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GENERALIZED WEYL’S THEOREM FOR AN ELEMENTARY

OPERATOR

(COMMUNICATED BY TAKEAKI YAMAZAKI)

FARIDA LOMBARKIA

Abstract. Let dA,B ∈ L(L(H)) denote either the generalized derivation
δA,B = LA − RB or the elementary operator ∆A,B = LA.RB − I, where
LA and RB are the left and right multiplication operators defined on L(H) by
LA(X) = AX and RB(X) = XB respectively. A and B are bounded linear

operators on an infinite complex Hilbert space. This paper is concerned with
the transmission of polaroid and generalized Weyl’s theorem from bounded lin-
ear maps on Hilbert spaces to the elementary operator. We show that polaroid
property is preserved from A and B to dA,B , we also prove that dA,B do not

inherit generalized Weyl’s theorem from generalized Weyl’s theorem for A and
B. Moreover we give necessary and sufficient conditions for dA,B to satisfy
generalized Weyl’s theorem. Some applications for paranormal operators are
given.

1. Introduction

Let T ∈ L(X) be a bounded linear operator on an infinite dimensional complex
Banach space X and denote by α(T ) the dimension of the kernel kerT , and by
β(T ) the codimension of the range R(T ). T ∈ L(X) is said to be an upper semi-
Fredholm operators if α(T ) < ∞ and R(T ) is closed, while T ∈ L(X) is said to
be lower semi-Fredholm if β(T ) < ∞. If T ∈ L(X) is either an upper or a lower
semi-Fredholm operator, then T is called a semi-Fredholm, and the index of T is
defined by ind(T ) = α(T )−β(T ). If both α(T ) and β(T ) are finite, then T is called
a Fredholm operator. An operator T ∈ L(X) is said to be Weyl operator if it is
Fredholm operator of index zero. The Weyl spectrum of T is defined by

σW (T ) = {λ ∈ C : T − λI is not Weyl operator}.
For T ∈ L(X) and a nonnegative integer n define Tn to be the restriction of T

to R(Tn) viewed as a map from R(Tn) into R(Tn). If for some integer n the range
space R(Tn) is closed and Tn is an upper (resp. a lower) semi -Fredholm operator,
then T is called an upper (resp. a lower) semi-B-Fredholm operator. In this case
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the index of T is defined as the index of the semi-Fredholm operator Tn, see [5].
Moreover, if Tn is a Fredholm operator, then T is called a B-Fredholm operator. A
semi-B-Fredholm operator is an upper or a lower semi-B-Fredholm operator. An
operator T ∈ L(X) is said to be B-Weyl operator if it is B-Fredholm operator of
index zero. The B-Weyl spectrum of T is defined by

σBW (T ) = {λ ∈ C : T − λI is not B-Weyl operator}.

We say that generalized Weyl’s theorem holds for T if σ(T )\σBW (T ) = E(T ),
where E(T ) is the set of isolated eigenvalues of T.
M. Berkani [5, Theorem 4.5] has shown that every normal operator T acting on
a Hilbert space satisfies generalized Weyl’s theorem. This gives a generalization
of the classical Weyl’s theorem. Recall that the classical Weyl’s theorem asserts
that for every normal operator T acting on a Hilbert space, σ(T )\σW (T ) = E0(T ),
where E0(T ) is the set of isolated eigenvalues of finite multiplicity of T [21].
Recall that the ascent p(T ) of an operator T , is defined by p(T ) = inf{n ∈ N :
kerTn = kerTn+1} and the descent q(T ) = inf{n ∈ N : R(Tn) = R(Tn+1)}, with
inf ∅ = ∞. It is well known that if p(T ) and q(T ) are both finite then p(T ) = q(T ).
We denote by Π(T ) = {λ ∈ C : p(T − λI) = q(T − λI) < ∞} the set of poles of the
resolvent. An operator T ∈ L(X) is called Drazin invertible if and only if it has
finite ascent and descent. The Drazin spectrum of an operator T is defined by

σD(T ) = {λ ∈ C : T − λI is not Drazin invertible}.

Clearly,

σBW (T ) ⊂ σD(T ) for all T ∈ L(X).

