THE GROWTH OF ITERATED ENTIRE FUNCTIONS

(COMMUNICATED BY VICENTIU RADULESCU)

DIBYENDU BANERJEE, RATAN KUMAT DUTTA

Abstract

In this paper we study growth of iterated entire functions to improve some earlier results.

1. Introduction, Definitions and Notations

For any two transcendental entire functions $f(z)$ and $g(z)$ defined in the open complex plane C, it is well known [1] that $\lim _{r \rightarrow \infty} \frac{\log T\left(r, f_{o} g\right)}{T(r, f)}=\infty$ and $\lim _{r \rightarrow \infty} \frac{\log T\left(r, f_{o} g\right)}{T(r, g)}=0$. Later on Singh [10] investigated some comparative growth of $\log T\left(r, f_{o} g\right)$ and $T(r, f)$. Further in [10] he raised the problem of investing the comparative growth of $\log T\left(r, f_{o} g\right)$ and $T(r, g)$. However some results on the comparative growth of $\log T\left(r, f_{o} g\right)$ and $T(r, g)$ are proved in [5].

Recently Lahiri and Datta [6] made close investigation on comparative growth properties of $\log T\left(r, f_{o} g\right)$ and $T(r, g)$ together with that of $\log \log T\left(r, f_{o} g\right)$ and $T\left(r, f^{(k)}\right)$.

In this paper, we first consider two entire functions $f(z)$ and $g(z)$ and following Lahiri and Banerjee [3] form the relative iterations of $f(z)$ with respect to $g(z)$ (defined below) and using this concept of relative iteration study growth of iterated entire functions to generalise some results of Lahiri and Datta [6].

Let

$$
\begin{array}{rlc}
f_{1}(z) & = & f(z) \\
f_{2}(z) & = & f(g(z))=f\left(g_{1}(z)\right) \\
f_{3}(z) & = & f(g(f(z)))=f\left(g_{2}(z)\right)=f\left(g\left(f_{1}(z)\right)\right) \\
& \ldots & \ldots \\
& \ldots & \ldots \\
f_{n}(z) & = & f(g(f \ldots \ldots .(f(z) \text { or } g(z)) \ldots \ldots .)),
\end{array}
$$

according as n is odd or even,
$=f\left(g_{n-1}(z)\right)=f\left(g\left(f_{n-2}(z)\right)\right)$,

[^0]and so are
\[

$$
\begin{array}{rlc}
g_{1}(z) & = & g(z) \\
g_{2}(z) & = & g(f(z))=g\left(f_{1}(z)\right) \\
& \cdots & \cdots \\
& \cdots & \cdots \\
g_{n}(z) & = & g\left(f_{n-1}(z)\right)=g\left(f\left(g_{n-2}(z)\right)\right) .
\end{array}
$$
\]

Clearly all $f_{n}(z)$ and $g_{n}(z)$ are entire functions.
For two non-constant entire functions $f(z)$ and $g(z)$, we have the well known inequality

$$
\begin{equation*}
\log M(r, f(g)) \leq \log M(M(r, g), f) \tag{1.1}
\end{equation*}
$$

Definition 1.1. The order ρ_{f} and lower order λ_{f} of a meromorphic function is defined as

$$
\rho_{f}=\lim \sup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}
$$

and

$$
\lambda_{f}=\lim \inf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r} .
$$

If f is entire then

$$
\rho_{f}=\lim \sup _{r \rightarrow \infty} \frac{\log \log M(r, f)}{\log r}
$$

and

$$
\lambda_{f}=\lim \inf _{r \rightarrow \infty} \frac{\log \log M(r, f)}{\log r}
$$

Definition 1.2. The hyper order $\overline{\rho_{f}}$ and hyper lower order $\bar{\lambda}_{f}$ of a meromorphic function is defined as

$$
\overline{\rho_{f}}=\lim \sup _{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r}
$$

and

$$
\bar{\lambda}_{f}=\lim \inf _{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r} .
$$

If f is entire then

$$
\overline{\rho_{f}}=\lim \sup _{r \rightarrow \infty} \frac{\log ^{[3]} M(r, f)}{\log r}
$$

and

$$
\bar{\lambda}_{f}=\lim \inf _{r \rightarrow \infty} \frac{\log ^{[3]} M(r, f)}{\log r} .
$$

Definition 1.3. A function $\lambda_{f}(r)$ is called a lower proximate order of a meromorphic function f if
(i) $\lambda_{f}(r)$ is nonnegative and continuous for $r \geq r_{0}$, say;
(ii) $\lambda_{f}(r)$ is differentiable for $r \geq r_{0}$ except possibly at isolated points at which $\lambda_{f}^{\prime}(r-0)$ and $\lambda_{f}^{\prime}(r+0)$ exist;
(iii) $\lim _{r \rightarrow \infty} \lambda_{f}(r)=\lambda_{f}<\infty$;
(iv) $\lim _{r \rightarrow \infty} r \lambda_{f}^{\prime}(r) \log r=0$; and
(v) $\liminf _{r \rightarrow \infty} \frac{T(r, f)}{r^{\lambda} f(r)}=1$.

Notation 1.4. [9] Let $\log { }^{[0]} x=x$, $\exp ^{[0]} x=x$ and for positive integer $m, \log { }^{[m]} x=$ $\log \left(\log { }^{[m-1]} x\right), \exp ^{[m]} x=\exp \left(\exp ^{[m-1]} x\right)$.

Throughout we assume f, g etc. are non constant entire functions having respective orders ρ_{f}, ρ_{g} and respective lower orders λ_{f}, λ_{g}. Also we do not explain the standard notations and definitions of the theory of entire and meromorphic functions because those are available in [2].

2. Lemmas

The following lemmas will be needed in the sequel.
Lemma 2.1. [2] Let $f(z)$ be an entire function. For $0 \leq r<R<\infty$, we have

$$
T(r, f) \leq \log ^{+} M(r, f) \leq \frac{R+r}{R-r} T(R, f)
$$

Lemma 2.2. [8] Let $f(z)$ and $g(z)$ be two entire functions. Then we have

$$
T(r, f(g)) \geq \frac{1}{3} \log M\left(\frac{1}{8} M\left(\frac{r}{4}, g\right)+O(1), f\right)
$$

Lemma 2.3. [4] Let f be an entire function. Then for $k>2$,

$$
\lim \inf _{r \rightarrow \infty} \frac{\log ^{[k-1]} M(r, f)}{\log ^{[k-2]} T(r, f)}=1
$$

Lemma 2.4. [6] Let f be a meromorphic function. Then for $\delta(>0)$ the function $r^{\lambda_{f}+\delta-\lambda_{f}(r)}$ is an increasing function of r.

