DIFFERENTIAL SANDWICH THEOREMS FOR MULTIVALENT ANALYTIC FUNCTIONS DEFINED BY THE SRIVASTAVA-ATTIYA OPERATOR

> (COMMUNICATED BY HARI SRIVASTAVA)
M. K. AOUF, A. SHAMANDY, A. O. MOSTAFA AND E. A. ADWAN

Abstract

In this paper, we obtain some applications of the theory of differential subordination and superordination results involving the operator $J_{s, b}^{\lambda, p}$ and other linear operators for certain normalized p-valent analytic functions associated with that operator.

1. Introduction

Let $H(U)$ be the class of analytic functions in the open unit disc $U=\{z: z \in \mathbb{C},|z|<1\}$ and let $H[a, p]$ be the subclass of $H(U)$ consisting of functions of the form:

$$
\begin{equation*}
f(z)=a+a_{p} z^{p}+a_{p+1} z^{p+1}+\ldots \quad(a \in \mathbb{C}) . \tag{1.1}
\end{equation*}
$$

Also, let $A(p)$ denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} z^{k+p} \quad(p \in \mathbb{N}=\{1,2, \ldots\}), \tag{1.2}
\end{equation*}
$$

and let $A_{1}=A(1)$.
If $f, g \in A(p)$, we say that f is subordinate to g, written $f \prec g$ if there exists a Schwarz function w, which (by definition) is analytic in U with $w(0)=0$ and $|w(z)|<1$ for all $z \in U$, such that $f(z)=g(w(z)), z \in U$. Furthermore, if the function g is univalent in U, then we have the following equivalence (cf., e.g., [7] ,[12] and [13]):

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U) .
$$

Let $k, h \in H(U)$ and let $\varphi(r, s, t ; z): \mathbb{C}^{3} \times U \rightarrow \mathbb{C}$. If k and $\varphi\left(k(z), z k^{\prime}(z)\right.$, $\left.z^{2} k^{\prime \prime}(z) ; z\right)$ are univalent functions in U and if k satisfies the second-order superordination

$$
\begin{equation*}
h(z) \prec \varphi\left(k(z), z k^{\prime}(z), z^{2} k^{\prime \prime}(z) ; z\right), \tag{1.3}
\end{equation*}
$$

2000 Mathematics Subject Classification. 30C45.
Key words and phrases. Multivalent functions, differential subordination, superordination, sandwich theorems, the Srivastava-Attiya operator.

Submitted May 1, 2011. Published June 24, 2011.
then p is a solution of the differential superordination (1.3). Note that if f subordinate to g, then g is superordinate to f. An analytic function q is called a subordinant of (1.3), if $q(z) \prec k(z)$ for all functions p satisfying (1.3). An univalent subordinant \widetilde{q} that satisfies $q(z) \prec \widetilde{q}(z)$ for all subordinants of (1.3) is called the best subordinant. Recently, Miller and Mocanu [14] obtained sufficient conditions on the functions h, q and φ for which the following implication holds:

$$
\begin{equation*}
h(z) \prec \varphi\left(k(z), z k^{\prime}(z), z^{2} k^{\prime \prime}(z) ; z\right) \Rightarrow q(z) \prec k(z) . \tag{1.4}
\end{equation*}
$$

Using the results of Miller and Mocanu [14], Bulboaca [6] considered certain classes of first order differential superordinations as well as superordination-preserving integral operators [5]. Ali et al. [1], have used the results of Bulboaca [6] to obtain sufficient conditions for normalized analytic functions to satisfy:

$$
q_{1}(z) \prec \frac{z f^{\prime}(z)}{f(z)} \prec q_{2}(z),
$$

where q_{1} and q_{2} are given univalent functions in U with $q_{1}(0)=q_{2}(0)=1$. Also, Tuneski [28] obtained a sufficient condition for starlikeness of f in terms of the quantity $\frac{f^{\prime \prime}(z) f(z)}{\left(f^{\prime}(z)\right)^{2}}$. Recently, Shanmugam et al. [22] obtained sufficient conditions for the normalized analytic functions f to satisfy

$$
q_{1}(z) \prec \frac{f(z)}{z f^{\prime}(z)} \prec q_{2}(z)
$$

and

$$
q_{1}(z) \prec \frac{z^{2} f^{\prime}(z)}{\{f(z)\}^{2}} \prec q_{2}(z) .
$$

They [22] also obtained results for functions defined by using Carlson-Shaffer operator .
For functions f given by (1.1) and $g \in A(p)$ given by $g(z)=z^{p}+\sum_{k=1}^{\infty} b_{k+p} z^{k+p}$, the Hadamard product (or convolution) of f and g is defined by

$$
(f * g)(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} b_{k+p} z^{k+p}=(g * f)(z)
$$

We begin our investigation by recalling that a general Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ defined by (see [26])

$$
\begin{gather*}
\Phi(z, s, a)=\sum_{k=0}^{\infty} \frac{z^{k}}{(k+a)^{s}}, \tag{1.5}\\
a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\} ; \mathbb{Z}_{0}^{-}=\mathbb{Z} \backslash \mathbb{N}, \mathbb{Z}=\left\{0,{ }_{-}^{+} 1,{ }_{-}^{+} 2, \ldots\right\} ; s \in \mathbb{C} \\
\text { when }|z|<1 ; \Re\{s\}>1 \text { when }|z|=1
\end{gather*}
$$