Let H be an infinite complex Hilbert space and consider two bounded linear op-
erators A,B ∈ L(H). Let LA ∈ L(L(H)) and RB ∈ L(L(H)) be the left and
the right multiplication operators, respectively, and denote by dA,B ∈ L(L(H))
either the elementary operator ∆A,B(X) = AXB−X or the generalized derivation
δA,B(X) = AX−XB. The main objective of the present paper is the transmission
of polaroid and generalized Weyl’s theorem from A and B to dA,B . In the second
section of this paper, we show that polaroid property is preserved from A and B
to dA,B , and we give examples proving that dA,B do not inherit generalized Weyl’s
theorem from generalized Weyl’s theorem for A and B, moreover we give necessary
and sufficient conditions for dA,B to satisfy generalized Weyl’s theorem.
In the third section we give an application to paranormal operators. Our results
generalize the following ones [11, Theorem 3.3] and [15, Corollary 2.6] and [10,
Theorem 3.4].

2. Necessary and sufficient conditions for dA,B to satisfy
generalized Weyl’s theorem

In the sequel we shall denote by accD and isoD, the set of accumulation points
and the set of isolated points of D ⊂ C, respectively.

Definition 2.1. An operator T ∈ L(X) is said to be polaroid if

isoσ(T ) ⊆ Π(T ).

It is easily seen that, if T ∈ L(X) is polaroid, then Π(T ) = E(T ).
An important subspace in local spectral theory is the the quasi-nilpotent part of T
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is defined by

H0(T ) = {x ∈ X : lim
n→∞

∥Tn(X)∥ 1
n = 0}.

It is easily seen that kerTn ⊂ H0(T ) for every n ∈ N, see [1] for information on
H0(T ).

Lemma 2.2. Suppose that A,B ∈ L(H) are polaroid operators, then dA,B is po-
laroid.

Proof. Recall from [16] that σ(δA,B) = σ(A)−σ(B) and σ(∆A,B) = σ(A)σ(B)−{1}.
If λ ∈ isoσ(dA,B), then we have one of the following cases:

(1) If dA,B = δA,B , then there exist finite sequences {µi}ni=1 and {νi}ni=1, of
isolated points in σ(A) and σ(B), respectively such that λ = µi− νi, for all
1 ≤ i ≤ n.

(2) dA,B = ∆A,B and λ = −1, then either 0 ∈ isoσ(A) and 0 ∈ isoσ(B), or
0 ∈ isoσ(A) and 0 /∈ σ(B), or 0 ∈ isoσ(B) and 0 /∈ σ(A).

(3) dA,B = ∆A,B and λ ̸= −1, then there exist finite sequences {µi}ni=1 and
{νi}ni=1, of isolated points in σ(A) and σ(B), respectively such that µiνi =
1 + λ, for all 1 ≤ i ≤ n.

We stat by considering Case 1. If λ ∈ isoσ(δA,B), then there exist finite sequences
{µi}ni=1 and {νi}ni=1 such that µi ∈ isoσ(A) and νi ∈ isoσ(B). Since A and B
are polaroid, then from [1, Theorem 3.74] H0(A − µiI) = ker(A − µiI)

pi and
H0(B − νiI) = ker(B − νiI)

qi ,1 ≤ i ≤ n, for some integers pi, qi ≥ 1, λ = µi −
νi. The sets E1 = {µ1, µ2, ....., µn} and E2 = {ν1, ν2, ....., νn} are spectral sets
of σ(A) and σ(B), respectively. Hence by the Riesz decomposition theorem there
exist invariant subspaces Mk and Nk, k = 1, 2 of A and B respectively such that
H = M1 ⊕ M2 = N1 ⊕ N2, σ(A1) = σ(A|M1) = E1, σ(B1) = σ(B|N1) = E2,
σ(A2) = σ(A|M2) = σ(A)\E1 and σ(B2) = σ(B|N2) = σ(B)\E2. Observe that µi is
a pole of A1 of order pi and νi is a pole of B1 of order qi, for all 1 ≤ i ≤ n. Thus A1

and B1 are algebraic operators [1, Theorem 3.83]. Hence M1 = ⊕n
i=1 ker(A1−µi)

pi ,
and N1 = ⊕n

i=1 ker(B1 − νi)
pi , let M1i = ker(A1 − µi)

pi and N1i = ker(B1 − νi)
pi ,

for all 1 ≤ i ≤ n, let p = max{p1, p2, ....., pn} and q = max{q1, q2, ....., qn}, and set
p+ q = r.
Let Y ∈ R((δA,B − λI)r), then there exist X ∈ L(N1 ⊕ N2,M1 ⊕ M2) have the
representation X = [Xkl]

2
k,l=1 such that Y = (δA,B − λI)r(X). It will be proved

that q(δA,B − λI) ≤ r.