Lemma 2.5. [7] Let f be an entire function of finite lower order. If there exist entire functions $a_{i}(i=1,2,3 \ldots \ldots \ldots . . n ; n \leq \infty)$ satisfying $T\left(r, a_{i}\right)=o\{T(r, f)\}$ and

$$
\sum_{i=1}^{n} \delta\left(a_{i}, f\right)=1 \text { then } \lim _{r \rightarrow \infty} \frac{T(r, f)}{\log M(r, f)}=\frac{1}{\pi}
$$

Lemma 2.6. Let $f(z)$ and $g(z)$ be two non-constant entire functions such that $0<\lambda_{f} \leq \rho_{f}<\infty$ and $0<\lambda_{g} \leq \rho_{g}<\infty$. Then for any $\varepsilon\left(0<\varepsilon<\min \left\{\lambda_{f}, \lambda_{g}\right\}\right)$

$$
\log ^{[n-1]} T\left(r, f_{n}\right) \leq\left\{\begin{array}{c}
\left(\rho_{f}+\varepsilon\right) \log M(r, g)+O(1) \quad \text { when } n \text { is even } \\
\left(\rho_{g}+\varepsilon\right) \log M(r, f)+O(1) \quad \text { when } n \text { is odd }
\end{array}\right.
$$

and

Proof. For $\varepsilon(>0)$ we get from Lemma 2.1 and (1.1) for all large values of r

$$
\begin{aligned}
T\left(r, f_{n}\right) & \leq \log M\left(r, f_{n}\right) \\
& \leq \log M\left(M\left(r, g_{n-1}\right), f\right) \\
& \leq\left[M\left(r, g_{n-1}\right)\right]^{\rho_{f}+\varepsilon} \\
\text { that is, } \log T\left(r, f_{n}\right) & \leq\left(\rho_{f}+\varepsilon\right) \log M\left(r, g_{n-1}\right) \\
& \leq\left(\rho_{f}+\varepsilon\right) \log M\left(M\left(r, f_{n-2}\right), g\right) \\
& \leq\left(\rho_{f}+\varepsilon\right)\left[M\left(r, f_{n-2}\right)\right]^{\rho_{g}+\varepsilon}
\end{aligned}
$$

$$
\text { So, } \log ^{[2]} T\left(r, f_{n}\right) \leq\left(\rho_{g}+\varepsilon\right) \log M\left(M\left(r, g_{n-3}\right), f\right)+O(1)
$$

$$
\leq\left(\rho_{g}+\varepsilon\right)\left[M\left(r, g_{n-3}\right)\right]^{\rho_{f}+\varepsilon}+O(1)
$$

Therefore, $\log { }^{[n-1]} T\left(r, f_{n}\right) \leq\left(\rho_{f}+\varepsilon\right) \log M(r, g)+O(1) \quad$ when n is even.
Similarly

$$
\log ^{[n-1]} T\left(r, f_{n}\right) \leq\left(\rho_{g}+\varepsilon\right) \log M(r, f)+O(1) \quad \text { when } n \text { is odd. }
$$

Again for $\varepsilon\left(0<\varepsilon<\min \left\{\lambda_{f}, \lambda_{g}\right\}\right)$ we get from Lemma 2.1 and Lemma 2.2 for all large values of r

$$
\begin{align*}
T\left(r, f_{n}\right) & =T\left(r, f\left(g_{n-1}\right)\right) \\
& \geq \frac{1}{3} \log M\left(\frac{1}{8} M\left(\frac{r}{4}, g_{n-1}\right)+O(1), f\right) \\
& \geq \frac{1}{3}\left[\frac{1}{8} M\left(\frac{r}{4}, g_{n-1}\right)+O(1)\right]^{\lambda_{f}-\varepsilon} \\
& \geq \frac{1}{3}\left[\frac{1}{9} M\left(\frac{r}{4}, g_{n-1}\right)\right]^{\lambda_{f}-\varepsilon}, \\
\text { that is, } \log T\left(r, f_{n}\right) & \geq\left(\lambda_{f}-\varepsilon\right) \log M\left(\frac{r}{4}, g_{n-1}\right)+O(1) \\
& \geq\left(\lambda_{f}-\varepsilon\right) T\left(\frac{r}{4}, g_{n-1}\right)+O(1) \\
& \geq\left(\lambda_{f}-\varepsilon\right) \frac{1}{3} \log M\left(\frac{1}{8} M\left(\frac{r}{4^{2}}, f_{n-2}\right)+O(1), g\right)+O(1) \\
& \geq\left(\lambda_{f}-\varepsilon\right) \frac{1}{3}\left[\frac{1}{8} M\left(\frac{r}{4^{2}}, f_{n-2}\right)+O(1)\right]^{\lambda_{g}-\varepsilon}+O(1) \\
& \geq\left(\lambda_{f}-\varepsilon\right) \frac{1}{3}\left[\frac{1}{9} M\left(\frac{r}{4^{2}}, f_{n-2}\right)\right]^{\lambda_{g}-\varepsilon}+O(1), \\
\text { that is, } \log ^{[2]} T\left(r, f_{n}\right) & \geq\left(\lambda_{g}-\varepsilon\right) \log M\left(\frac{r}{4^{2}}, f_{n-2}\right)+O(1) . \tag{2.1}
\end{align*}
$$

Therefore, $\quad \log ^{[n-2]} T\left(r, f_{n}\right) \geq\left(\lambda_{g}-\varepsilon\right) \log M\left(\frac{r}{4^{n-2}}, f_{o} g\right)+O(1)$.

$$
\text { So, } \quad \log ^{[n-1]} T\left(r, f_{n}\right) \geq\left(\lambda_{f}-\varepsilon\right) \log M\left(\frac{r}{4^{n-1}}, g\right)+O(1) \quad \text { when } n \text { is even. }
$$

Similarly

$$
\log ^{[n-1]} T\left(r, f_{n}\right) \geq\left(\lambda_{g}-\varepsilon\right) \log M\left(\frac{r}{4^{n-1}}, f\right)+O(1) \quad \text { when } n \text { is odd. }
$$

This proves the lemma.

