to the Guage functions $\Phi_{p}(T)=t^{p-1}$ and $\Phi_{q}(t)=t^{q-1}$, respectively. Hence T_{p}, T_{q} are demicontinuous(see[3,p.175]).
So, for $\left(u_{n}, v_{n}\right) \rightarrow(u, v)$ in Z, we have $T_{p}\left(u_{n}\right) \rightharpoonup T_{p}(u)$ in $\left(D^{1, p}\left(\mathbb{R}^{N}\right)\right)^{*}$ and $T_{q}\left(v_{n}\right) \rightharpoonup T_{q}(v)$ in $\left(D^{1, q}\left(\mathbb{R}^{N}\right)\right)^{*}$. Since $D^{1, p}\left(\mathbb{R}^{N}\right)$ and $D^{1, q}\left(\mathbb{R}^{N}\right)$ are reflexive, and the dual space of any reflexive space is reflexive. we get $T\left(u_{n}, v_{n}\right)=T_{p}\left(u_{n}\right)+T_{q}\left(v_{n}\right) \rightharpoonup$ $T_{p}(u)+T_{q}(v)=T(u, v)$ in Z^{*}, i.e. T is demicontinuous. So, it is hemicontinuous. We note according to [2] that $\forall \lambda, \mu \in \mathbb{R}^{N}$

$$
|\lambda-\mu|^{p} \leq\left(|\lambda|^{p-2} \lambda-|\mu|^{p-2} \mu\right) \cdot(\lambda-\mu) \quad \text { if } p \geq 2
$$

Replacing λ and μ by $\nabla u, \nabla v$ respectively and integrating over \mathbb{R}^{N}, we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla u-\nabla v|^{p} \leq \int_{\mathbb{R}^{N}}\left(|\nabla u|^{p-2} \nabla u-|\nabla v|^{p-2} \nabla v\right) \cdot(\nabla u-\nabla v) \quad \text { if } p \geq 2 \tag{3.2}
\end{equation*}
$$

By virtue of (3.2) we show that T_{p} (similarly T_{q}) is monotone, indeed,

$$
\begin{aligned}
\left(T_{p} u-T_{p} w\right)(u-w)= & T_{p} u(u-w)-T_{p} w(u-w) \\
= & \int_{\mathbb{R}^{N}}\left(|\nabla u|^{p-2} \nabla u \nabla(u-w) d x\right. \\
& -\int_{\mathbb{R}^{N}}\left(|\nabla w|^{p-2} \nabla w \nabla(u-w) d x\right. \\
= & \int_{\mathbb{R}^{N}}\left(|\nabla u|^{p-2} \nabla u-|\nabla w|^{p-2} \nabla w\right)(\nabla u-\nabla w) d x \\
\geq & \int_{\mathbb{R}^{N}}|\nabla u-\nabla w|^{p}=\|u-w\|_{1, p}^{p} \geq 0
\end{aligned}
$$

So, T is monotone. On the other hand, T is coercive since $T(u, v)(u, v)=\|u\|_{1, p}^{p}$ $+\|v\|_{1, q}^{q}$. Now we show that T satisfies property (3.1).
Let us take a sequence $\left(u_{n}, v_{n}\right) \in Z$ such that $\left(u_{n}, v_{n}\right) \rightharpoonup(u, v)$ in Z and $T\left(u_{n}, v_{n}\right) \rightarrow$ $T(u, v)$ in Z^{*}. Then $T\left(u_{n}, v_{n}\right)\left(u_{n}, v_{n}\right) \rightarrow T(u, v)(u, v)$. So $\left\|u_{n}\right\|_{1, p}^{p}+\left\|v_{n}\right\|_{1, q}^{q} \rightarrow$ $\|u\|_{1, p}^{p}+\|v\|_{1, q}^{q}$. According to the uniform convexity of $Z,\left(u_{n}, v_{n}\right) \rightarrow(u, v)$ in Z.

Lemma 3.3. Under hypothesis $\left(H_{1}\right)-\left(H_{3}\right)$, the operator N is compact.
Proof. Let B_{R} be the ball of radius R, centered at the origin of \mathbb{R}^{N}. We put $B_{R}^{\prime}=$ $\mathbb{R}^{N}-B_{R}$ and we designate N_{R} the operator defined from $Z_{R} \equiv D^{1, p}\left(B_{R}\right) \times D^{1, q}\left(B_{R}\right)$ into Z_{R}^{*} by

$$
\begin{aligned}
N_{R}(u, v)(w, z)= & \int_{B_{R}}\left[\left(f(x)|u|^{p^{*}-2} u+\lambda \frac{\partial F}{\partial u}(x, u, v)\right) w\right. \\
& \left.+\left(g(x)|v|^{q^{*}-2} v+\mu \frac{\partial F}{\partial v}(x, u, v)\right) z\right] d x
\end{aligned}
$$

