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q-ANALOGUES OF SAIGO’S FRACTIONAL CALCULUS

OPERATORS

(COMMUNICATED BY R.K. RAINA)

MRIDULA GARG, LATA CHANCHLANI

Abstract. M. Saigo [Math. Rep. Coll. Gen. Educ., Kyushu Univ., 11
(1978) 135-143] has defined a pair of fractional integral operators and fractional
derivatives involving generalizd hypergeometric function. The aim of present

paper is to define their q-analogues. First, we define a pair of q-analogues of
Saigo’s fractional integral operators and establish some results for it. Next,
we define a pair of q-analogues of Saigo’s fractional derivatives and prove that
these are left inverses of the corresponding fractional integral operators. We

also obtain q-Mellin transforms of all these operators.

1. Introduction

The concept of fractional calculus is believed to have stemmed from a question
raised by L’Hospital to Leibniz in 1695 [12]. It has gained considerable popularity
and importance during last three decades due to its distinguished applications in
numerous diverse fields of science and engineering ([17], [13], [11]). The q-calculus
was also initiated in twenties of the last century. A detail account of which can be
seen in the books by Slater [20], Exton [6], Gasper [9] and a thesis [5].

The fractional q-calculus is the q-extension of the ordinary fractional calculus.
The theory of q-calculus operators in recent past have been applied in the areas like
ordinary fractional calculus, optimal control problems, solutions of the q-difference
(differential) and q-integral equations, q-transform analysis and many more.

Al-Salam introduced the concept of fractional q-calculus, starting from the q-
analogue of Cauchy’s formula ([3],[4],[2]). Agarwal [1] studied certain fractional
q-integral operators and q-derivatives, where he proved the semigroup properties
for left and right Riemann-Liouville type fractional integral operators. Further, Iso-
gawa et al. [10] studied some basic properties of fractional q-derivatives. Rajkovic
et al. [15] generalized the notion of the left fractional q-integral operators and frac-
tional q-derivatives by introducing variable lower limit and proved the semigroup
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properties. Garg et al. [8] introduced q-analogues of hyper-Bessel type Kober frac-
tional derivatives. Further, Saxena et al. [19] and Yadav et al. ([22],[21]) have
obtained images of various q-special functions under fractional q-calculus opera-
tors. Recently, Purohit and Yadav [14] have defined q-extensions of the Saigo’s
fractional integral operators [16].

In the theory of q-calculus [9] , 0 < |q| < 1 the q-shifted factorial (q-analogue
of the Pochhammer Symbol) is defined by

(a; q)k =


∏k−1

j=0

(
1− aqj

)
if k > 0

1 if k = 0∏∞
j=0

(
1− aqj

)
if k → ∞

(1.1)

or equivalently

(a; q)k =
(a; q)∞
(aqk; q)∞

, k ∈ N

and for any complex number α,

(a; q)α =
(a; q)∞

(aqα; q)∞
, (1.2)

where the principal value of qα is taken.
The q-analogue of the power function is defined and denoted as

(a− b)α = aα
(
b/a; q

)
α

= aα
∏∞

j=0

 1−
(
b/a

)
qj

1−
(
b/a

)
qj+α

 = aα

(
b/a;q

)
∞(

qαb/a;q
)

∞

, (a ̸= 0) .
(1.3)

The q-gamma function is defined by

Γq (α) =
G (qα)

G (q)
(1− q)

1−α
= (1− q)α−1 (1− q)

1−α
, α ∈ R/ {0,−1,−2, ...} ,

(1.4)
where

G (qα) =
1

(qα; q)∞
.

The q-derivative of a function f (x) is given by [9]:

Dqf (x) =
f (x)− f (qx)

(1− q)x
, (x ̸= 0) and (Dqf) (0) = lim

x→0
(Dqf) (x) , (1.5)

where Dq → d/dx, as q → 1.
We have

Dn
q x

µ =
Γq (µ+ 1)

Γq (µ− n+ 1)
xµ−n,ℜ (µ) + 1 > 0. (1.6)

The q-integral of a function is defined as [9]:∫ x

0

f (t) dqt = x (1− q)

∞∑
k=0

qkf
(
xqk

)
, (1.7)

∫ ∞

x

f (t) dqt = x (1− q)
∞∑
k=1

q−kf
(
xq−k

)
, (1.8)
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∞∫
0

f (t) dqt = (1− q)
∞∑

k=−∞

qkf
(
qk
)
, (1.9)

The q-binomial series [9] is given by

1Φ0

[
α
− ; q, x

]
=

∞∑
n=0

(α; q)n
(q; q)n

xn =
(αx; q)∞
(x; q)∞

. (1.10)

Heine’s q-analogue of Gauss summation theorem [9] is given by

2Φ1

[
qa, qb

qc
; q, qc−a−b

]
=

∞∑
n=0

(qa; q)n
(
qb; q

)
n

(qc; q)n(q; q)n

(
qc−a−b

)n
=

Γq (c) Γq (c− a− b)

Γq (c− a) Γq (c− b)
.

