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INCLUSION PROPERTIES FOR CERTAIN K-UNIFORMLY
SUBCLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH
CERTAIN INTEGRAL OPERATOR

(COMMUNICATED BY JOSZEF SANDOR)

M. K. AOUF AND T. M. SEOUDY

ABSTRACT. In this paper, we introduce several new k-uniformly classes of an-
alytic functions defined by using the integral operator and investigate various
inclusion relationships for these classes. Some interesting applications involv-
ing certain classes of integral operators are also considered.

1. INTRODUCTION

Let A denote the class of functions of the form
f(z) :z—i—Zanz" (1.1)
n=2

which are analytic in the open unit disk U = {z € C: |z| < 1}. If f and g are
analytic in U, we say that f is subordinate to g, written f < g or f(z) < g(z),
if there exists a Schwarz function w, analytic in U with w (0) = 0 and |w (2)] < 1
(z € U), such that f(z) = g(w(z)) (z € U). In particular, if the function ¢ is
univalent in U, the above subordination is equivalent to f(0) = ¢(0) and f(U) C
g(U) (see [9] and [10]). For 0 < ~v,3 < 1, we denote by S*(v), C(v), K (v,0)
and K* (v,p) the subclasses of A consisting of all analytic functions which are,
respectively, starlike of order 7, convex of order +, close-to-convex of order v, and
type [ and quasi-convex of order «, and type 8 in U.
Now, we introduce the subclasses US* (k;v), UC (k;v), UK (k;~, 8) and UK* (k; 7, B)
of the class A for 0 <~,8 < 1, and k > 0, which are defined by
e — (22 ' (2)
US™ (k;7) {fEA%<f(Z) 'y>>k‘ 15 }, (1.2)
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o | JHON 2 ()
UC’(/f,*y)-{fEA.?R(l-i- ) 7>>k 70 +’y}, (1.3)
B = . - 2f'(2) 2 (2)
UK(k,y,ﬂ){feA.ngUS (k; B) s.t.%( 7 'y) >k 7 — },
(1.4)
UK* (k;v,8) = A3 UC (k;v) st.R M k <Zf/(2))
v, 8) =4 feA:Jge :Y) S.t. P -7 > 7
(1.5)
We note that
US*(0;7) = 5" (k;7), UC(059) =C (v),
UK (0;7,8) = K (7,8), UK*(0;7,8) = K* (v, ) (0<7,8<1).
Corresponding to a conic domain €, , defined by
Qkﬁz{u—i—iv:u>k (u—1)2—i-112—i—'y}7 (1.6)

we define the function gy ~ () which maps U onto the conic domain €2, , such that
1 € Q4 4 as the following:

L+(1-2y)z (k=0),
2
11:]:2 cos {% (cos’1 k) ilog }fé} — ]LZZ 0<k<1),
= _ 2\ 2 1.7
Ak, (2) 1+ 2(;27) (log ig (k=1), (1.7)
u(z)
1-— : s d k*—
L sin ) foﬁ \/1152\;W} + == (k>1)

vk ¢ (2)

”—
where u (2) = and ( (k) is such that k = cosh . By virture of the
(=) 1—Vkz ¢ (k) i)
properties of the conic domain €y, ,, we have
k+~
—_— 1.
R {4 ()} > 1 (1)

Making use of the principal of subordination and the definition of g~ (2), we
may rewrite the subclasses US™* (k;v), UC (k;v), UK (k;~, 5) and UK* (k;~, 8) as
the following:

US* (ki) = {f cas 8 <a, <z>}, (1.9
UC (k) = {f casir - 1q, <z>}, (1.10)
UK (k;v, B) = {f cA:3geUS (k;p) st ng(g) < Qhry (z)}, (1.11)

UK* (k;v,B) = fe€A:3geUC (k;v) s.t.(g)-<qkﬂ(z) . (1.12)
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Recently, Komatu [5] introduced a certain integral operator £ : A — A (a > 0; A > 0)
as follows:

LOf(2)=f(2) (a>0;A=0) (1.13)
and
1 Al 1\ M1
LN (2) = ﬂ/ t*=1 (log = f(tz) dt (a>0;A>0). (1.14)
L) Jo t
Thus, if f € A is of the form (1.1), it is easily seen from (1.13) and (1.14) that
oo A
A — a + 1 n . >
,caf(z)z+;2<a+n> anz" (a>0;)A>0). (1.15)

It is easily to deduce from (1.15) that

(Lo f(2) =(a+1)Lof(z) —alytlf(2). (1.16)
The special case a = 1 of the inegral operator £, is essentially the operator which
considered by Jung et al. [4].
Next, by using the operator £, we introduce the following classes of analytic
functions for a > 0,A >0,k >0and 0 <~,8 < 1:

US*()\;k;;v)z{fEA:L’Z‘f(Z)EUS*(k;'y)}, (1.17)
UC (Nk;y)={feA:Lyf(2) eUC (k;v)}, (1.18)
UK (\ki7,B) = {f € A: L2 (2) € UK (k. 8)} (1.19)
UK* (\ ki, B) = {f € A: L2 (2) € UK* (ks7,8)} (1.20)
We also note that
f(z)eUS* (/\;k;'y)@zf, () eUC (N k;7), (1.21)
and )
f(z) eUK Nk, 8) < z2f (2) e UK™ (N k57, 8) . (1.22)

In this paper, we investgate several inclusion properties of the classes US™* (X; k; ),
UC (X k%), UK (s k; 7y, 8) and UK™ (X\; k;y, B) associated with the operator L.
Some applications involving integral operators are also considered.

2. INCLUSION PROPERTIES INVOLVING THE OPERATOR L)

In order to prove the main results, we shall need The following lemmas.
Lemma 1[3]. Let h(2) be convex univalent in U with h (0) = 1 and R{nh (z) + v} >
0 (n,v€C). If p(z) is analytic in U with p(0) =1, then

2p (2) ;
p(z)+77p(z)—|—’y<h( ) (2.1)
implies
p(z) <h(z) . (2.2)

Lemma 2[8]. Let h(z) be convex univalent in U and let w be analytic in U
with R{w (2)} > 0. If p(z) is analytic in U and p(0) = h(0), then

p(z)+w(z)zp (2) < h(z) (2.3)

implies
p(z) < h(z). (2.4)
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Theorem 1. US* (\;k;y) CUS* (A + 1;k;7).
Proof. Let f € US* (\;k;7) and set

/

2 (LXTf (2
p(z) = (,CéH]{((Z))) (e U), (2.5)
where p (z) is analytic in U with p (0) = 1. From (1.16) and (2.5), we have
Moz
Laf(z) _ 1 {p(2) +a}. (2.6)

L (z) a+1
Differentiating (2.6) with respect to z and multiplying the result equation by z, we

obtain

2 (L) f (2 / zp (2
e (CRe 27

From this and the argument given in Section 1, we may write

p(z) + m < qr~(2) (2€U). (2.8)

k
Since a > 0 and R {qx ~ (2)} > ki—l—,ly’ we see that

R{qr(2)+a} >0 (z€U). (2.9)
Applying Lemma 1 to (2.8), it follows that p (2) < qi,, (2), thatis, f € US* (A +1;k;7). 1
Theorem 2. UC (\;k;v) CUC (A + 1;k;7).
Proof. Applying (1.21) and Theorem 1, we observe that
f(z) € UCMKkiv) <= zf (2) €US™ (Aik;7)

—  z2f (2) €US* (A +1;k;7)

= [f(2) eUC(A+Lk;m),
which evidently proves Theorem 2. i
Theorem 3. UK (\;k;7v,8) CUK (A + 1;k;v,06) .

Proof. Let f € UK (\;k;, (). Then, from the definition of UK ()\; k;~, 8), there
exists a function r (z) € US™ (k;~) such that

’

LA
((fg)) < (2). (2.10)
Choose the function g (z) such that £)g (z) = r (z). Then, g € US* (\; k;) and
2 (£ ()
W =< Ak~ (Z) . (211)
Now let ,
p(z)= e L2 (L1 () : (2.12)

Latg(z)
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where p (z) is analytic in U with p (0) = 1. Since g € US* (A\; k;7), by Theorem 1,
we know that g € US* (A + 1;k;). Let

2 (L2g (2))

t(z) = cU), 2.13

0 ="Tt Sk Gev 213

where ¢ (z) is analytic in U with R {t(z)} > ?TY Also, from (2.13), we note that
(L) = LT (2) = (£ (2) p(2). (2.14)

Differentiating both sides of (2.14) with respect to z and multiplying the result
equation by z, we obtain

’

(@) ey )

Latg(2) Lag (=)
Now using the identity (1.16) and (2.15), we obtain

p(2)+2p (2) =t(2)p(2)+2p (2). (2.15)

(L) Laf (2) 2 (L2128 () +aldtizf (2)

L2g(z) L39(z) 2 (Latlg (z))/ +alatg(2)

z(ﬁi*lzf’(z)) A(£2711(2)
Lag(2) LaTlg(z)
2(Lat9(=)
LaTlg(z)
t(z)p(z)+2p (2) +ap(2)
t(z)+a

+a

- pE+ o0 (2.16)

k
Since a > 0 and R{t(2)} > ki—f—,ly’ we see that
R{t(z)+a} >0 (2€U). (2.17)
Hence, applying Lemma 2, we can show that p (2) < qi, (2) sothat f € UK (A + 1; k; v, 5).
This completes the proof of Theorem 3. 1
Theorem 4. UK* (\;k;7,8) CUK* (A4 1;k;7,5) .