Let $\left\{\left(u_{n}, v_{n}\right)\right\}$ be a bounded sequence in Z. There is a subsequence denoted again as $\left\{\left(u_{n}, v_{n}\right)\right\}$, weakly convergent to (u, v) in Z. For $(w, z) \in Z$, we have

$$
\begin{align*}
& \left|N\left(u_{n}, v_{n}\right)(w, z)-N(u, v)(w, z)\right| \\
& =\left|N_{R}\left(u_{n}, v_{n}\right)(w, z)-N_{R}(u, v)(w, z)\right| \\
& +\left|\int_{B_{R}^{\prime}} f(x)\left(\left|u_{n}\right|^{p^{*}-2} u_{n}-|u|^{p^{*}-2} u\right) w d x\right| \\
& +\left|\int_{B_{R}^{\prime}} g(x)\left(\left|v_{n}\right|^{q^{*}-2} v_{n}-|v|^{q^{*}-2} v\right) z d x\right| \\
& +\left|\int_{B_{R}^{\prime}} \lambda\left(\frac{\partial F}{\partial u}\left(x, u_{n}, v_{n}\right)-\frac{\partial F}{\partial u}(x, u, v)\right) w d x\right| \\
& +\left|\int_{B_{R}^{\prime}} \mu\left(\frac{\partial F}{\partial v}\left(x, u_{n}, v_{n}\right)-\frac{\partial F}{\partial v}(x, u, v)\right) z d x\right| \tag{3.3}
\end{align*}
$$

Since the restriction operator $\left.(u, v) \rightarrow(u, v)\right|_{B_{R}}$ is continuous from $D^{1, p}\left(\mathbb{R}^{N}\right) \times$ $D^{1, q}\left(\mathbb{R}^{N}\right)$ into $D^{1, p}\left(B_{R}\right) \times D^{1, q}\left(B_{R}\right)$, we have $\left(u_{n}, v_{n}\right) \rightharpoonup(u, v)$ in $D^{1, p}\left(B_{R}\right) \times$ $D^{1, q}\left(B_{R}\right)$. We have also that the embeddings $D^{1, p}\left(B_{R}\right) \hookrightarrow L^{p}\left(B_{R}\right)$ and $D^{1, q}\left(B_{R}\right) \hookrightarrow$ $L^{q}\left(B_{R}\right)$ are compact, so

$$
\begin{array}{ll}
u_{n} \rightarrow u & \text { a.e. in } B_{R} \\
v_{n} \rightarrow v & \text { a.e. in } B_{R}
\end{array}
$$

Hypothesis $\left(H_{3}\right)$ gives

$$
\begin{align*}
\left|\frac{\partial F}{\partial u}\left(x, u_{n}, v_{n}\right) w\right| \leq & {\left[a_{1}(x)\left(\left|u_{n}\right|^{p_{1}-1}+\left|v_{n}\right|^{p_{1}-1}\right)\right.} \\
& \left.+a_{2}(x)\left(\left|u_{n}\right|^{p_{2}-1}+\left|v_{n}\right|^{p_{2}-1}\right)\right]|w| \tag{3.4}
\end{align*}
$$

and

$$
\begin{align*}
\left|\frac{\partial F}{\partial v}\left(x, u_{n}, v_{n}\right) z\right| \leq & {\left[b_{1}(x)\left(\left|u_{n}\right|^{q_{1}-1}+\left|v_{n}\right|^{q_{1}-1}\right)\right.} \\
& \left.+b_{2}(x)\left(\left|u_{n}\right|^{q_{2}-1}+\left|v_{n}\right|^{q_{2}-1}\right)\right]|z| \tag{3.5}
\end{align*}
$$

Using Holder's inequality and Sobolev's imbedding, and the fact that $a_{i} \in L^{\alpha_{i}}\left(\mathbb{R}^{N}\right) \bigcap L^{\beta_{i}}\left(\mathbb{R}^{N}\right), b_{i} \in L^{\gamma_{i}}\left(\mathbb{R}^{N}\right) \bigcap L^{\delta_{i}}\left(\mathbb{R}^{N}\right)$, we get that the right hand side of inequalities $(3.4),(3.5)$ belong to $L^{1}\left(B_{R}\right)$. Hence under hypotheses $\left(H_{1}\right)-\left(H_{3}\right)$ and by using Holder's inequality and Sobolev's imbedding, according to Dominated convergence theorem, we obtain, the first expression on the right hand side of the inequality (3.3) tends to 0 as $n \rightarrow+\infty$; Taking $\left(H_{1}\right)$ and $\left(H_{3}\right)$ into account, and the fact that for $i=1,2$,