Y = (δA,B − λI)r(X) =

(
(δA1,B1

− λI)r(X11) (δA1,B2
− λI)r(X12)

(δA2,B1 − λI)r(X21) (δA2,B2 − λI)r(X22)

)
.

Observe that δAi,Bj − λI is invertible for all 1 ≤ i, j ≤ 2 such that i, j ̸= 1. Hence
there exist operators Zij such that

Xij = (δAi,Bj − λI)Zij , (2.1)

for all 1 ≤ i, j ≤ 2 such that i, j ̸= 1. LetX11 = [Yij ]1≤i,j≤n ∈ L(⊕n
i=1N1i,⊕n

i=1M1i).
Then for 1 ≤ i, j ≤ n, We have

(δA1,B1
− λI)r(X11) = ((LA1−µi

−RB1−νj
) + (µi − νj − λ))r[Yij ]1≤i,j≤n

=

(
r∑

k=0

(
r
k

)
(LA1−µi −RB1−νj )

k(µi − νj − λ)r−k

)
[Yij ]1≤i,j≤n
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since (A1 − µi)
pi |M1i = 0 = (B1 − νi)

qi |N1i for all 1 ≤ i ≤ n, observe that
σ(A1|M1i) = {µi}, σ(B1|N1i) = {νi}, σ(δA1,B1 −λI) = {µi − νj −λ, µi ∈ σ(A), νj ∈
σ(B), 1 ≤ i, j ≤ n}. Hence the operator δA1,B1 − λI|L(N1j ,M1i) is invertible for all
i ̸= j, 1 ≤ i, j ≤ n and the operator δA1,B1

− λI|L(N1i,M1i) is nilpotent of order r
for all 1 ≤ i ≤ n. Hence there exit Cij ∈ L(N1j ,M1i), for all i ̸= j, 1 ≤ i, j ≤ n and
choose Cii ∈ L(N1i,M1i), arbitrarily for all 1 ≤ i ≤ n, set Z11 = [Cij ]1≤i,j≤n. Thus

X11 = (δA1,B1 − λI)Z11. (2.2)

Therefore from (2.1) and (2.2) it follows that there exist Z = [Zij ]1≤i,j≤2 ∈
L(N1⊕N2,M1⊕M2), such that Y = (δA,B−λI)r+1(Z), thus Y ∈ R((δA,B−λI)r+1).
Since the reverse inclusion holds for all operators. Then R((δA,B − λI)r+1) =
R((δA,B − λI)r), i.e q(δA,B − λI) ≤ r.
With the same decompositions we can easily prove that ker(δA,B − λI)r+1 ⊂
ker(δA,B − λI)r. Since the reverse inclusion holds for all operators. Then p(δA,B −
λI) = q(δA,B − λI) ≤ r.
Case 2. Is proved by E. Boisso, B.P. Duggal and I. H. Jeon [9, Lemma 4.7].
Case 3. Since LARB is polaroid it follows from [14, Lemma 3.8] that ∆A,B is
polaroid. �

Remark. The class of polaroid operators is large, it contains:

(1) The class of all operators A ∈ L(H) such that for every complex number λ
there exists an integer pλ ≥ 1 for which the following condition holds

H0(A− λI) = ker(A− λI)pλ .