3. Theorems

Theorem 3.1. Let f and g be two non-constant entire functions having finite lower orders. Then

$$
\begin{aligned}
& \text { (i) } \lim \inf _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T(r, g)} \leq 3 \rho_{f} 2^{\lambda_{g}} \\
& \text { (ii) } \lim \sup _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T(r, g)} \geq \frac{\lambda_{f}}{\left(4^{n-1}\right)^{\lambda_{g}}}
\end{aligned}
$$

when n is even and
(iii) $\lim \inf _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T(r, f)} \leq 3 \rho_{g} 2^{\lambda_{f}}$,
(iv) $\lim \sup _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T(r, f)} \geq \frac{\lambda_{g}}{\left(4^{n-1}\right)^{\lambda_{f}}}$
when n is odd.
Proof. We may clearly assume $0<\lambda_{f} \leq \rho_{f}<\infty$ and $0<\lambda_{g} \leq \rho_{g}<\infty$. Now from Lemma 2.6 for arbitrary $\varepsilon>0$

$$
\begin{equation*}
\log { }^{[n-1]} T\left(r, f_{n}\right) \leq\left(\rho_{f}+\varepsilon\right) \log M(r, g)+O(1) \tag{3.1}
\end{equation*}
$$

when n is even.
Let $0<\varepsilon<\min \left\{1, \lambda_{f}, \lambda_{g}\right\}$. Since

$$
\lim \inf _{r \rightarrow \infty} \frac{T(r, g)}{r^{\lambda_{g}(r)}}=1
$$

there is a sequence of values of r tending to infinity for which

$$
\begin{equation*}
T(r, g)<(1+\varepsilon) r^{\lambda_{g}(r)} \tag{3.2}
\end{equation*}
$$

and for all large value of r

$$
\begin{equation*}
T(r, g)>(1-\varepsilon) r^{\lambda_{g}(r)} . \tag{3.3}
\end{equation*}
$$

Thus for a sequence of values of r tending to infinity we get for any $\delta(>0)$

$$
\begin{aligned}
\frac{\log M(r, g)}{T(r, g)} & \leq \frac{3 T(2 r, g)}{T(r, g)} \leq \frac{3(1+\varepsilon)}{1-\varepsilon} \frac{(2 r)^{\lambda_{g}+\delta}}{(2 r)^{\lambda_{g}+\delta-\lambda_{g}(2 r)}} \frac{1}{r^{\lambda_{g}(r)}} \\
& \leq \frac{3(1+\varepsilon)}{1-\varepsilon} 2^{\lambda_{g}+\delta}
\end{aligned}
$$

because $r^{\lambda_{g}+\delta-\lambda_{g}(r)}$ is an increasing function of r. Since $\varepsilon, \delta>0$ be arbitrary, we have

$$
\begin{equation*}
\lim \inf _{r \rightarrow \infty} \frac{\log M(r, g)}{T(r, g)} \leq 3.2^{\lambda_{g}} \tag{3.4}
\end{equation*}
$$

Therefore from (3.1) and (3.4) we get

$$
\lim \inf _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T(r, g)} \leq 3 \rho_{f} 2^{\lambda_{g}}
$$

when n is even.
Again for even n we have from Lemma 2.6

$$
\begin{aligned}
\log ^{[n-1]} T\left(r, f_{n}\right) & \geq\left(\lambda_{f}-\varepsilon\right) \log M\left(\frac{r}{4^{n-1}}, g\right)+O(1) \\
& \geq\left(\lambda_{f}-\varepsilon\right) T\left(\frac{r}{4^{n-1}}, g\right)+O(1) \\
& \geq\left(\lambda_{f}-\varepsilon\right)(1-\varepsilon)(1+O(1)) \frac{\left(\frac{r}{4^{n-1}}\right)^{\lambda_{g}+\delta}}{\left(\frac{r}{4^{n-1}}\right)^{\lambda_{g}+\delta-\lambda_{g}\left(\frac{r}{4^{n-1}}\right)}}, \text { by }(3.3)
\end{aligned}
$$

Since $r^{\lambda_{g}+\delta-\lambda_{g}(r)}$ is an increasing function of r, we have

$$
\log ^{[n-1]} T\left(r, f_{n}\right) \geq\left(\lambda_{f}-\varepsilon\right)(1-\varepsilon)(1+O(1)) \frac{r^{\lambda_{g}(r)}}{\left(4^{n-1}\right)^{\lambda_{g}+\delta}}
$$

for all large values of r.
So by (3.2) for a sequence of values of r tending to infinity

$$
\log ^{[n-1]} T\left(r, f_{n}\right) \geq\left(\lambda_{f}-\varepsilon\right) \frac{1-\varepsilon}{1+\varepsilon}(1+O(1)) \frac{T(r, g)}{\left(4^{n-1}\right)^{\lambda_{g}+\delta}}
$$

Since ε and δ are arbitrary, it follows from the above that

$$
\lim \sup _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T(r, g)} \geq \frac{\lambda_{f}}{\left(4^{n-1}\right)^{\lambda_{g}}}
$$

Similarly for odd n we get the second part of the theorem.
This proves the theorem.
Theorem 3.2. Let f and g be two non-constant entire functions such that λ_{f} and $\lambda_{g}(>0)$ are finite . Also there exist entire functions $a_{i}(i=1,2,3 \ldots \ldots \ldots . n ; n \leq \infty)$ satisfying $T\left(r, a_{i}\right)=o\{T(r, g)\}$ as $r \rightarrow \infty$ and

$$
\sum_{i=1}^{n} \delta\left(a_{i}, g\right)=1
$$

Then

$$
\frac{\pi \lambda_{f}}{\left(4^{n-1}\right)^{\lambda_{g}}} \leq \lim \sup _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T(r, g)} \leq \pi \rho_{f}
$$

when n is even.
Proof. If $\lambda_{f}=0$ then the first inequality is obvious. Now we suppose that $\lambda_{f}>0$.
For $0<\varepsilon<\min \left\{1, \lambda_{f}, \lambda_{g}\right\}$ we have from Lemma 2.6. for all large values of r

$$
\begin{align*}
\frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T(r, g)} & \geq\left(\lambda_{f}-\varepsilon\right) \frac{\log M\left(\frac{r}{4^{n-1}}, g\right)}{T(r, g)}+O(1) \quad \text { when } n \text { is even } \\
& \geq\left(\lambda_{f}-\varepsilon\right) \frac{\log M\left(\frac{r}{4^{n-1}}, g\right)}{T\left(\frac{r}{4^{n-1}}, g\right)} \frac{T\left(\frac{r}{4^{n-1}}, g\right)}{T(r, g)}+O(1) \tag{3.5}
\end{align*}
$$

Also from (3.2) and (3.3) we get for a sequence of values of $r \rightarrow \infty$ and for $\delta>0$

$$
\begin{aligned}
\frac{T\left(\frac{r}{4^{n-1}}, g\right)}{T(r, g)} & >\frac{1-\varepsilon}{1+\varepsilon} \frac{\left(\frac{r}{4^{n-1}}\right)^{\lambda_{g}+\delta}}{\left(\frac{r}{4^{n-1}}\right)^{\lambda_{g}+\delta-\lambda_{g}\left(\frac{r}{4^{n-1}}\right)}} \frac{1}{r^{\lambda_{g}(r)}} \\
& \geq \frac{1-\varepsilon}{1+\varepsilon} \frac{1}{\left(4^{n-1}\right)^{\lambda_{g}+\delta}}
\end{aligned}
$$

because $r^{\lambda_{g}+\delta-\lambda_{g}(r)}$ is an increasing function of r.
Since $\varepsilon, \delta>0$ be arbitrary, so using Lemma 2.5, we have from (3.5)

$$
\lim \sup _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T(r, g)} \geq \frac{\pi \lambda_{f}}{\left(4^{n-1}\right)^{\lambda_{g}}}
$$