$$
\begin{aligned}
& \left\|a_{i}\right\|_{L^{\alpha_{i}}\left(B_{R}^{\prime}\right)}+\left\|a_{i}\right\|_{L^{\beta_{i}}\left(B_{R}^{\prime}\right)} \rightarrow 0 \\
& \left\|b_{i}\right\|_{L^{\gamma_{i}}\left(B_{R}^{\prime}\right)}+\left\|b_{i}\right\|_{L^{\delta_{i}}\left(B_{R}^{\prime}\right)} \rightarrow 0
\end{aligned}
$$

as $R \rightarrow+\infty$; we obtain, the other expressions tend also to 0 as R sufficiently large. So, the compactness of N follows.

Lemma 3.4. Suppose that $\left(H_{1}\right)$ and $\left(H_{3}\right)$ hold. There is a constant $k>0$ such that $T(u, v)=N(\sigma, \rho)$ and $\|(\sigma, \rho)\|_{Z} \leq k$ implies $\|(u, v)\|_{Z} \leq k$.
Proof. Let $(u, v),(\sigma, \rho) \in Z$ be such that $T(u, v)=N(\sigma, \rho)$, then

$$
T(u, v)(w, z)=N(\sigma, \rho)(w, z), \quad \forall(w, z) \in Z
$$

In particular, we have $T(u, v)(u, 0)=N(\sigma, \rho)(u, 0)$ i.e.

$$
\begin{equation*}
\|u\|_{1, p}^{p}=\int_{\mathbb{R}^{N}}|\nabla u|^{p} d x=\int_{\mathbb{R}^{N}}\left(f(x)|\sigma|^{p^{*}-2} \sigma+\lambda \frac{\partial F}{\partial u}(x, \sigma, \rho)\right) u d x \tag{3.6}
\end{equation*}
$$

In view of $\left(H_{1}\right)$ and $\left(H_{3}\right)$, by using Holder's inequality and Sobolev's imbedding we obtain

$$
\begin{align*}
\int_{\mathbb{R}^{N}} f(x)|\sigma|^{p^{*}-2} \sigma u d x & \leq c^{\prime} \int_{\mathbb{R}^{N}}|\sigma|^{p^{*}-1}|u| d x \\
& \leq c^{\prime}\|u\|_{p^{*}}\|\sigma\|_{p^{*}}^{p^{*}-1} \leq c_{1}\|u\|_{1, p}\|\sigma\|_{1, p}^{p^{*}-1} \tag{3.7}
\end{align*}
$$

and

$$
\begin{align*}
\int_{\mathbb{R}^{N}} \lambda \frac{\partial F}{\partial u}(x, \sigma, \rho) u d x \leq & c_{1}\|u\|_{1, p}\left(\left\|a_{1}\right\|_{\alpha_{1}}\|\sigma\|_{1, p}^{p_{1}-1}+\left\|a_{1}\right\|_{\beta_{1}}\|\rho\|_{1, q}^{p_{1}-1}\right. \\
& \left.+\left\|a_{2}\right\|_{\alpha_{2}}\|\sigma\|_{1, p}^{p_{2}-1}+\left\|a_{2}\right\|_{\beta_{2}}\|\rho\|_{1, q}^{p_{2}-1}\right) \tag{3.8}
\end{align*}
$$

So, by virtue of (3.6), (3.7) and (3.8) we get

$$
\begin{align*}
\|u\|_{1, p}^{p-1} \leq & c_{1} \lambda\left(\|\sigma\|_{1, p}^{p^{*}-1}+\left\|a_{1}\right\|_{\alpha_{1}}\|\sigma\|_{1, p}^{p_{1}-1}+\left\|a_{1}\right\|_{\beta_{1}}\|\rho\|_{1, q}^{p_{1}-1}\right. \\
& \left.+\left\|a_{2}\right\|_{\alpha_{2}}\|\sigma\|_{1, p}^{p_{2}-1}+\left\|a_{2}\right\|_{\beta_{2}}\|\rho\|_{1, q}^{p_{2}-1}\right) . \tag{3.9}
\end{align*}
$$