(1.11)

The q-Mellin transform of a suitable function f(x) on R+
q = {qn;n ∈ Z} is given

by [7] :

Mq (f) (s) =

∫ ∞

0

xs−1f (x) dqx. (1.12)

Also

Mq[D
n
q f (x)](s) = [1− s]q[2− s]q...[n− s]qMq[f (x)](s− n)

= qn(n+1)/2−ns(−1)n
Γq(s)

Γq(s− n)
Mq[f (x)](s− n). (1.13)

where Dq is the q-derivative defined by (1.5).
A q-analogue of Riemann-Liouville fractional integral operator [1] is de-
fined as:

Iαq (x) =
xα−1

Γq (α)

∫ x

0

(tq/x; q)α−1 f (t) dqt;ℜ (α) > 0, (1.14)

and q-analogue of Riemann-Liouville fractional derivative [1] is defined as

Dα
x,qf(x) = Dn

q

(
In−α
q f

)
(x) , n− 1<ℜ(α) ≤ n, n ∈ N. (1.15)

A q-analogue of the Weyl fractional integral operator [4], is defined as:

Kα
q f (x) =

q−α(α−1)/2

Γq (α)

∫ ∞

x

(x/t; q)α−1 t
α−1f

(
tq1−α

)
dqt;ℜ (α) > 0, (1.16)

and q-analogue of Weyl fractional derivative [4] is defined as

−∞Dα
x,qf(x) = (−1)nDn

qK
n−α
q f (x) , n− 1<ℜ(α) ≤ n, n ∈ N. (1.17)

Also, the q-analogues of the Kober fractional integral operators [4] are
defined as

Iη,αq f (x) =
x−η−1

Γq (α)

∫ x

0

(qt/x; q)α−1 t
ηf (t) dqt;ℜ (α) > 0, (1.18)

Kη,α
q f (x) =

xηq−η

Γq (α)

∫ ∞

x

(x/t; q)α−1 t
−η−1f

(
tq1−α

)
dqt;ℜ (α) > 0. (1.19)

The remaining paper is organized as follows. In Section 2, we define a pair of
q-analogues of Saigo’s fractional integral operators and establish some results for
it. These involve the image of power function under these operators, composition
formulas and fractional q-integration by parts. In Section 3, we first establish
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results which give extensions of q-analogues of Saigo’s fractional integral operators
for ℜ (α) < 0 and define a pair of q-analogues of Saigo’s fractional derivatives. Next,
we show that these operators are left inverse operators to the q-analogues of Saigo’s
fractional integral operators. We also obtain images of the power function under
these operators. In Section 4, we obtain q-Mellin transforms of all these operators.

2. q-analogues of Saigo’s fractional integral operators

Recently, Purohit and Yadav [14] have given definition of q-analogues of Saigo’s
fractional integral operators under the restriction that one of the parameters η is a
non negative integer. It was not possible to give the definition of fractional deriva-
tives under that restriction. To overcome these difficulties, we give the following
definitions of q-analogues of the Saigo’s fractional integral operators. For ℜ (α) > 0,
β and η being real or complex.

Iα,β,ηq f (x) =
x−β−1

Γq (α)

x∫
0

(tq/x; q)α−1

×
∞∑

m=0

(
qα+β ; q

)
m
(q−η; q)m

(qα; q)m(q; q)m
q(η−β)m(−1)

m
q
−

 m
2

(
t

x
− 1

)
m

f (t) dqt,

(2.1)

and

Kα,β,η
q f (x) =

q−α(α+1)/2−β

Γq (α)

∞∫
x

(x/t; q)α−1t
−β−1

×
∞∑

m=0

(
qα+β ; q

)
m
(q−η; q)m

(qα; q)m(q; q)m
q(η−β)m(−1)

m
q
−

 m
2

(
x

qt
− 1

)
m

f
(
tq1−α

)
dqt.

(2.2)

For q → 1 the operators (2.1) and (2.2) reduce to Saigo’s fractional integral opera-
tors Iα,β,η and Kα,β,η respectively which are defined as follows . For ℜ (α) > 0, β
and η being real or complex [16].