If $\rho_{f}=\infty$, the second inequality is obvious. So we may assume $\rho_{f}<\infty$. Then the second inequality follows from Lemma 2.5 and Lemma 2.6.
This proves the theorem.
Theorem 3.3. Let f and g be two non-constant entire functions such that $\lambda_{f}(>0)$ and λ_{g} are finite. Also there exist entire functions $a_{i}(i=1,2,3 \ldots \ldots \ldots . n ; n \leq \infty)$ satisfying $T\left(r, a_{i}\right)=o\{T(r, f)\}$ as $r \rightarrow \infty$ and

$$
\sum_{i=1}^{n} \delta\left(a_{i}, f\right)=1
$$

Then

$$
\frac{\pi \lambda_{g}}{\left(4^{n-1}\right)^{\lambda_{f}}} \leq \lim \sup _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T(r, f)} \leq \pi \rho_{g}
$$

when n is odd.

Theorem 3.4. Let f and g be two non-constant entire functions such that $0<$ $\lambda_{f} \leq \rho_{f}<\infty$ and $0<\lambda_{g} \leq \rho_{g}<\infty$. Then for $k=0,1,2,3, \ldots \ldots$.

$$
\frac{\bar{\lambda}_{g}}{\rho_{g}} \leq \lim \inf _{r \rightarrow \infty} \frac{\log ^{[n+1]} T\left(r, f_{n}\right)}{\log T\left(r, g^{(k)}\right)} \leq \lim \sup _{r \rightarrow \infty} \frac{\log ^{[n+1]} T\left(r, f_{n}\right)}{\log T\left(r, g^{(k)}\right)} \leq \frac{\overline{\rho_{g}}}{\lambda_{g}}
$$

when n is even and

$$
\frac{\bar{\lambda}_{f}}{\rho_{f}} \leq \lim \inf _{r \rightarrow \infty} \frac{\log ^{[n+1]} T\left(r, f_{n}\right)}{\log T\left(r, f^{(k)}\right)} \leq \lim \sup _{r \rightarrow \infty} \frac{\log ^{[n+1]} T\left(r, f_{n}\right)}{\log T\left(r, f^{(k)}\right)} \leq \frac{\overline{\rho_{f}}}{\lambda_{f}}
$$

when n is odd, where $f^{(k)}$ denote the k-th derivative of f.
Proof. First suppose that n is even. Then for given $\varepsilon\left(0<\varepsilon<\min \left\{\lambda_{f}, \lambda_{g}\right\}\right)$ we get from Lemma 2.6 for all large values of r

$$
\begin{aligned}
\qquad \log ^{[n-1]} T\left(r, f_{n}\right) & \geq\left(\lambda_{f}-\varepsilon\right) \log M\left(\frac{r}{4^{n-1}}, g\right)+O(1) \\
& \geq\left(\lambda_{f}-\varepsilon\right) T\left(\frac{r}{4^{n-1}}, g\right)+O(1) \\
\text { that is, } \quad \log ^{[n]} T\left(r, f_{n}\right) & \geq \log T\left(\frac{r}{4^{n-1}}, g\right)+O(1) . \\
\text { So, } \quad \log ^{[n+1]} T\left(r, f_{n}\right) & \geq \log ^{[2]} T\left(\frac{r}{4^{n-1}}, g\right)+O(1) .
\end{aligned}
$$

So for all large values of r

$$
\begin{equation*}
\frac{\log ^{[n+1]} T\left(r, f_{n}\right)}{\log T\left(r, g^{(k)}\right)} \geq \frac{\log ^{[2]} T\left(\frac{r}{4^{n-1}}, g\right)}{\log \frac{r}{4^{n-1}}} \cdot \frac{\log \frac{r}{4^{n-1}}}{\log T\left(r, g^{(k)}\right)}+o(1) \tag{3.6}
\end{equation*}
$$

Since

$$
\lim \sup _{r \rightarrow \infty} \frac{\log T\left(r, g^{(k)}\right)}{\log r}=\rho_{g}
$$

so for all large values of r and arbitrary $\varepsilon>0$ we have

$$
\begin{equation*}
\log T\left(r, g^{(k)}\right)<\left(\rho_{g}+\varepsilon\right) \log r \tag{3.7}
\end{equation*}
$$

Since $\varepsilon>0$ is arbitrary, so from (3.6) and (3.7) we have

$$
\begin{align*}
\lim \inf _{r \rightarrow \infty} \frac{\log ^{[n+1]} T\left(r, f_{n}\right)}{\log T\left(r, g^{(k)}\right)} & \geq \lim _{r \rightarrow \infty} \frac{\log ^{[2]} T\left(\frac{r}{4^{n-1}}, g\right)}{\log \frac{r}{4^{n-1}}} \cdot\left(\frac{\log r-\log 4^{n-1}}{\rho_{g} \log r}\right) \\
& \geq \frac{\bar{\lambda}_{g}}{\rho_{g}} \tag{3.8}
\end{align*}
$$

Again from Lemma 2.6 for all large values of r

$$
\begin{align*}
\log ^{[n-1]} T\left(r, f_{n}\right) & \leq\left(\rho_{f}+\varepsilon\right) \log M(r, g)+O(1) \\
\text { i.e. } \frac{\log ^{[n+1]} T\left(r, f_{n}\right)}{\log T\left(r, g^{(k)}\right)} & \leq \frac{\log ^{[3]} M(r, g)}{\log T\left(r, g^{(k)}\right)}+o(1) \tag{3.9}
\end{align*}
$$

Since

$$
\lim \inf _{r \rightarrow \infty} \frac{\log T\left(r, g^{(k)}\right)}{\log r}=\lambda_{g}
$$

so for all large values of r and arbitrary $\varepsilon\left(0<\varepsilon<\lambda_{g}\right)$ we have

$$
\begin{equation*}
\log T\left(r, g^{(k)}\right)>\left(\lambda_{g}-\varepsilon\right) \log r \tag{3.10}
\end{equation*}
$$

Since $\varepsilon>0$ is arbitrary, so from (3.9) and (3.10) we have

$$
\begin{equation*}
\lim \sup _{r \rightarrow \infty} \frac{\log { }^{[n+1]} T\left(r, f_{n}\right)}{\log T\left(r, f^{(k)}\right)} \leq \frac{\overline{\rho_{g}}}{\lambda_{g}} \tag{3.11}
\end{equation*}
$$

Combining (3.8) and (3.11) we obtain the first part of the theorem.
Similarly when n is odd then we have the second part of the theorem. This proves the theorem.