Recently, the Srivastava and Attiya [25] (see also [11], [17] and [18]) introduced and investigated the linear operator $J_{s, b}(f): A_{1} \rightarrow A_{1}$, defined in terms of the Hadamard product by

$$
J_{s, b} f(z)=G_{s, b}(z) * f(z)\left(z \in U ; b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C}\right)
$$

where for convenience,

$$
G_{s, b}=(1+b)^{s}\left[\Phi(z, s, b)-b^{-s}\right](z \in U) .
$$

In [29], Wang et al. defined the operator $J_{s, b}^{\lambda, p}: A(p) \rightarrow A(p)$ by

$$
\begin{equation*}
J_{s, b}^{\lambda, p} f(z)=f_{s, b}^{\lambda, p}(z) * f(z) \tag{1.6}
\end{equation*}
$$

$$
\left(z \in U ; b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in C ; \lambda>-p ; p \in \mathbb{N} ; f \in A(p)\right),
$$

where

$$
\begin{equation*}
f_{s, b}^{p}(z) * f_{s, b}^{\lambda, p}(z)=\frac{z^{p}}{(1-z)^{\lambda+p}} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{s, b}^{p}(z)=z^{p}+\sum_{k=1}^{\infty}\left(\frac{p+k+b}{p+b}\right) z^{k+p} \quad(z \in U ; p \in \mathbb{N}) . \tag{1.8}
\end{equation*}
$$

It is easy to obtain from (1.6), (1.7) and (1.8) that

$$
\begin{equation*}
J_{s, b}^{\lambda, p} f(z)=z^{p}+\sum_{k=1}^{\infty} \frac{(\lambda+p)_{k}}{k!}\left(\frac{p+b}{k+p+b}\right)^{s} a_{k+p} z^{k+p}, \tag{1.9}
\end{equation*}
$$

where $(\gamma)_{k}$, is the Pochhammer symbol defined in terms of the Gamma function Γ, by

$$
(\gamma)_{k}=\frac{\Gamma(\gamma+n)}{\Gamma(\gamma)}= \begin{cases}1 & (k=0) \\ \gamma(\gamma+1) \ldots(\gamma+k-1) & (k \in \mathbb{N}) .\end{cases}
$$

We note that $\quad J_{0, b}^{1-p, p} f(z)=f(z)(f \in A(p))$.
Using (1.9), it is easy to verify that (see [29])

$$
\begin{equation*}
z\left(J_{s+1, b}^{\lambda, p} f\right)^{\prime}(z)=(p+b) J_{s, b}^{\lambda, p}(f)(z)-b J_{s+1, b}^{\lambda, p}(f)(z) \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
z\left(J_{s, b}^{\lambda, p} f\right)^{\prime}(z)=(p+\lambda) J_{s, b}^{\lambda+1, p}(f)(z)-\lambda J_{s, b}^{\lambda, p}(f)(z) . \tag{1.11}
\end{equation*}
$$

It should be remarked that the linear operator $J_{s, b}^{\lambda, p} f(z)$ is generalization of many other linear operators considered earlier. We have:
(1) $J_{0, b}^{\lambda, p} f(z)=D^{\lambda+p-1} f(z)(\lambda>-p, p \in \mathbb{N})$, where $D^{\lambda+p-1}$ is the $(\lambda+p-1)$-th order Ruscheweyh derivative of a function $f(z) \in A(p)$ (see [10]);
(2) $J_{1, v}^{1-p, p} f(z)=J_{v, p} f(z)(v>-p)$, where the generalized Bernardi-Libera-Livingston operator $J_{v, p}$ was studied by Choi et al. [8];
(3) $J_{m, 0}^{1-p, p} f(z)=I_{p}^{m} f(z)=z^{p}+\sum_{k=1}^{\infty}\left(\frac{p}{k+p}\right)^{m} a_{k+p} z^{k+p} \quad\left(m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)$, where for $p=1$ the integral operator $I_{1}^{m}=I^{m}$ was introduced and studied by Salagean [20];
(4) $J_{\sigma, 1}^{1-p, p} f(z)=I_{p}^{\sigma} f(z)(\sigma>0)$, where the integral operator I_{p}^{σ} was studied by Shams et al. [21] and Aouf et al. [4];
(5) $J_{\gamma, \tau}^{0,1} f(z)=P_{\tau}^{\gamma} f(z)(\gamma \geq 0, \tau>1)$, where the integral operator P_{τ}^{γ} was introduced and studied by Patel and Sahoo [16].

2. DEFINITIONS AND PRELIMINARIES

In order to prove our results, we shall need the following definition and lemmas. Definition 1 [14]. Let Q be the set of all functions f that are analytic and injective on $\bar{U} \backslash E(f)$, where $E(f)=\left\{\zeta \in \partial U: \lim _{z \rightarrow \zeta} f(z)=\infty\right\}$, and are such that $f^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial U \backslash E(f)$.

Lemma 1 [12]. Let q be univalent in the unit disc U, and let θ and φ be analytic in a domain D containing $q(U)$, with $\varphi(w) \neq 0$ when $w \in q(U)$. Set \mathbb{C}

$$
\begin{equation*}
Q(z)=z q^{\prime}(z) \varphi(q(z)) \text { and } h(z)=\theta(q(z))+Q(z) \tag{2.1}
\end{equation*}
$$

suppose that
(i) Q is a starlike function in U,
(ii) $\operatorname{Re}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}>0, z \in U$.