Proof. Just as we derived Theorem 2 as consequence of Theorem 1 by using the
equivalence (1.21), we can also prove Theorem 4 by using Theorem 3 and the
equivalence (1.22). 1

3. INCLUSION PROPERTIES INVOLVING THE INTEGRAL OPERATOR F

In this section, we consider the generalized Libera integral operator F ( see [2], [6] and [7])
defined by
¢+ ]' ? c—1
F.(f)(z) = () dt (feAe>-1). (3.1)
0

ZC

Theorem 5. Let ¢ > —%. If f e US* (\;k;y), then F. (f) €e US* (\; k7).
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Proof. Let f € US* (A;k;) and set

z (L)F. )
po= LRI ey, 32)
where p (z) is analytic in U with p (0) = 1. From (3.1), we have
2(LF () = e+ DL ()= L () (2). (33)
Then, by using (3.2) and (3.3), we obtain
(2
(c+1) £)‘£sz(](”))(,2) =p(2)+ec. (3.4)

Taking the logarithmic differentiation on both sides of (3.4) and multiplying by z,
we have

’

z ' z z A z
P+ (i )(+)c = (f;}f ((Z))) < i (2). (3.5)

Hence, by virtue of Lemma 1, we conclude that p (2) < gk, (2) in U, which implies
that F. (f) € US* (A k;v). 1

Theorem 6. Let ¢ > —%. If f eUC (\k;), then F. (f) e UC (A\; k; 7).

Proof. By applying Theorem 5, it follows that
f(z) € UCkv) = zf (2) €US™ (\ik;7)
= F, (zf,) (2) e US* (A\;k;y)  (by Theorem 5)

= 2(F.(f)(2)) €US* (Aik;) (3.6)
= F.(f)(2) eUC(Nks;n),

which proves Theorem 6. i

Theorem 7. Let ¢ > —%r'ly. If f e UK (A k37, 8), then F.(f) e UK (A k3, B).

Proof. Let f € UK (\;k;, ). Then, in view of the definition of the class UK (X; k; 7, ),
there exists a function g € US™ (\; k;v) such that

’

2 (LM f (2
(EE’(\lgf((z))) = gk~ (2). (3.7)
Thus, we set
2 (LAF. z /
p= 2B (), (35)

where p (2) is analytic in U with p(0) = 1. Since g € US* (\;k;7), we see from
Theorem 5 that F, (g) € US* (\; k;). Using (3.3) and let

2 (LXF.(9) ()

A oY AP IC N (3.9)

k
where t (2) is analytic in U with ®{¢(2)} > ki_‘_;y Using (3.8), we have

LY2F.(f)(2) = (£3F.(9) (2)) p(2). (3.10)
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Differentiating both sides of (3.10) with respect to z and multiplying by z, we obtain

’

(L NG) (e RG)E)
L3Fe(9) (2) - LF(9)(2)
= t(=)p)+2p (2). (3.11)
Now using the identity (3.3) and (3.11

p(2)+2p (2)

we obtain

)
2 @) _ o) AR O) LR ()6
Lag(z)  Lagle > 2 (LYF. (9) () + cLAF. (9) (2)

’

A 00) | (@R e)
0F.(9)(z)  ~ LF.(9) ()

2 (LAF, () ()

LOF@@E
_ t@pE) +p () +ep(2)
t(z)+c
_ 2p (2)
= pa)+ )+ (3.12)
) k+~ k+7y ]
Since ¢ > — F 1 and R{t(2)} > T Wesee that
R{t(z)+c} >0 (z€U). (3.13)

Applying Lemma 2 to (3.12), it follows that p(z) < qr~ (%), that is F.(f) €
UK (A ks, 8)- B

Theorem 8. Let ¢ > —2’%. If f e UK* (A k; v, B), then E. (f) €e UK™ (A k7, 5).

Proof. Just as we derived Theorem 6 as consequence of Theorem 5 and (1.21),
we easily deduce the integral-preserving property asserted by Theorem 8 by using
Theorem 7 and (1.22). I

Remark. Putting ¢ = 1 in the above results,we obtain the results of Aghalary
and Jahangiri [1].
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