Theorem 3.5. Let f and g be two non-constant entire functions such that $0<$ $\lambda_{f} \leq \rho_{f}<\infty$ and $0<\lambda_{g} \leq \rho_{g}<\infty$. Then
(i) $\frac{\lambda_{g}}{\rho_{g}} \leq \lim \inf _{r \rightarrow \infty} \frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T(r, g)} \leq 1 \leq \lim \sup _{r \rightarrow \infty} \frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T(r, g)} \leq \frac{\rho_{g}}{\lambda_{g}}$
when n is even and
(ii) $\frac{\lambda_{f}}{\rho_{f}} \leq \lim \inf _{r \rightarrow \infty} \frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T(r, f)} \leq 1 \leq \lim \sup _{r \rightarrow \infty} \frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T(r, f)} \leq \frac{\rho_{f}}{\lambda_{f}}$
when n is odd.
Proof. First suppose that n is even. Then for given $\varepsilon\left(0<\varepsilon<\min \left\{\lambda_{f}, \lambda_{g}\right\}\right)$ we get from Lemma 2.6 for all large values of r

$$
\begin{align*}
\quad \log ^{[n-1]} T\left(r, f_{n}\right) & \leq\left(\rho_{f}+\varepsilon\right) \log M(r, g)+O(1) \\
\text { i.e. } \quad \log ^{[n]} T\left(r, f_{n}\right) & \leq \log ^{[2]} M(r, g)+O(1) \\
\text { i.e. } \quad \frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T(r, g)} & \leq \frac{\log ^{[2]} M(r, g)}{\log T(r, g)}+o(1) \tag{3.12}
\end{align*}
$$

i.e. $\lim \inf _{r \rightarrow \infty} \frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T(r, g)} \leq 1 \quad$ [by Lemma 2.3].

Also,

$$
\begin{aligned}
\log ^{[n-1]} T\left(r, f_{n}\right) & \geq\left(\lambda_{f}-\varepsilon\right) \log M\left(\frac{r}{4^{n-1}}, g\right)+O(1) \\
\text { i.e. } \quad \log ^{[n]} T\left(r, f_{n}\right) & \geq \log ^{[2]} M\left(\frac{r}{4^{n-1}}, g\right)+O(1)
\end{aligned}
$$

So

$$
\begin{equation*}
\frac{\log { }^{[n]} T\left(r, f_{n}\right)}{\log T(r, g)} \geq \frac{\log T\left(\frac{r}{4^{n-1}}, g\right)}{\log \frac{r}{4^{n-1}}} \cdot\left(\frac{\log r-\log 4^{n-1}}{\rho_{g} \log r}\right)+o(1) \tag{3.14}
\end{equation*}
$$

i.e. $\quad \lim \inf _{r \rightarrow \infty} \frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T(r, g)} \geq \frac{\lambda_{g}}{\rho_{g}}$.

Also from (3.12), we get for all large values of r,

$$
\begin{align*}
\frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T(r, g)} & \leq \frac{\log ^{[2]} M(r, g)}{\log r} \frac{\log r}{\log T(r, g)}+o(1) \\
\therefore \lim \sup _{r \rightarrow \infty} \frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T(r, g)} & \leq \frac{\rho_{g}}{\lambda_{g}} . \tag{3.15}
\end{align*}
$$

Again from Lemma 2.6,

$$
\begin{align*}
\log ^{[n-1]} T\left(r, f_{n}\right) & \geq\left(\lambda_{f}-\varepsilon\right) \log M\left(\frac{r}{4^{n-1}}, g\right)+O(1) \\
\text { i.e. } \quad \log ^{[n]} T\left(r, f_{n}\right) & \geq \log ^{[2]} M\left(\frac{r}{4^{n-1}}, g\right)+O(1) \tag{3.16}
\end{align*}
$$

From (3.3) we obtain for all large values of r and for $\delta>0$ and $\varepsilon(0<\varepsilon<1)$

$$
\begin{aligned}
\log M\left(\frac{r}{4^{n-1}}, g\right) & >(1-\varepsilon) \frac{\left(\frac{r}{4^{n-1}}\right)^{\lambda_{g}+\delta}}{\left(\frac{r}{4^{n-1}}\right)^{\lambda_{g}+\delta-\lambda_{g}\left(\frac{r}{4^{n-1}}\right)}} \\
& \geq \frac{1-\varepsilon}{\left(4^{n-1}\right)^{\lambda_{g}+\delta}} r^{\lambda_{g}(r)}
\end{aligned}
$$

because $r^{\lambda_{g}+\delta-\lambda_{g}(r)}$ is an increasing function of r.
So by (3.2) we get for a sequence of value of r tending to infinity

$$
\begin{align*}
\log M\left(\frac{r}{4^{n-1}}, g\right) & \geq \frac{1-\varepsilon}{1+\varepsilon} \frac{1}{\left(4^{n-1}\right)^{\lambda_{g}+\delta}} T(r, g) \\
\text { i.e. } \log ^{[2]} M\left(\frac{r}{4^{n-1}}, g\right) & \geq \log T(r, g)+O(1) \tag{3.17}
\end{align*}
$$

Now from (3.16) and (3.17)

$$
\begin{equation*}
\lim \sup _{r \rightarrow \infty} \frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T(r, f)} \geq 1 \tag{3.18}
\end{equation*}
$$

So the theorem follows from (3.13), (3.14), (3.15) and (3.18) when n is even.
Similarly when n is odd we get (ii).
Corollary 3.6. Using the hypothesis of Theorem 3.5 if f and g are of regular growth then

$$
\lim _{r \rightarrow \infty} \frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T(r, g)}=\lim _{r \rightarrow \infty} \frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T(r, f)}=1
$$

Remark 3.7. The conditions $\lambda_{f}, \lambda_{g}>0$ and $\rho_{f,} \rho_{g}<\infty$ are necessary for Theorem 3.5 and Corollary 3.6, which are shown by the following examples.