If p is analytic in U with $k(0)=q(0), p(U) \subseteq D$ and

$$
\begin{equation*}
\theta(k(z))+z k^{\prime}(z) \varphi(k(z)) \prec \theta(q(z))+z q^{\prime}(z) \varphi(q(z)) \tag{2.2}
\end{equation*}
$$

then $k(z) \prec q(z)$, and q is the best dominant of (2.2).
Lemma 2 [24]. Let $\xi, \beta \in \mathbb{C}$ with $\beta \neq 0$ and let q be a convex function in U with

$$
\operatorname{Re}\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>\max \left\{0 ;-\operatorname{Re} \frac{\xi}{\beta}\right\}
$$

If p is analytic in U and

$$
\begin{equation*}
\xi k(z)+\beta z k^{\prime}(z) \prec \xi q(z)+\beta z q^{\prime}(z) \tag{2.3}
\end{equation*}
$$

then $k \prec q$ and q is the best dominant of (2.3).
Lemma 3 [6]. Let q be a univalent function in U and let θ and φ be analytic in a domain D containing $q(U)$. Suppose that
(i) $\operatorname{Re}\left\{\frac{\theta^{\prime}(q(z))}{\varphi(q(z))}\right\}>0$ for $z \in U$,
(ii) $Q(z)=z q^{\prime}(z) \varphi(q(z))$ is starlike univalent in U .

If $k \in H[q(0), 1] \cap Q$, with $k(\mathrm{U}) \subseteq D, \theta(k(z))+z k^{\prime}(z) \varphi(k(z))$ is univalent in U , and

$$
\begin{equation*}
\theta(q(z))+z q^{\prime}(z) \varphi(q(z)) \prec \theta(k(z))+z k^{\prime}(z) \varphi(k(z)) \tag{2.4}
\end{equation*}
$$

then $q(z) \prec k(z)$ and q is the best subordinant of (2.4).
Lemma 4 [14]. Let q be convex univalent in U and let $\beta \in \mathbb{C}$, with $\operatorname{Re}\{\beta\}>0$. If $k \in H[q(0), 1] \cap Q, k(z)+\beta z k^{\prime}(z)$ is univalent in U and

$$
\begin{equation*}
q(z)+\beta z q^{\prime}(z) \prec k(z)+\beta z k^{\prime}(z) \tag{2.5}
\end{equation*}
$$

then $q \prec k$ and q is the best subordinant of (2.5).
Lemma 5 [19]. The function $q(z)=(1-z)^{-2 a b}\left(a, b \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}\right)$ is univalent in U if and only if $|2 a b-1| \leq 1$ or $|2 a b+1| \leq 1$.

3. SUBORDINANT RESULTS FOR ANALYTIC FUNCTIONS

Unless otherwise mentioned, we shall assume in the reminder of this paper that $b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, s \in \mathbb{C}, p \in \mathbb{N}, \lambda>-p, \gamma \in \mathbb{C}^{*}, z \in U$ and the powers are understood as principle values.

Theorem 1. Let $q(z)$ be univalent in U, with $q(0)=1$ and suppose that $\frac{z q^{\prime}(z)}{q(z)}$ is starlike univalent in U. Let

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>\max \left\{0 ;-p \operatorname{Re}\left(\frac{b+p}{\gamma}\right)\right\} \tag{3.1}
\end{equation*}
$$

If $f(z) \in A(p)$ satisfies the subordination

$$
\begin{equation*}
\frac{\gamma}{p}\left(\frac{J_{s-1, b}^{\lambda, p} f(z)}{z^{p}}\right)+\frac{p-\gamma}{p}\left(\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}}\right) \prec q(z)+\frac{\gamma z q^{\prime}(z)}{p(b+p)} . \tag{3.2}
\end{equation*}
$$

Then

$$
\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}} \prec q(z)
$$

and q is the best dominant of (3.2).
Proof. Define a function $k(z)$ by

$$
\begin{equation*}
k(z)=\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}}(z \in U) \tag{3.3}
\end{equation*}
$$

by differentiating (3.3) logarithmically with respect to z, we obtain that

$$
\begin{equation*}
\frac{z k^{\prime}(z)}{k(z)}=\frac{z\left(J_{s, b}^{\lambda, p} f(z)\right)^{\prime}}{J_{s, b}^{\lambda, p} f(z)}-p . \tag{3.4}
\end{equation*}
$$

From (3.4) and (1.10), a simple computation shows that

$$
\frac{\gamma}{p}\left(\frac{J_{s-1, b}^{\lambda, p} f(z)}{z^{p}}\right)+\frac{p-\gamma}{p}\left(\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}}\right)=k(z)+\frac{\gamma z k^{\prime}(z)}{p(b+p)}
$$

hence the subordination (3.2) is equivalent to

$$
k(z)+\frac{\gamma z k^{\prime}(z)}{p(b+p)} \prec q(z)+\frac{\gamma z q^{\prime}(z)}{p(b+p)} .
$$

Combining this last relation together with Lemma 2 for the special case $\beta=\frac{\gamma}{p(b+p)}$ and $\xi=1$ we obtain our result.