(2) HN the class of hereditarily normaloid, A ∈ HN if every part of A is nor-
maloid, a part of A is its restriction to an invariant subspace

(3) T HN the class of totally hereditarily normaloid. We say that A ∈ HN is
totally hereditarily normaloid if also every invertible part of A is normaloid

(4) CHN the class of completely totally hereditarily normaloid, A ∈ CHN if
either A is totally hereditarily normaloid or A− λI ∈ HN for every λ ∈ C

(5) (p, k)−Q the class of (p, k) quasi-hyponormal, A ∈ (p, k)−Q if A∗k(|A|2p−
|A∗|2p)Ak ≥ 0 for some positive integer k and 0 < p ≤ 1.

From [1, Theorem 3.74] we can easily prove that T ∈ L(X) is polaroid if and only if
there exists p = p(λ) ∈ N such that H0(T −λI) = ker(T −λI)p for all λ ∈ isoσ(T ).
This result allows us to deduce that Lemma 2.2 generalize the following results
[12, Theorem 3.2], [12, Theorem 3.3], [12, Theorem 3.4], [12, Theorem 3.5], [15,
Theorem 2.3] and [10, Lemma 3.2].

LA inherit generalized Weyl’s theorem from generalized Weyl’s theorem for A ∈
L(X) and RB inherit generalized Weyl’s theorem from generalized Weyl’s theorem
for B∗ ∈ L(X) (B∗ is the dual of B) see [9, Theorem 3.5] and [9, Theorem 3.6]. But
dA,B do not inherit generalized Weyl’s theorem from generalized Weyl’s theorem
for A and B because the following examples shows that generalized Weyl’s theorem
is not preserved under products and sums of commuting operators.

Example 2.3. Let I1 and I2 be the identities on C and l2(N), respectively. Let S1

and S2 defined on l2(N) by

S1(x1, x2, .....) = (0,
1

3
x1,

1

3
x2, .....), S2(x1, x2, .....) = (0,

1

2
x1,

1

3
x2, .....).
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Let T1 = I1 ⊕ S1, T2 = S2 − I2 and T = T1 ⊕ T2, from [22, Example 1] we have
generalized Weyl’s theorem holds for T but it does not hold for T.T = T 2.

Example 2.4. Let S : l2(N) → l2(N) be an injective quasinilpotent operator, and
let U : l2(N) → l2(N) be defined by U(x1, x2, x3, .....) = (−x1, 0, 0, .....). define on
l2(N)⊕ l2(N) the operators T and F by T = I ⊕ S and F = U ⊕ 0.
Clearly, F is a finite rank operator and FT = TF, it is easy to check that σ(T ) =
{0, 1}, E(T ) = {1} and it follows from [7, Example 2] that σBW (T ) = {0}. Hence
T satisfies generalized Weyl’s theorem. Since F is a finite rank operator, then
σ(F ) = E(F ) = {0,−1} and σBW (F ) = ∅, then generalized Weyl’s theorem holds
for F, and T + F does not satisfy generalized Weyl’s theorem.

In the following results we give necessary and sufficient condition for dA,B to
satisfy generalized Weyl’s theorem.

Theorem 2.5. Suppose that A,B ∈ L(H) are polaroid operators which satisfy
generalized Weyl’s theorem, then a necessary and sufficient condition for δA,B to
satisfy generalized Weyl’s theorem is

σBW (δA,B) = (σBW (A)− σ(B)) ∪ (σ(A)− σBW (B)).

Proof. Assume that σBW (δA,B) = (σBW (A)− σ(B)) ∪ (σ(A)− σBW (B)).
Let λ ∈ σ(δA,B)\σBW (δA,B), then for λ = µ− ν such that µ ∈ σ(A) and ν ∈ σ(B),
µ /∈ σBW (A) and ν /∈ σBW (B). Consequently µ ∈ E(A) = Π(A) and ν ∈ E(B) =
Π(B). Let p(A− µI) = q(A− µI) = p1 and p(B − νI) = q(B − νI) = q1, it follows
that there exist decompositions H = ker(A−µI)p1 ⊕R((A−µI)p1) = M1⊕M2 and
H = ker(B − νI)q1 ⊕R((B − νI)q1) = N1 ⊕N2 such that σ(A1) = σ(A|M1) = {µ},
σ(B1) = σ(B|N1

) = {ν}, σ(A2) = σ(A|M2
) = σ(A)\{µ} and σ(B2) = σ(B|N2

) =
σ(B)\{ν}. Observe that A1 − µ is nilpotent of order p1 and B1 − ν is nilpotent
of order q1. It will be proved that p(δA,B − λI) = q(δA,B − λI) ≤ r, such that
r = p1 + q1. Let Y ∈ R((δA,B − λI)r), then there exist X ∈ L(N1 ⊕N2,M1 ⊕M2)
have the representation X = [Xkl]

2
k,l=1 such that

Y = (δA,B − λI)r(X) =

(
(δA1,B1 − λI)r(X11) (δA1,B2 − λI)r(X12)
(δA2,B1 − λI)r(X21) (δA2,B2 − λI)r(X22)

)
.