Example 3.8. Let $f=z, g=\exp z$. Then $\lambda_{f}=\rho_{f}=0$ and $0<\lambda_{g}=\rho_{g}<\infty$. Now when n is even then

$$
f_{n}=\exp ^{\left[\frac{n}{2}\right]} z
$$

Therefore,

$$
T\left(r, f_{n}\right) \leq \log M\left(r, f_{n}\right)=\exp ^{\left[\frac{n}{2}-1\right]} r
$$

So,

$$
\begin{aligned}
\log ^{[n]} T\left(r, f_{n}\right) & \leq \log ^{[n]}\left(\exp ^{\left[\frac{n}{2}-1\right]} r\right) \\
& =\log ^{\left[n-\frac{n}{2}+1\right]} r \\
& =\log ^{\left[\frac{n}{2}+1\right]} r .
\end{aligned}
$$

Also when n is odd

$$
f_{n}=\exp ^{\left[\frac{n-1}{2}\right]} z
$$

Therefore,

$$
T\left(r, f_{n}\right) \leq \log M\left(r, f_{n}\right)=\exp ^{\left[\frac{n-1}{2}-1\right]} r
$$

So,

$$
\begin{aligned}
\log ^{[n]} T\left(r, f_{n}\right) & \leq \log ^{[n]}\left(\exp ^{\left[\frac{n-1}{2}-1\right]} r\right) \\
& =\log g^{\left[n-\frac{n-1}{2}+1\right]} r \\
& =\log ^{\left[\frac{n+1}{2}+1\right]} r .
\end{aligned}
$$

Now

$$
\log T(r, f)=\log r \quad \text { and } \log T(r, g)=\log r-\log \pi
$$

Therefore when n is even

$$
\frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T(r, g)} \leq \frac{\log ^{\left[\frac{n}{2}+1\right]} r}{\log r-\log \pi} \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty
$$

and when n is odd

$$
\frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T(r, f)} \leq \frac{\log ^{\left[\frac{n+1}{2}+1\right]} r}{\log r} \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty
$$

Example 3.9. Let $f=\exp ^{[2]} z, g=\exp z$. Then $\lambda_{f}=\rho_{f}=\infty, \quad \lambda_{g}=\rho_{g}=1$.
Now when n is even

$$
f_{n}=\exp ^{\left[\frac{3 n}{2}\right]} z
$$

Therefore

$$
\begin{aligned}
3 T\left(2 r, f_{n}\right) & \geq \log M\left(r, f_{n}\right)=\exp ^{\left[\frac{3 n}{2}-1\right]} r \\
\text { i.e. } T\left(r, f_{n}\right) & \geq \frac{1}{3} \exp ^{\left[\frac{3 n}{2}-1\right]} \frac{r}{2} \\
\therefore \quad \log ^{[n]} T\left(r, f_{n}\right) & \geq \log ^{[n]}\left(\exp ^{\left[\frac{3 n}{2}-1\right]} \frac{r}{2}\right)+o(1) \\
& =\exp ^{\left[\frac{n}{2}-1\right]} \frac{r}{2}+o(1)
\end{aligned}
$$

Also when n is odd

$$
f_{n}=\exp ^{\left[\frac{[n+1}{2}\right]} z
$$

Therefore

$$
\begin{aligned}
3 T\left(2 r, f_{n}\right) & \geq \log M\left(r, f_{n}\right)=\exp ^{\left[\frac{3 n+1}{2}-1\right]} r \\
\text { i.e. } \quad T\left(r, f_{n}\right) & \geq \frac{1}{3} \exp ^{\left[\frac{3 n-1}{2}\right]} \frac{r}{2} \\
\therefore \quad \log ^{[n]} T\left(r, f_{n}\right) & \geq \log ^{[n]}\left(\exp ^{\left[\frac{[n-1}{2}\right]} \frac{r}{2}\right)+o(1) \\
& =\exp ^{\left[\frac{n-1}{2}\right]} \frac{r}{2}+o(1) .
\end{aligned}
$$

Also

$$
T(r, f) \leq e^{r} \text { and } T(r, g)=\frac{r}{\pi}
$$

Therefore when n is even

$$
\frac{\log { }^{[n]} T\left(r, f_{n}\right)}{\log T(r, g)} \geq \frac{\exp ^{\left[\frac{n}{2}-1\right]} \frac{r}{2}+o(1)}{\log r-\log \pi} \rightarrow \infty \quad \text { as } \quad r \rightarrow \infty
$$

and when n is odd

$$
\frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T(r, f)} \geq \frac{\exp ^{\left[\frac{n-1}{2}\right]} \frac{r}{2}+o(1)}{r} \rightarrow \infty \quad \text { as } \quad r \rightarrow \infty
$$

Theorem 3.10. Let f and g be two entire functions such that $0<\lambda_{f} \leq \rho_{f}<\infty$ and $0<\lambda_{g} \leq \rho_{g}<\infty$. Then for $k=0,1,2,3, \ldots \ldots$

$$
\text { (i) } \frac{\lambda_{g}}{\rho_{f}} \leq \lim \inf _{r \rightarrow \infty} \frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T\left(r, f^{(k)}\right)} \leq \lim \sup _{r \rightarrow \infty} \frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T\left(r, f^{(k)}\right)} \leq \frac{\rho_{g}}{\lambda_{f}}
$$

when n is even.

$$
\text { (ii) } \frac{\lambda_{f}}{\rho_{g}} \leq \lim \inf _{r \rightarrow \infty} \frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T\left(r, g^{(k)}\right)} \leq \lim \sup _{r \rightarrow \infty} \frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T\left(r, g^{(k)}\right)} \leq \frac{\rho_{f}}{\lambda_{g}}
$$

when n is odd.
Proof. First suppose that n is even. Then for given $\varepsilon\left(0<\varepsilon<\min \left\{\lambda_{f}, \lambda_{g}\right\}\right)$ we have from Lemma 2.6 for all large values of r,

$$
\begin{aligned}
\log ^{[n-1]} T\left(r, f_{n}\right) & \leq\left(\rho_{f}+\varepsilon\right) \log M(r, g)+O(1) \\
\text { i.e. } \quad \log ^{[n]} T\left(r, f_{n}\right) & \leq \log ^{[2]} M(r, g)+O(1)
\end{aligned}
$$

Also we know that

$$
\lim \inf _{r \rightarrow \infty} \frac{\log T\left(r, g^{(k)}\right)}{\log r}=\lambda_{g}
$$

Now

$$
\begin{align*}
\lim \sup _{r \rightarrow \infty} \frac{\log { }^{[n]} T\left(r, f_{n}\right)}{\log T\left(r, f^{(k)}\right)} & \leq \lim \sup _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, g)}{\log T\left(r, f^{(k)}\right)} \\
& \leq \lim \sup _{r \rightarrow \infty}\left[\frac{\log { }^{[2]} M(r, g)}{\log r} \cdot \frac{\log r}{\log T\left(r, f^{(k)}\right)}\right] \\
& =\frac{\rho_{g}}{\lambda_{f}} \tag{3.19}
\end{align*}
$$

Again from lemma 2.6 we have for all large values of r,

$$
\begin{aligned}
\log ^{[n-1]} T\left(r, f_{n}\right) & \geq\left(\lambda_{f}-\varepsilon\right) \log M\left(\frac{r}{4^{n-1}}, g\right)+O(1) \\
& \geq\left(\lambda_{f}-\varepsilon\right)\left(\frac{r}{4^{n-1}}\right)^{\lambda_{g}-\varepsilon}+O(1) \\
\text { i.e., } \log ^{[n]} T\left(r, f_{n}\right) & \geq\left(\lambda_{g}-\varepsilon\right) \log r+O(1) .
\end{aligned}
$$