In the same way, we have

$$
\begin{align*}
\|v\|_{1, q}^{q-1} \leq & c_{2} \mu\left(\|\rho\|_{1, q}^{q^{*}-1}+\left\|b_{1}\right\|_{\delta_{1}}\|\sigma\|_{1, p}^{q_{1}-1}+\left\|b_{1}\right\|_{\gamma_{1}}\|\rho\|_{1, q}^{q_{1}-1}\right. \\
& \left.+\left\|b_{2}\right\|_{\delta_{2}}\|\sigma\|_{1, p}^{q_{2}-1}+\left\|b_{2}\right\|_{\gamma_{2}}\|\rho\|_{1, q}^{q_{2}-1}\right) \tag{3.10}
\end{align*}
$$

If $\|(\sigma, \rho)\|_{Z}=\|\sigma\|_{1, p}+\|\rho\|_{1, q} \leq k$, we have $\|\sigma\|_{1, p} \leq k$ and $\|\rho\|_{1, q} \leq k$. So, in view of (3.9), (3.10) we get

$$
\begin{aligned}
\|u\|_{1, p}^{p-1} & \leq c \lambda\left(k^{p^{*}-1}+k^{p_{1}-1}+k^{p_{2}-1}\right) \\
\|v\|_{1, q}^{q-1} & \leq c \mu\left(k^{q^{*}-1}+k^{q_{1}-1}+k^{q_{2}-1}\right)
\end{aligned}
$$

Since $p_{1}<p_{2}<p^{*}$ and $q_{1}<q_{2}<q^{*}$, there is a $k>0$ such that $c\left(k^{p^{*}-1}+k^{p_{1}-1}+\right.$ $\left.k^{p_{2}-1}\right) \leq\left(\frac{k}{2}\right)^{p-1}$ and $c\left(k^{q^{*}-1}+k^{q_{1}-1}+k^{q_{2}-1}\right) \leq\left(\frac{k}{2}\right)^{q-1}$. So, $\|\sigma\|_{1, p}+\|\rho\|_{1, q} \leq k$ implies $\|u\|_{1, p}+\|v\|_{1, q} \leq k$.
We have on the following proposition, which is standard in the theory of monotone operators.

Proposition 3.5. Let X be a real normed space, $T: X \rightarrow X^{*}$ be a monotone, hemicontinuous operator and let $w \in X, f \in X^{*}$.
The following two assertions are equivalent
(a) $T w=f$
(b) $\langle T z-f, z-w\rangle \geq 0 \quad$ for all $z \in X$.

Now, we are ready to give the following proof.
Proof of Theorem 3.1. In view of lemma 3.4, let $B \subset Z$ be the closed ball of radius k centered at the origin. We define the operator S from B into 2^{B} by

$$
(\sigma, \rho) \mapsto S(\sigma, \rho)=\{(u, v) ; \quad T(u, v)=N(\sigma, \rho)\}
$$

By virtue of lemma 3.2, T is monotone, hemicontinuous and coercive, then according to Browder's Theorem (see[13,p.557]), $S(\sigma, \rho)$ is nonempty, convex, closed and bounded for every $(\sigma, \rho) \in B$. Furthermore, the operator S is closed, indeed, let $\left\{\left(\sigma_{n}, \rho_{n}\right)\right\} \subset B ;\left(\sigma_{n}, \rho_{n}\right) \rightarrow(\sigma, \rho) \in Z$, and $\left\{\left(u_{n}, v_{n}\right)\right\} \subset Z$ such that $\left(u_{n}, v_{n}\right) \in S\left(\sigma_{n}, \rho_{n}\right)$ and $\left(u_{n}, v_{n}\right) \rightarrow(u, v)$ in Z.
Since N is continuous, it is demicontinuous. We have also that T is demicontinuous, so we can write

$$
\begin{aligned}
& T\left(u_{n}, v_{n}\right) \rightharpoonup T(u, v), \\
& N\left(\sigma_{n}, \rho_{n}\right) \rightharpoonup N(\sigma, \rho) .
\end{aligned}
$$

Since $\left(u_{n}, v_{n}\right) \in S\left(\sigma_{n}, \rho_{n}\right)$, we have $T\left(u_{n}, v_{n}\right)=N\left(\sigma_{n}, \rho_{n}\right)$. Hence $T\left(u_{n}, v_{n}\right) \rightharpoonup$ $N(\sigma, \rho)$. Since the weak limit is unique, we get

$$
T(u, v)=N(\sigma, \rho)
$$

On the other hand, B is closed, consequently $(\sigma, \rho) \in B$ and then $(u, v) \in S(\sigma, \rho)$. Now, let us show that $S(B)=\bigcup_{(\sigma, \rho) \in B} S(\sigma, \rho)$ is relatively compact.
Let $\left(u_{n}, v_{n}\right) \subset \bigcup_{(\sigma, \rho) \in B} S(\sigma, \rho)$ and $\left(\sigma_{n}, \rho_{n}\right) \subset B$ be such that

$$
\begin{equation*}
T\left(u_{n}, v_{n}\right)=N\left(\sigma_{n}, \rho_{n}\right) \tag{3.11}
\end{equation*}
$$