The operator δAi,Bj − λI is invertible for all 1 ≤ i, j ≤ 2 such that i, j ̸= 1.

We argue as in the proof of Lemma 2.2, we get that Y ∈ R((δA,B − λI)r+1),
i.e q(δA,B − λI) ≤ r. With the same decompositions we can easily prove that
ker(δA,B−λI)r+1 ⊂ ker(δA,B−λI)r, i.e p(δA,B−λI) ≤ r, consequently λ ∈ Π(δA,B).
Hence σ(δA,B)\σBW (δA,B) ⊂ Π(δA,B) ⊂ E(δA,B). On the other hand the inclusion
Π(δA,B) ⊂ σ(δA,B)\σBW (δA,B) holds for every operator and since δA,B is polaroid
from Lemma 2.2, we have E(δA,B) = Π(δA,B), so E(δA,B) = σ(δA,B)\σBW (δA,B),
it then follows that δA,B satisfies generalized Weyl’s theorem.
Conversely suppose that δA,B satisfies generalized Weyl’s theorem, then E(δA,B) =
σ(δA,B)\σBW (δA,B). If λ /∈ (σBW (A)−σ(B))∪(σ(A)−σBW (B)), then for λ = µ−ν
such that µ ∈ σ(A) and ν ∈ σ(B), we have µ ∈ E(A) = Π(A) and ν ∈ E(B) =
Π(B), we argue as above we get, λ ∈ Π(δA,B) = E(δA,B) = σ(δA,B)\σBW (δA,B).
Hence σBW (δA,B) ⊂ (σBW (A)−σ(B))∪(σ(A)−σBW (B)). For the reverse inclusion,
let λ ∈ σ(δA,B)\σBW (δA,B), then λ ∈ E(δA,B), which implies that there exist finite
sequences {µi}ni=1 and {νi}ni=1 of values µi ∈ isoσ(A) ⊂ E(A) and νi ∈ isoσ(B) ⊂
E(B) such that λ = µi − νi for all 1 ≤ i ≤ n, then µi /∈ σBW (A) and νi /∈ σBW (B),
for all 1 ≤ i ≤ n, consequently λ /∈ (σBW (A)− σ(B)) ∪ (σ(A)− σBW (B)). �
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Theorem 2.6. Suppose that A,B ∈ L(H) are polaroid operators which satisfy
generalized Weyl’s theorem, then a necessary and sufficient condition for ∆A,B to
satisfy generalized Weyl’s theorem, is

σBW (∆A,B) = σ(A)σBW (B) ∪ σBW (A)σ(B)− {1}.

Proof. Assume that σBW (∆A,B) = σ(A)σBW (B) ∪ σBW (A)σ(B)− {1}.
Let λ ∈ σ(∆A,B)\σBW (∆A,B) such that λ ̸= −1, then for λ = µν − 1 such that
µ ∈ σ(A) and ν ∈ σ(B), it follows that µ /∈ σBW (A) and ν /∈ σBW (B), hence
µ ∈ E(A) = Π(A) and ν ∈ E(B) = Π(B), we argue as in the proof of Theorem 2.5,
we get