Taking $q(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$ in Theorem 1, the condition (3.1) reduces to

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{1-B z}{1+B z}\right\}>\max \left\{0 ;-p \operatorname{Re}\left(\frac{b+p}{\gamma}\right)\right\} \tag{3.5}
\end{equation*}
$$

It is easy to check that the function $\psi(\zeta)=\frac{1-\zeta}{1+\zeta},|\zeta|<|B|$, is convex in U and since $\psi(\bar{\zeta})=\overline{\psi(\zeta)}$ for all $|\zeta|<|B|$, it follows that the image $\psi(U)$ is convex domain symmetric with respect to the real axis, hence

$$
\begin{equation*}
\inf \left\{\operatorname{Re} \frac{1-B z}{1+B z}\right\}=\frac{1-|B|}{1+|B|}>0 \tag{3.6}
\end{equation*}
$$

Then the inequality (3.5) is equivalent to $\frac{|B|-1}{|B|+1} \leq p \operatorname{Re}\left(\frac{b+p}{\gamma}\right)$, hence, we obtain the following corollary.

Corollary 2. Let $f(z) \in A(p),-1 \leq B<A \leq 1$ and $\max \left\{0 ;-p \operatorname{Re}\left(\frac{b+p}{\gamma}\right)\right\} \leq$ $\frac{1-|B|}{1+|B|}$, then

$$
\begin{equation*}
\frac{\gamma}{p}\left(\frac{J_{s-1, b}^{\lambda, p} f(z)}{z^{p}}\right)+\frac{p-\gamma}{p}\left(\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}}\right) \prec \frac{1+A z}{1+B z}+\frac{\gamma}{p(b+p)} \frac{(A-B) z}{(1+B z)^{2}}, \tag{3.7}
\end{equation*}
$$

implies

$$
\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}} \prec \frac{1+A z}{1+B z}
$$

and $\frac{1+A z}{1+B z}$ is the best dominant of (3.7).
Taking $q(z)=\frac{1+z}{1-z}$ in Theorem 1 (or putting $A=1$ and $B=-1$ in Corollary 1), the condition (3.1) reduces to

$$
\begin{equation*}
p \operatorname{Re}\left(\frac{b+p}{\gamma}\right) \geq 0 \tag{3.8}
\end{equation*}
$$

hence, we obtain the following corollary.
Corollary 3. Let $f(z) \in A(p)$, assume that (3.8) holds true and

$$
\begin{equation*}
\frac{\gamma}{p}\left(\frac{J_{s-1, b}^{\lambda, p} f(z)}{z^{p}}\right)+\frac{p-\gamma}{p}\left(\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}}\right) \prec \frac{1+z}{1-z}+\frac{2 \gamma z}{p(p+b)(1-z)^{2}}, \tag{3.9}
\end{equation*}
$$

then

$$
\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}} \prec \frac{1+z}{1-z}
$$

and $\frac{1+z}{1-z}$ is the best dominant of (3.9).

Now, by appealing to Lemma 1 it can be easily prove the following theorem.
Theorem 4. Let $q(z)$ be univalent in U, with $q(0)=1$ and $q(z) \neq 0$ for all $z \in U$. Let $\mu, \delta \in \mathbb{C}^{*}$ and $\alpha, \tau \in \mathbb{C}$, with $\alpha+\tau \neq 0$. Let $f(z) \in A(p)$ and suppose that f and q satisfy the next conditions:

$$
\begin{equation*}
\frac{\alpha J_{s-1, b}^{\lambda, p} f(z)+\tau J_{s, b}^{\lambda, p} f(z)}{(\alpha+\tau) z^{p}} \neq 0 \quad(z \in U) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}\right\}>0 \quad(z \in U) \tag{3.11}
\end{equation*}
$$

If

$$
\begin{equation*}
1+\delta \mu\left\{\frac{\alpha z\left(J_{s-1, b}^{\lambda, p} f(z)\right)^{\prime}+\tau z\left(J_{s, b}^{\lambda, p} f(z)\right)^{\prime}}{\alpha J_{s-1, b}^{\lambda, p} f(z)+\tau J_{s, b}^{\lambda, p} f(z)}-p\right\} \prec 1+\delta \frac{z q^{\prime}(z)}{q(z)}, \tag{3.12}
\end{equation*}
$$

then

$$
\left(\frac{\alpha J_{s-1, b}^{\lambda, p} f(z)+\tau J_{s, b}^{\lambda, p} f(z)}{(\alpha+\tau) z^{p}}\right)^{\mu} \prec q(z)
$$

and q is the best dominant of (3.12).
Taking $q(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1), \alpha=0$ and $\tau=\delta=1$ in Theorem 2, the condition (3.11) reduces to

$$
\begin{equation*}
\left\{1-\frac{2 B z}{1+B z}-\frac{(A-B) z}{(1+A z)(1+B z)}\right\}>0 . \tag{3.13}
\end{equation*}
$$

hence, we obtain the following corollary.
Corollary 5. Let $f(z) \in A(p)$, assume that (3.13) holds true, $-1 \leq B<A \leq 1$, $\mu \in \mathbb{C}^{*}$ and suppose that $\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}} \neq 0(z \in U)$. If

$$
\begin{equation*}
1+\mu\left\{\frac{z\left(J_{s, b}^{\lambda, p} f(z)\right)^{\prime}}{J_{s, b}^{\lambda, b} f(z)}-p\right\} \prec 1+\frac{(A-B) z}{(1+A z)(1+B z)}, \tag{3.14}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}}\right)^{\mu} \prec \frac{1+A z}{1+B z} \tag{3.15}
\end{equation*}
$$

and $\frac{1+A z}{1+B z}$ is the best dominant of (3.14).
Putting $\quad \alpha=0, \tau=1, \delta=\frac{1}{a b}\left(a, b \in \mathbb{C}^{*}\right), \mu=a, s=0, \lambda=1-p(p \in \mathbb{N})$ and $q(z)=(1-z)^{-2 a b}$ in Theorem 2, hence combining this together with Lemma 5, we obtain the following corollary.