In view of lemma $3.3, N(B)$ is relatively compact. So there exists $H \in Z^{*}$ such that $N\left(\sigma_{n}, \rho_{n}\right) \rightarrow H$, Hence by (3.11) we have $T\left(u_{n}, v_{n}\right) \rightarrow H$. Consequently $T\left(u_{n}, v_{n}\right)$ is bounded. Since T is coercive, $\left(u_{n}, v_{n}\right)$ is also bounded; otherwise, if
$\left\|\left(u_{n}, v_{n}\right)\right\| \rightarrow \infty$, we have $T\left(u_{n}, v_{n}\right) \rightarrow \infty$, which is a contradiction. Hence, we may choose a subsequence denoted again by $\left\{\left(u_{n}, v_{n}\right)\right\}$, weakly convergent to $\left(u_{0}, v_{0}\right)$ in Z.
The monotonicity of T leads to $\left(T(u, v)-T\left(u_{n}, v_{n}\right)\right)\left(u-u_{n}, v-v_{n}\right) \geq 0, \forall(u, v) \in Z$, and passing to the limit, we obtain

$$
(T(u, v)-H)\left(u-u_{0}, v-v_{0}\right) \geq 0, \quad \forall(u, v) \in Z
$$

i.e. $\left\langle T(u, v)-H,(u, v)-\left(u_{0}, v_{0}\right)\right\rangle \geq 0, \forall(u, v) \in Z$. So by virtue of proposition 3.5, we have $T\left(u_{0}, v_{0}\right)=H$. Taking the condition (3.1) into account, we obtain the convergence of $\left(u_{n}, v_{n}\right)$ to $\left(u_{0}, v_{0}\right)$. Finally, by Bohnenblust-Karlin fixed point theorem, S possesses a fixed point.i.e. there exist $\left(\sigma_{0}, \rho_{0}\right) \in B$ such that $T\left(\sigma_{0}, \rho_{0}\right)=$ $N\left(\sigma_{0}, \rho_{0}\right)$.

References

[1] L. Boccardo, D.G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations, Nonlinear Differetial Equations Appl. 9 (2002), 309-323.
[2] Ph. Clement, J. Fleckinger, E. Mitidieri, F. de Thelin, Existence of positive solutions for a nonvariational quasilinear elliptic systems, J. Differential Equations 166 (2000), 455-477.
[3] D.G. Costa, On a class of elliptic systems in \mathbb{R}^{N}, Eur. J. Differential Equations 1994(07) (1994), 1-14.
[4] A. Djellit, S. Tas, Existence of solutions for a class of elliptic systems in \mathbb{R}^{N} involving the p-Laplacian, EJDE 2003 (56) (2003), 1-8.
[5] A. Djellit, S. Tas, On some nonlinear elliptic systems, Nonl. Anal. 59 (2004), 695-706.
[6] A. Djellit, S. Tas, Quasilinear elliptic systems with critical Sobolev exponents in \mathbb{R}^{N}, Nonlinear Anal. 66 (2007), 1485-1497.
[7] M. Ghergu and V. Rădulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and its Applications, vol. 37, Oxford University Press, New York, 2008.
[8] M. Ghergu and V. Rădulescu, Nonlinear Analysis and Beyond. Partial Differential Equations Applied to Biosciences, Springer Monographs in Mathematics, Springer-Verlag, Heidelberg, 2011.
[9] A. Kristály, V. Rădulescu and Cs. Varga, Variational Principles in Mathematical Physics, Geometry and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics (No. 136), Cambridge University Press, Cambridge, 2010.
[10] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270-291.
[11] D.R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, 1974.
[12] L.S. Yu, Nonlinear p-Laplacian problems on unbounded domains, Proc. Amer. Math. Soc. 115 (1992), 1037-1045.
[13] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. II/B Nonlinear Monotone Operators, vol. III Variational Methods and Optimizations, Springer, Berlin, 1990.
G.A. Afrouzi, T.A. Roushan, Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran.

E-mail address: afrouzi@umz.ac.ir; t.roushan@umz.ac.ir

[^0]: 2000 Mathematics Subject Classification. 35P65, 35P30.
 Key words and phrases. p-Laplacian operator, Critical Sobolev exponent, Fixed point theorem. © 2011 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted June 2, 2011. Published August 6, 2011.