E(∆A,B) = σ(∆A,B)\σBW (∆A,B),

it then follows that ∆A,B satisfies generalized Weyl’s theorem.
Conversely suppose that ∆A,B satisfies generalizedWeyl’s theorem, then E(∆A,B) =
σ(∆A,B)\σBW (∆A,B). If λ /∈ σ(A)σBW (B)∪σBW (A)σ(B)−{1}, then for λ = µν−1
such that µ ∈ σ(A) and ν ∈ σ(B), hence µ ∈ E(A) = Π(A) and ν ∈ E(B) =
Π(B), we argue as in proof of Theorem 2.5, we get λ ∈ Π(∆A,B) = E(∆A,B) =
σ(∆A,B)\σBW (∆A,B). Hence σBW (∆A,B) ⊂ σ(A)σBW (B) ∪ σBW (A)σ(B) − {1}.
For the reverse inclusion and the case λ = −1, will be proved similarly. �

3. Application

A bounded linear operator T on a complex Hilbert space H, is said to be p-
hyponormal if (T ∗T )p) ≥ (TT ∗)p). Especially, a p-hyponormal operator T is said to
be hyponormal and semi-hyponormal if p = 1 and p = 1

2 , respectively. For positive

numbers s and t, an operator T belongs to class A(s, t) if (|T ∗|t|T |2s|T ∗|t)
t

s+t ≥
|T ∗|2t. Especially, we denote class A(1, 1) by class A. A( 12 ,

1
2 ) is the class of w-

hyponormal operators it was introduced by Aluthge and Wang [3], the class of
w-hyponormal operators contains the class of p-hyponormal (0 < p ≤ 1) and log-
hyponormal operators. An operator T ∈ L(H) is said to be log-hyponormal if T is
invertible and satisfies log(T ∗T ) ≥ log(TT ∗). Recall that T ∈ L(H) is said to be
paranormal if ∥Tx∥2 ≤ ∥T 2x∥∥x∥, for all x ∈ H. Inclusion relations among these
classes are known as follows:

{hyponorml} ⊂ {p− hyponorml, 0 < p < 1}
⊂ {classA(s, t), s, t ∈]0, 1]}
⊂ {classA}
⊂ {paranormal}.

It is proved in [11] that if A,B∗ ∈ L(H) are hyponormal, then generalized Weyl’s
theorem holds for f(dA,B) for every f ∈ H(σ(dA,B)), where H(σ(dA,B)) is the
set of all analytic functions defined on a neighborhood of σ(dA,B), this result was
extended to log-hyponormal or p-hyponormal operators in [15] and [19]. Also in
[10] it is shown that if A,B∗ ∈ L(H) are w-hyponormal operators, then Weyl’s
theorem holds for f(dA,B) for every f ∈ H(σ(dA,B)). In the next result we can give
more, before that we recall the following definitions.

Definition 3.1. For T ∈ L(X) and a closed subset F of C the glocal spectral
subspace XT (F ) defined as the set of all x ∈ X such that there is an analytic
X-valued function f : C\F → X for which (T − λI)f(λ) = x for all λ ∈ C\F.
T ∈ L(X) is said to have Dunford property (C) if every glocal spectral subspace is
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closed for every closed set F ⊆ C and T ∈ L(X) is said to be decomposable if T
has both property (C) and property (δ), where the last property means that for every
open covering (U, V ) of C we have X = XT (U) + XT (V ).

Definition 3.2. An operator T ∈ L(X) has Bishop’s property (β) if for every open
set U ⊂ C and every sequence of analytic functions fn : U → X, with the property
that (T − λI)fn(λ) → 0 uniformly on every compact subset of U, it follows that
fn → 0, again locally uniformly on U.

Bishop’s property (β) implies Dunford property (C), also T satisfies property (β)
if and only if T ∗ satisfies property (δ) [18, Theorem 2.5.5]. For more information
on property (β), property (δ) and Dunford’s condition (C) we refer the interested
reader to [18].

Definition 3.3. An operator T ∈ L(X) is said to have the single valued extension
property at λ0 ∈ C (abbreviated SVEP at λ0), if for every open disc D centered at λ0,
the only analytic function f : D → X which satisfies the equation (T −λI)f(λ) = 0
for all λ ∈ D is the function f ≡ 0. An operator T ∈ L(X) is said to have SVEP
if T has SVEP at every λ ∈ C.

Evidently, every operator T , as well as its dual T ∗, has SVEP at every point in
∂σ(T ), where ∂σ(T ) is the boundary of the spectrum σ(T ), in particular at every
isolated point of σ(T ).