Corollary 6. Let $f(z) \in A(p)$, assume that (3.11) holds true and $a, b \in \mathbb{C}^{*}$ such that $|2 a b-1| \leq 1$ or $|2 a b+1| \leq 1$. If

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right) \prec \frac{1+z}{1-z} \tag{3.16}
\end{equation*}
$$

then

$$
\left(\frac{f(z)}{z^{p}}\right)^{a} \prec(1-z)^{-2 a b}
$$

and $(1-z)^{-2 a b}$ is the best dominant of (3.16).
Remark 1. (i) For $p=1$, Corollary 4 reduces to the result obtained by Obradović et al. [15, Theorem 1], the recent result of Aouf and Bulboacă et [3, Corollary 3.3] and the recent result of El-Ashwah and Aouf [9, Corollary 4];
(ii) For $p=a=1$, Corollary 4 reduces to the recent result of Srivastava and Lashin [27, Theorem 3] and the recent result of Shanmugam et al. [23, Corollary 3.6].
Remark 2. Putting $p=1, s=0, \delta=\frac{e^{i \lambda}}{a b \cos \lambda}\left(a, b \in \mathbb{C}^{*} ;|\lambda|<\frac{\pi}{2}\right), \mu=a$ and $q(z)=(1-z)^{-2 a b \cos \lambda e^{-i \lambda}}$ in Theorem 2, we obtain the result obtained by Aouf et al. [2, Theorem 1], the recent result of Aouf and Bulboacă et [3, Corollary 3.5] and the recent result of El-Ashwah and Aouf [9, Corollary 6].

Putting $\alpha=0, \tau=\delta=1, s=0, \lambda=1-p$ and $q(z)=(1+B z)^{\frac{\mu(A-B)}{B}}(\mu \in$ $\mathbb{C}^{*},-1 \leq B<A \leq 1, B \neq 0$) in Theorem 2, it is easy to check that the assumption (3.11) holds, hence we get the next corollary:

Corollary 7. Let $f \in A(p), \mu \in \mathbb{C}^{*},-1 \leq B<A \leq 1$, with $B \neq 0$ and suppose that $\left|\frac{\mu(A-B)}{B}-1\right| \leq 1$ or $\left|\frac{\mu(A-B)}{B}+1\right| \leq 1$. If

$$
\begin{equation*}
1+\mu\left(\frac{z f^{\prime}(z)}{f(z)}-p\right) \prec \frac{1+[B+\mu(A-B) z]}{1+B z} \tag{3.17}
\end{equation*}
$$

then

$$
\left(\frac{f(z)}{z^{p}}\right)^{\mu} \prec(1+B z)^{\frac{\mu(A-B)}{B}}
$$

and $(1+B z)^{\frac{\mu(A-B)}{B}}$ is the best dominant of (3.17).
Remark 3. For $p=1$, Corollary 5 reduces to the result obtained by Aouf and Bulboaca [3, Corollary 3.4] and the recent result of El-Ashwah and Aouf [9, Corollary 5].

By using Lemma 1, we obtain the following result.

Theorem 8. Let $q(z)$ be univalent in U, with $q(0)=1$, let $\mu, \delta \in \mathbb{C}^{*}$ and let $\alpha, \tau, \sigma, \eta \in \mathbb{C}$, with $\alpha+\tau \neq 0$. Let $f(z) \in A(p)$ and suppose that f and q satisfy the next two conditions:

$$
\begin{equation*}
\frac{\alpha J_{s-1, b}^{\lambda, p} f(z)+\tau J_{s, b}^{\lambda, p} f(z)}{(\alpha+\tau) z^{p}} \neq 0 \quad(z \in U) \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>\max \left\{0 ;-\operatorname{Re} \frac{\sigma}{\delta}\right\} \quad(z \in U) \tag{3.19}
\end{equation*}
$$

If

$$
\begin{equation*}
\mathfrak{F}(z)=\left(\frac{\alpha J_{s-1, b}^{\lambda, p} f(z)+\tau J_{s, b}^{\lambda, p} f(z)}{(\alpha+\tau) z^{p}}\right)^{\mu} \cdot\left[\sigma+\delta \mu\left(\frac{\alpha z\left(J_{s-1, b}^{\lambda, p} f(z)\right)^{\prime}+\tau z\left(J_{s, b}^{\lambda, p} f(z)\right)^{\prime}}{\alpha J_{s-1, b}^{\lambda, p} f(z)+\tau J_{s, b}^{\lambda, p} f(z)}-p\right)\right]+\eta \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{F}(z) \prec \sigma q(z)+\delta z q^{\prime}(z)+\eta \tag{3.21}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(\frac{\alpha J_{s-1, b}^{\lambda, p} f(z)+\tau J_{s, b}^{\lambda, p} f(z)}{(\alpha+\tau) z^{p}}\right)^{\mu} \prec q(z) \tag{3.22}
\end{equation*}
$$

and q is the best dominant of (3.22).