Also

$$
\log T\left(r, f^{(k)}\right)<\left(\rho_{f}+\varepsilon\right) \log r
$$

Therefore,

$$
\frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T\left(r, f^{(k)}\right)} \geq \frac{\left(\lambda_{g}-\varepsilon\right) \log r+O(1)}{\left(\rho_{f}+\varepsilon\right) \log r}
$$

Since $\varepsilon>0$ is arbitrary we get

$$
\begin{equation*}
\lim \inf _{r \rightarrow \infty} \frac{\log ^{[n]} T\left(r, f_{n}\right)}{\log T\left(r, f^{(k)}\right)} \geq \frac{\lambda_{g}}{\rho_{f}} . \tag{3.20}
\end{equation*}
$$

Therefore from (3.19) and (3.20) we have the result for even n.
Similarly for odd n we have (ii).
This proves the Theorem.
Theorem 3.11. Let f and g be two entire functions such that $0<\lambda_{f} \leq \rho_{f}<\infty$ and $\rho_{g}<\infty$. Then for $k=0,1,2,3, \ldots \ldots$

$$
\lim _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T\left(\exp (r), f^{(k)}\right)}=0 \quad \text { for all natural number } n(\geq 2)
$$

Proof. First suppose n is even. Then by Lemma 2.6 for all sufficiently large values of r and $\varepsilon\left(0<\varepsilon<\lambda_{f}\right)$

$$
\begin{aligned}
\log ^{[n-1]} T\left(r, f_{n}\right) & \leq\left(\rho_{f}+\varepsilon\right) \log M(r, g)+O(1) \\
\log M(r, g) & <r^{\rho_{g}+\varepsilon} \\
\text { and } T\left(\exp (r), f^{(k)}\right) & >e^{r^{\left(\lambda_{f}-\varepsilon\right)}} .
\end{aligned}
$$

So

$$
\begin{aligned}
\frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T\left(\exp (r), f^{(k)}\right)} & \leq \frac{\left(\rho_{f}+\varepsilon\right) r^{\rho_{g}+\varepsilon}}{e^{r^{\left(\lambda_{f}-\varepsilon\right)}}}+o(1) \\
\therefore \lim _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T\left(\exp (r), f^{(k)}\right)} & =0 .
\end{aligned}
$$

Similarly for odd n we have

$$
\begin{aligned}
\log ^{[n-1]} T\left(r, f_{n}\right) & \leq\left(\rho_{g}+\varepsilon\right) \log M(r, f)+O(1), \\
\text { and } \log M(r, f) & <r^{\rho_{f}+\varepsilon}
\end{aligned}
$$

So

$$
\begin{aligned}
\frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T\left(\exp (r), f^{(k)}\right)} & \leq \frac{\left(\rho_{g}+\varepsilon\right) r^{\rho_{f}+\varepsilon}}{e^{r^{\left(\lambda_{f}-\varepsilon\right)}}}+o(1) \\
\therefore \lim _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T\left(\exp (r), f^{(k)}\right)} & =0 .
\end{aligned}
$$

This proves the theorem.

Remark 3.12. The condition $\rho_{g}<\infty$ is the necessary for Theorem 3.11, which is shown by the following example.
Example 3.13. Let $f=\exp z$ and $g=\exp ^{[2]} z$ then $\lambda_{f}=\rho_{f}=1 \quad$ and $\rho_{g}=\infty$.
Now when n is even

$$
f_{n}=\exp ^{\left[\frac{3 n}{2}\right]} z
$$

Therefore,

$$
\begin{aligned}
3 T\left(2 r, f_{n}\right) & \geq \log M\left(r, f_{n}\right)=\exp ^{\left[\frac{3 n}{2}-1\right]} r \\
i . e . \quad T\left(r, f_{n}\right) & \geq \frac{1}{3} \exp ^{\left[\frac{3 n}{2}-1\right]} \frac{r}{2} \\
\therefore \quad \log ^{[n-1]} T\left(r, f_{n}\right) & \geq \exp ^{\left[\frac{3 n}{2}-1-n+1\right]} \frac{r}{2}+o(1) \\
& =\exp ^{\left[\frac{n}{2}\right]} \frac{r}{2}+o(1)
\end{aligned}
$$

Also when n is odd,

$$
f_{n}=\exp ^{\left[\frac{3 n-1}{2}\right]} z
$$

Therefore

$$
\begin{aligned}
3 T\left(2 r, f_{n}\right) & \geq \log M\left(r, f_{n}\right)=\exp ^{\left[\frac{3 n-1}{2}-1\right]} r \\
i . e . \quad T\left(r, f_{n}\right) & \geq \frac{1}{3} \exp ^{\left[\frac{3 n-1}{2}-1\right]} \frac{r}{2} \\
\therefore \quad \log ^{[n-1]} T\left(r, f_{n}\right) & \geq \exp ^{\left[\frac{3 n-1}{2}-1-n+1\right]} \frac{r}{2}+o(1) \\
& =\exp ^{\left[\frac{n-1}{2}\right]} \frac{r}{2}+o(1) .
\end{aligned}
$$

Also

$$
T\left(\exp (r), f^{(k)}\right)=\frac{e^{r}}{\pi}
$$

Therefore when n is even

$$
\frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T\left(\exp (r), f^{(k)}\right)} \geq \frac{\exp ^{\left[\frac{n}{2}\right]} \frac{r}{2}+o(1)}{e^{r} / \pi} \rightarrow \infty \quad \text { as } \quad r \rightarrow \infty
$$

and when n is odd

$$
\frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T\left(\exp (r), f^{(k)}\right)} \geq \frac{\exp ^{\left[\frac{n-1}{2}\right]} \frac{r}{2}+o(1)}{e^{r} / \pi} \rightarrow \infty \quad \text { as } \quad r \rightarrow \infty
$$

Theorem 3.14. Let f and g be two entire functions such that $0<\lambda_{g} \leq \rho_{g}<\infty$ and $\rho_{f}<\infty$. Then for $k=0,1,2,3, \ldots \ldots$

$$
\lim _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T\left(\exp (r), g^{(k)}\right)}=0 \quad \text { for all natural number } n(\geq 2)
$$

Theorem 3.15. Let f and g be two entire functions such that $\rho_{g}<\lambda_{f} \leq \rho_{f}<\infty$. Then for $k=0,1,2,3, \ldots$..

$$
\lim _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T\left(r, f^{(k)}\right)}=0 \text { when } n \text { is even. }
$$