Lemma 3.4. Suppose that A,B∗ ∈ L(H) are paranormal operators, then dA,B has
SVEP.

Proof. From [20] we have A satisfies property (β) and B satisfies property (δ).
Hence both LA and RB satisfy condition (C) by [18, Corollary 3.6.11]. Since LA

and RB commute, it follows by [18, Theorem 3.6.3] and [18, Note 3.6.19] that
LA −RB and LARB have SVEP, then SVEP holds for dA,B . �

Theorem 3.5. Suppose that A,B∗ ∈ L(H) are paranormal operators, then

σBW (δA,B) = (σBW (A)− σ(B)) ∪ (σ(A)− σBW (B)),

and
σBW (∆A,B) = σ(A)σBW (B) ∪ σBW (A)σ(B)− {1}.

Proof. We know from [13, Proposition 2.1] and [17, P. 229] that paranormal op-
erators are polaroid. Since a Hilbert space operator is polaroid if and only if its
adjoint is polaroid, it follows that B is polaroid and from [14, Theorem 4.2] that
generalized Weyl’s theorem holds for A, A∗, B∗ and B.
Let λ ̸∈ (σBW (A)− σ(B)) ∪ (σ(A)− σBW (B)), then for every λ = µ− ν such that
µ ∈ σ(A) and ν ∈ σ(B), we have µ ̸∈ σBW (A) and ν ̸∈ σBW (B) which implies that
µ ∈ E(A) = Π(A) and ν ∈ E(B) = Π(B). We argue as in the proof of Theorem 2.5,
we get λ ∈ Π(δA,B), it follows from [6, Theorem 2.3] that δA,B − λI is B-Fredholm
of index zero. Hence

σBW (δA,B) ⊂ (σBW (A)− σ(B)) ∪ (σ(A)− σBW (B)).

For the reverse inclusion, let λ ∈ σ(δA,B) and λ ̸∈ σBW (δA,B). Since dA,B has
SVEP from Lemma 3.4, then from [8, Theorem 3.3] σBW (δA,B) = σD(δA,B) and
δA,B is polaroid from Lemma 2.2, therefore σD(δA,B) = accσ(δA,B), it follows that
λ ∈ isoσ(δA,B), then there exist finite sequences {µi}ni=1 and {νi}ni=1 of values
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µi ∈ isoσ(A) and νi ∈ isoσ(B) such that λ = µi − νi for all 1 ≤ i ≤ n, so
µi ∈ Π(A) = E(A) and νi ∈ Π(A) = E(B), for all 1 ≤ i ≤ n, which implies that
µi ̸∈ σBW (A) and νi ̸∈ σBW (B), for all 1 ≤ i ≤ n, consequently λ ̸∈ (σBW (A) −
σ(B)) ∪ (σ(A)− σBW (B)). Hence

σBW (δA,B) = (σBW (A)− σ(B)) ∪ (σ(A)− σBW (B)).

The equality σBW (∆A,B) = σ(A)σBW (B) ∪ σBW (A)σ(B) − {1}, will be proved
similarly �

Corollary 3.6. Suppose that A,B∗ ∈ L(H) are paranormal operators, then gen-
eralized Weyl’s theorem holds for f(dA,B) and f(d∗A,B) for every f ∈ H(σ(dA,B)),
where d∗A,B is the dual of dA,B.

Proof. By Theorem 3.5 we get generalized Weyl’s theorem holds for dA,B . To show
that generalized Weyl’s theorem holds for f(dA,B), observe first from Lemma 2.2
that dA,B is polaroid, then it is isoloid, i.e. every isolated point of the spectrum
is an eigenvalue of dA,B . From [22, Theorem 2.2] it follows that generalized Weyl’s
theorem holds for f(dA,B).
Since dA,B is polaroid and has SVEP, then from [4, Theorem 2.10] and [4, Theorem
2.4] d∗A,B (the dual of dA,B) satisfies generalized Weyl’s theorem. Since dA,B is

polaroid, then by [2, Lemma 2.3] d∗A,B is polaroid, hence d∗A,B is isoloid, From [7,

Lemma 2.9] it follows that f(d∗A,B) satisfies generalized Weyl’s theorem for every

f ∈ H(σ(dA,B)).
�
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