Taking $q(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$ and using (3.6), the condition (3.22) reduces to

$$
\begin{equation*}
\max \left\{0 ;-\operatorname{Re} \frac{\sigma}{\delta}\right\} \leq \frac{1-|B|}{1+|B|} \tag{3.23}
\end{equation*}
$$

hence, putting $\delta=\alpha=1$ and $\tau=0$ in Theorem 3 , we obtain the following corollary.

Corollary 9. Let $f(z) \in A(p),-1 \leq B<A \leq 1$ and let $\sigma \in \mathbb{C}$ with $\max \{0 ;-\operatorname{Re} \sigma\} \leq$ $\frac{1-|B|}{1+|B|}$, suppose that $\frac{J_{s-1, b}^{\lambda, p} f(z)}{z^{p}} \neq 0 \quad(z \in U)$ and let $\mu \in \mathbb{C}^{*}$. If

$$
\begin{equation*}
\left(\frac{J_{s-1, b}^{\lambda, p} f(z)}{z^{p}}\right)^{\mu} \cdot\left[\sigma+\mu\left(\frac{z\left(J_{s-1, b}^{\lambda, p} f(z)\right)^{\prime}}{J_{s-1, b}^{\lambda, p} f(z)}-p\right)\right]+\eta \prec \sigma \frac{1+A z}{1+B z}+\frac{(A-B) z}{(1+B z)^{2}}+\eta, \tag{3.24}
\end{equation*}
$$

then

$$
\left(\frac{J_{s-1, b}^{\lambda, p} f(z)}{z^{p}}\right)^{\mu} \prec \frac{1+A z}{1+B z}
$$

and $\frac{1+A z}{1+B z}$ is the best dominant of (3.24).
Putting $s=0, \lambda=1-p(p \in \mathbb{N}), \delta=\tau=1, \alpha=0$ and $q(z)=\frac{1+z}{1-z}$ in Theorem 3 , we obtain the following corollary.
Corollary 10. Let $f(z) \in A(p)$ such that $\frac{f(z)}{z^{p}} \neq 0$ for all $z \in U$ and let $\mu \in \mathbb{C}^{*}$. If

$$
\begin{equation*}
\left(\frac{f(z)}{z^{p}}\right)^{\mu} \cdot\left[\sigma+\mu\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)\right]+\eta \prec \sigma \frac{1+z}{1-z}+\frac{2 z}{(1-z)^{2}}+\eta, \tag{3.25}
\end{equation*}
$$

then

$$
\left(\frac{f(z)}{z^{p}}\right)^{\mu} \prec \frac{1+z}{1-z}
$$

and $\frac{1+z}{1-z}$ is the best dominant of (3.25).

Remark 4. For $p=1$, Corollary 7 reduces to the result obtained by Aouf and Bulboaca [3, Corollary 3.7] and the recent result of El-Ashwah and Aouf [9, Corollary 8].

4. Superordination and sandwich results

Theorem 11. Let $q(z)$ be convex in U, with $q(0)=1$ and

$$
\begin{equation*}
p^{-1} \operatorname{Re}\left(\frac{\gamma}{b+p}\right)>0 \tag{4.1}
\end{equation*}
$$

Let $f(z) \in A(p)$ and suppose that $\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}} \in H[q(0), 1] \cap Q$. If the function

$$
\frac{\gamma}{p}\left(\frac{J_{s-1, b}^{\lambda, p} f(z)}{z^{p}}\right)+\frac{p-\gamma}{p}\left(\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}}\right)
$$

is univalent in U, and

$$
\begin{equation*}
q(z)+\frac{\gamma z q^{\prime}(z)}{p(b+p)} \prec \frac{\gamma}{p}\left(\frac{J_{s-1, b}^{\lambda, p} f(z)}{z^{p}}\right)+\frac{p-\gamma}{p}\left(\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}}\right) . \tag{4.2}
\end{equation*}
$$

Then

$$
q(z) \prec \frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}}
$$

and q is the best subordinant of (4.2).
Proof. Define a function $g(z)$ by

$$
g(z)=\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}} \quad(z \in U) .
$$

From the assumption of the theorem, the function g is analytic in U and differentiating logarithmically with respect to z the above definition, we obtain

$$
\begin{equation*}
\frac{z g^{\prime}(z)}{g(z)}=\frac{z\left(J_{s, b}^{\lambda, p} f(z)\right)^{\prime}}{J_{s, b}^{\lambda, p} f(z)}-p \tag{4.3}
\end{equation*}
$$

After some computations and using the identity (1.10), from (4.3), we obtain

$$
\frac{\gamma}{p}\left(\frac{J_{s-1, b}^{\lambda, p} f(z)}{z^{p}}\right)+\frac{p-\gamma}{p}\left(\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}}\right)=g(z)+\frac{\gamma z g^{\prime}(z)}{p(b+p)}
$$

and now, by using Lemma 4 we get the desired result.
Taking $q(z)=\frac{1+A z}{1+B z} \quad(-1 \leq B<A \leq 1)$ in Theorem 4, we obtain the following corollary.