Proof. From Lemma 2.6 we have for arbitrary $\varepsilon(>0)$ such that $\rho_{g}+\varepsilon<\lambda_{f}-\varepsilon$ and for large values of r,

$$
\begin{aligned}
\log ^{[n-1]} T\left(r, f_{n}\right) & \leq\left(\rho_{f}+\varepsilon\right) \log M(r, g)+O(1) \\
\log M(r, g) & <r^{\rho_{g}+\varepsilon}, \\
\text { and } T\left(r, f^{(k)}\right) & >r^{\lambda_{f}-\varepsilon} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T\left(r, f^{(k)}\right)} & \leq \frac{\left(\rho_{f}+\varepsilon\right) r^{\rho_{g}+\varepsilon}}{r^{\lambda_{f}-\varepsilon}}+o(1) \\
\text { i.e. } \lim _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T\left(r, f^{(k)}\right)} & =0 .
\end{aligned}
$$

This proves the theorem.
Theorem 3.16. Let f and g be two entire functions such that $\rho_{f}<\lambda_{g} \leq \rho_{g}<\infty$. Then for $k=0,1,2,3, \ldots \ldots$,

$$
\lim _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{T\left(r, g^{(k)}\right)}=0 \text { when } n \text { is odd. }
$$

In [6] Lahiri and Datta proved the following theorem.
Theorem A. Let f and g be two transcendental entire functions such that
(i) $0<\lambda_{g} \leq \rho_{g}<\infty$,
(ii) $\lambda_{f}>0, \quad$ and (iii) $\delta(0 ; f)<1$.

Then for any real number A,

$$
\lim \sup _{r \rightarrow \infty} \frac{\log T\left(r, f_{o} g\right)}{\log T\left(r^{A}, g^{(k)}\right)}=\infty
$$

for $k=0,1,2,3, \ldots \ldots$
Now we generalise the above as follows.
Theorem 3.17. Let f and g be two transcendental entire functions such that

$$
\text { (i) } 0<\lambda_{g} \leq \rho_{g}<\infty, \quad \text { (ii) } \lambda_{f}>0, \quad \text { and } \quad \text { (iii) } \delta(0 ; f)<1 \text {. }
$$

Then for any real number A,

$$
\lim \sup _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{\log T\left(r^{A}, g^{(k)}\right)}=\infty
$$

for $k=0,1,2,3, \ldots \ldots$ and n is even.
Proof. When n is even then from (2.1),

$$
\begin{aligned}
\log ^{[n-2]} T\left(r, f_{n}\right) & \geq\left(\lambda_{g}-\varepsilon\right) \log M\left(\frac{r}{4^{n-2}}, f g\right)+O(1) \\
& \geq\left(\lambda_{g}-\varepsilon\right) T\left(\frac{r}{4^{n-2}}, f g\right)+O(1) \\
\text { that is, } \log ^{[n-1]} T\left(r, f_{n}\right) & \geq \log T\left(\frac{r}{4^{n-2}}, f g\right)+O(1) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim \sup _{r \rightarrow \infty} \frac{\log { }^{[n-1]} T\left(r, f_{n}\right)}{\log T\left(r^{A}, g^{(k)}\right)} & \geq \lim \sup _{r \rightarrow \infty} \frac{\log T\left(\frac{r}{4^{n-2}}, f g\right)}{\log T\left(r^{A}, g^{(k)}\right)} \\
& \geq \lim \sup _{r \rightarrow \infty}\left[\frac{\log T\left(\frac{r}{4^{n-2}}, f g\right)}{\log T\left(\left(\frac{r}{4^{n-2}}\right)^{A}, g^{(k)}\right)} \frac{\log T\left(\left(\frac{r}{4^{n-2}}\right)^{A}, g^{(k)}\right)}{\log T\left(r^{A}, g^{(k)}\right)}(3.2]\right)
\end{aligned}
$$

But

$$
\begin{equation*}
\lim \sup _{r \rightarrow \infty} \frac{\log T\left(\left(\frac{r}{4^{n-2}}\right)^{A}, g^{(k)}\right)}{\log T\left(r^{A}, g^{(k)}\right)} \geq \frac{\lambda_{g}}{\rho_{g}} \tag{3.22}
\end{equation*}
$$

So proceeding as in Theorem A we have the result by using (3.21) and (3.22).
This proves the theorem.
Theorem 3.18. Let f and g be two transcendental entire functions such that

$$
\text { (i) } 0<\lambda_{f} \leq \rho_{f}<\infty, \quad \text { (ii) } \lambda_{g}>0, \quad \text { and } \quad \text { (iii) } \delta(0 ; g)<1
$$

Then for any real number A,

$$
\lim \sup _{r \rightarrow \infty} \frac{\log ^{[n-1]} T\left(r, f_{n}\right)}{\log T\left(r^{A}, f^{(k)}\right)}=\infty
$$

for $k=0,1,2,3, \ldots \ldots$ and n is odd.

References

[1] J. Clunie, The composition of entire and meromorphic functions, Mathematical essays dedicated to A. J. Macintyre, Ohio Univ. Press, (1970), 75-92.
[2] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
[3] B. K. Lahiri, D. Banerjee, Relative fix points of entire functions, J. Indian Acad. Math., 19(1) (1997), 87-97.
[4] I. Lahiri, Generalised proximate order of meromorphic functions, Matematnykn Bechnk, 41 (1989), 9-16.
[5] I. Lahiri, Growth of composite integral functions, Indian J. Pure and Appl. Math., 20(9) (1989), 899-907.
[6] I. Lahiri, S. K. Datta, On the growth of composite entire and meromorphic functions, Indian J. Pure and Appl. Math., 35(4) (2004), 525-543.
[7] Q. Lin, C. Dai, On a conjecture of Shah concerning small functions, Kexue Tong (English Ed.), 31(4) (1986), 220-224.
[8] K. Niino, C. C. Yang, Some growth relationships on factors of two composite entire functions, Factorization Theory of Meromorphic Functions and Related Topics, Marcel Dekker Inc. (New York and Basel), (1982), 95-99.
[9] D. Sato, On the rate of growth of entire functions of fast growth, Bull. Amer. Math. Soc., 69 (1963), 411-414.
[10] A. P. Singh, Growth of composite entire functions, Kodai Math. J., 8 (1985), 99-102.
Department of Mathematics, Visva Bharati, Santiniketan-731235, West Bengal, India
E-mail address: dibyendu192@rediffmail.com
Department of Mathematics, Siliguri Institute of Technology, Post.- Sukna, Siliguri, Darjeeling-734009, West Bengal, India

E-mail address: ratan_3128@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 30D35.
 Key words and phrases. Entire functions; growth; iteration.
 © 2008 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted January 4, 2011. Published May 28, 2011.