Corollary 12. Let $q(z)$ be convex in U, with $q(0)=1$ and $\left[p^{-1} \operatorname{Re}\left(\frac{\gamma}{b+p}\right)\right]>0$. Let $f(z) \in A(p)$ and suppose that $\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}} \in H[q(0), 1] \cap Q$. If the function

$$
\frac{\gamma}{p}\left(\frac{J_{s-1, b}^{\lambda, p} f(z)}{z^{p}}\right)+\frac{p-\gamma}{p}\left(\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}}\right)
$$

is univalent in U, and

$$
\begin{equation*}
\frac{1+A z}{1+B z}+\frac{\gamma}{p(b+p)} \frac{(A-B) z}{(1+B z)^{2}} \prec \frac{\gamma}{p}\left(\frac{J_{s-1, b}^{\lambda, p} f(z)}{z^{p}}\right)+\frac{p-\gamma}{p}\left(\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}}\right) . \tag{4.4}
\end{equation*}
$$

Then

$$
\frac{1+A z}{1+B z} \prec \frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}}
$$

and $\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$ is the best subordinant of (4.4).
By applying Lemma 3, we obtain the following result.
Theorem 13. Let $q(z)$ be convex in U, with $q(0)=1$, let $\mu, \delta \in \mathbb{C}^{*}$ and let $\alpha, \tau, \sigma, \eta \in \mathbb{C}$, with $\alpha+\tau \neq 0$ and $\operatorname{Re} \frac{\sigma}{\delta}>0$. Let $f(z) \in A(p)$ and suppose that f satisfies the next conditions:

$$
\frac{\alpha J_{s-1, b}^{\lambda, p} f(z)+\tau J_{s, b}^{\lambda, p} f(z)}{(\alpha+\tau) z^{p}} \neq 0 \quad(z \in U)
$$

and

$$
\left(\frac{\alpha J_{s-1, b}^{\lambda, p} f(z)+\tau J_{s, b}^{\lambda, p} f(z)}{(\alpha+\tau) z^{p}}\right)^{\mu} \in H[q(0), 1] \cap Q .
$$

If the function \mathfrak{F} given by (3.20) is univalent in U and

$$
\begin{equation*}
\sigma q(z)+\delta z q^{\prime}(z)+\eta \prec \mathfrak{F}(z) \tag{4.5}
\end{equation*}
$$

then

$$
q(z) \prec\left(\frac{\alpha J_{s-1, b}^{\lambda, p} f(z)+\tau J_{s, b}^{\lambda, p} f(z)}{(\alpha+\tau) z^{p}}\right)^{\mu}
$$

and q is the best subordinant of (4.5).
Combining Theorem 1 and Theorem 4, we get the following sandwich theorem.
Theorem 14. Let q_{1} and q_{2} be two convex functions in U, with $q_{1}(0)=q_{2}(0)=1$ and $\left[p^{-1} \operatorname{Re}\left(\frac{\gamma}{b+p}\right)\right]>0$. Let $f(z) \in A(p)$ and suppose that $\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}} \in H[q(0), 1] \cap Q$. If the function $\frac{\gamma}{p}\left(\frac{J_{s-1, b}^{\lambda, p} f(z)}{z^{p}}\right)+\frac{p-\gamma}{p}\left(\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}}\right)$ is univalent in U, and

$$
\begin{equation*}
q_{1}(z)+\frac{\gamma z q_{1}^{\prime}(z)}{p(b+p)} \prec \frac{\gamma}{p}\left(\frac{J_{s-1, b}^{\lambda, p} f(z)}{z^{p}}\right)+\frac{p-\gamma}{p}\left(\frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}}\right) \prec q_{2}(z)+\frac{\gamma z q_{2}^{\prime}(z)}{p(b+p)} . \tag{4.6}
\end{equation*}
$$

Then

$$
q_{1}(z) \prec \frac{J_{s, b}^{\lambda, p} f(z)}{z^{p}} \prec q_{2}(z)
$$

and q_{1} and q_{2} are, respectively, the best subordinant and dominant of (4.6).
Combining Theorem 3 and Theorem 5, we get the following sandwich theorem.
Theorem 15. Let q_{1} and q_{2} be two convex functions in U, with $q_{1}(0)=q_{2}(0)=1$, let $\mu, \delta \in \mathbb{C}^{*}$ and let $\alpha, \tau, \sigma, \eta \in \mathbb{C}$, with $\alpha+\tau \neq 0$ and $\operatorname{Re} \frac{\sigma}{\delta}>0$. Let $f(z) \in A(p)$ satisfies $\frac{\alpha J_{s-1, b}^{\lambda, p} f(z)+\tau J_{s, b}^{\lambda, p} f(z)}{(\alpha+\tau) z^{p}} \neq 0 \quad(z \in U)$ and $\left(\frac{\alpha J_{s-1, b}^{\lambda, p} f(z)+\tau J_{s, b}^{\lambda, p} f(z)}{(\alpha+\tau) z^{p}}\right)^{\mu} \in H[q(0), 1] \cap$ Q. If the function \mathfrak{F} given by (3.20) is univalent in U and

$$
\begin{equation*}
\sigma q_{1}(z)+\delta z q_{1}^{\prime}(z)+\eta \prec \mathfrak{F}(z) \prec \sigma q_{2}(z)+\delta z q_{2}^{\prime}(z)+\eta \tag{4.7}
\end{equation*}
$$

then

$$
q_{1}(z) \prec\left(\frac{\alpha J_{s-1, b}^{\lambda, p} f(z)+\tau J_{s, b}^{\lambda, p} f(z)}{(\alpha+\tau) z^{p}}\right)^{\mu} \prec q_{2}(z)
$$

and q_{1} and q_{2} are, respectively, the best subordinant and dominant of(4.7).
Remark 5. Specializing s, λ and b, in the above results, we obtain the corresponding results for the corresponding operators (1-5) defined in the introduction.

Acknowledgments. The authors would like to thank the referees of the paper for their helpful suggestions.

References

[1] R. M. Ali, V. Ravichandran and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. 15 (2004) no. 1, 87-94.
[2] M. K. Aouf , F. M. Al.-Oboudi and M. M. Haidan, On some results for λ-spirallike and λ-Robertson functions of complex order, Publ. Inst. Math. Belgrade 77 (2005) no. 91, 93-98.
[3] M. K. Aouf and T. Bulboaca, Subordination and superordination properties of multivalent functions defined by certain integral operator, J. Franklin Institute 347 (2010) 641-653.
[4] M. K. Aouf, T. Bulboaca and A. O. Mostafa, Subordination properties of subclasses of pvalent functions involving certain operators, Publ. Math. Debrecen 73/3-4 (2008) 401-416.
[5] T. Bulboaca, A class of superordination-preserving integral operators, Indag. Math. (N. S.) 13 (2002) no. 3, 301-311.
[6] T. Bulboacă, Classes of first order differential superordinations, Demonstratio Math. $\mathbf{3 5}$ (2002) no. 2, 287-292.
[7] T. Bulboaca, Differential subordinations and superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[8] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002) 432-445.
[9] R. M. El-Ashwah and M. K. Aouf, Differential subordination and superordination for certain subclasses of p-valent, Math. Compu Modelling 51 (2010) 349-360.
[10] V. Kumar and S.L. Shakla, Multivalent functions defined by Ruscheweyh derivatives, I, Indian J. Pure Appl. Math. 15 (1984) no. 11, 1216-1227; II, Indian J. Pure Appl. Math. 15 (1984) no. 11, 1228-1238.
[11] J.-L. Liu, Subordinations for certain multivalent analytic functions associated with the generalized Srivastava-Attiya operator, Integral Transforms Spec. Funct. 18 (2007) 207-216.
[12] S. S. Miller and P. T. Mocanu, Differential Subordination : Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
[13] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981) no. 2, 157-171.
[14] S. S. Miller and P. T. Mocanu, Subordinates of differential superordinations, Complex Variables 48 (2003) no. 10, 815-826.
[15] M. Obradović, M. K. Aouf and S. Owa, On some results for starlike functions of complex order, Publ. Inst. Math. Belgrade 46 (1989) no. 60, 79-85.
[16] J. Patel and P. Sahoo, Som applications of differential subordination to certain one-parameter families of integral operators, Indian J. Pure Appl. Math. 35 (2004) no. 10, 1167-1177.
[17] J.K. Prajapat and S.P. Goyal, Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, J. Math. Inequal. 3 (2009) 129-137.
[18] D. Raducanu and H.M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 18 (2007) 933-943.
[19] W. C. Royster, On the univalence of a certain integral, Michigan Math. J. 12 (1965) 385-387.
[20] G.S. Sălăgean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math. (Springer-Verlag) 1013, 362-372.
[21] S. Shams, S. R. Kulkarni and Jay M. Jahangiri, Subordination properties of p-valent functions defined by integral operators, Internat. J. Math. Math. Sci. Vol. 2006 (2006), Art. ID 94572, 1-3.
[22] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differantial sandwich theorems for some subclasses of analytic functions, J. Austr.Math. Anal. Appl. 3 (2006) no. 1, Art. 8, 1-11.
[23] T. N. Shanmugam,S. Sivasubranian and S. Owa, On sandwich theorem for certain subclasses of analytic functions involving a linear operator, Math. Inequal. Appl. 10 (2007) no. 3, 575585.
[24] T. N. Shanmugam, S. Sivasubramanian and H. Silverman, On sandwich theorems for some classes of analytic functions, Internat. J. Math. Math. Sci. 2006, Art. ID 29684, 1 -13.
[25] H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transforms Spec. Funct. 18 (2007) 207-216.
[26] H. M. Srivastava and J. Choi, Series associated with the Zeta and related functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.
[27] H. M. Srivastava and A. Y. Lashin, Some applications of the Briot-Bouquet differential subordination, J. Inequal. Pure Appl. Math. 6 (2005) no.2, Art. 41, 1-7.
[28] N. Tuneski, On certain sufficient conditions for starlikeness, Internat. J. Math. Math. Sci. 23 (2000) no. 8, 521-527.
[29] Z.-G. Wang, Q.-G. Li and Y.-P. Jiang, Certain subclasses of multivalent analytic functions involving the generalized Srivastava-Attiya operator, Integral Transforms Spec. Funct. 21 (2010) no. 3, 221-234.
M. K. Aouf

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

E-mail address: mkaouf127@yahoo.com
A. Shamandy

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

E-mail address: shamandy16@hotmail.com
A. O. Mostafa

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

E-mail address: adelaeg254@yahoo.com
E. A. Adwan

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

E-mail address: eman.a2009@yahoo.com