Iα,β,ηf (x) =
x−α−β

Γ (α)

x∫
0

(x− t)
α−1

× 2F1

(
α+ β,−η;α; 1− t

x

)
f (t) dt

(2.3)

and

Kα,β,ηf (x) =
1

Γ (α)

∞∫
x

(t− x)
α−1

t−α−β

×2F1

(
α+ β,−η;α; 1− x

t

)
f (t) dt

(2.4)
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Definitions given by (2.1) and (2.2), in view of (1.7) and (1.8) can be written as

Iα,β,ηq f (x) = x−β(1− q)
α

×
∞∑

m=0

(
qα+β ; q

)
m
(q−η; q)m

(q; q)m
q(η−β+1)m

∞∑
k=0

qk
(qα+m; q)k
(q; q)k

f
(
xqk+m

)
,

(2.5)

and

Kα,β,η
q f (x) = x−βq−α(α+1)/2(1− q)

α

×
∞∑

m=0

(
qα+β ; q

)
m
(q−η; q)m

(q; q)m
qηm

∞∑
k=0

qβk
(qα+m; q)k
(q; q)k

f
(
xq−α−k−m

)
.

(2.6)

It is easy to observe that I0,0,ηq and K0,0,η
q are identity operators.

Further, q-analogues of Riemann-Liouville, Weyl and Kober fractional integral op-
erators are recovered as special cases of our operators Iα,β,ηq and Kα,β,η

q as follows

Iα,−α,η
q f(x) = Iαq f(x), (2.7)

Kα,−α,η
q f(x) = Kα

q f(x), (2.8)

Iα,0,ηq f(x) = Iη,αq f(x), (2.9)

Kα,0,η
q f(x) = q−α(α+1)/2Kη,α

q f(x). (2.10)

Now, we obtain image of the power function under fractional q-integral operators
Iα,β,ηq and Kα,β,η

q .

Theorem 2.1. For 0 < |q| < 1, ℜ(α) > 0, β and η being real or complex

(a). If ℜ(µ+ 1) > 0 and ℜ(µ− β + η + 1) > 0, then

Iα,β,ηq (xµ) =
Γq (µ+ 1)Γq (µ− β + η + 1)

Γq (µ− β + 1)Γq (µ+ α+ η + 1)
xµ−β . (2.11)

(b). If ℜ(β − µ) > 0 and ℜ(η − µ) > 0, then

Kα,β,η
q (xµ) =

Γq (β − µ) Γq (η − µ)

Γq (−µ) Γq (β + α+ η − µ)
xµ−βq−αµ−α(α+1)/2. (2.12)

Proof. (a). Taking f (x) = xµ in (2.5), we get

Iα,β,ηq (xµ) = xµ−β(1− q)
α

×
∞∑

m=0

(
qα+β ; q

)
m
(q−η; q)m

(q; q)m
q(η+µ−β+1)m

∞∑
k=0

qk(1+µ) (q
α+m; q)k
(q; q)k

,
(2.13)

Using (1.10) and (1.2) it is further simplified as

Iα,β,ηq (xµ) = xµ−β(1− q)
α

∞∑
m=0

(
qα+β ; q

)
m
(q−η; q)m

(q; q)m(q1+µ; q)α+m

q(η+µ−β+1)m, (2.14)

On doing some simplifications and using q-analogue of Gauss summation theorem
(1.11), we get the desired result (2.11) .
The part (b) can be established on similar lines, by using (2.6) and known theorems
given by (1.10) and (1.11). �
Theorem 2.2. For the function f (x) represented by a power series

∑∞
n=0 anx

n,
with radius of convergence R, the following three composition formulas hold. For
0 < |q| < 1, ℜ(α) > 0, β and η being real or complex
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(a). If ℜ(α+ η − δ + 1) > 0 and ℜ(η − δ − β + 1) > 0, then

Iα,β,ηq Iγ,δ,α+η
q f (x) = Iα+γ,β+δ,η

q f (x) . (2.15)

(b). If ℜ(η − β − γ − 2δ + 1) > 0 and ℜ(η − β − δ + 1) > 0, then

Iα,β,ηq Iγ,δ,η−β−γ−δ
q f (x) = Iα+γ,β+δ,η−γ−δ

q f (x) . (2.16)

(c). If ℜ(α+ β + η + 1) > 0, ℜ(β + 1) > 0 and ℜ(η + 1) > 0, then

Iα,β,ηq xβ+δIγ,δ,α+β+η+δ
q f (x) = xδIα+γ,β+δ,η+δ

q xβf (x) . (2.17)

Proof. (a). We have

f (x) =
∞∑

n=0

anx
n, |x| < R, (2.18)

The left hand side of (2.15) on using (2.18), changing the orders of summations
and applying Thorem 2.1(a), can be written as

Iα,β,ηq

∞∑
n=0

an
Γq (n+ 1)Γq (n− δ + α+ η + 1)

Γq (n− δ + 1)Γq (n+ γ + α+ η + 1)
xn−δ. (2.19)

Again on using the result (2.11) and doing some simplifications, we get
∞∑

n=0

an
Γq (n+ 1)Γq (n− δ − β + η + 1)

Γq (n− δ − β + 1)Γq (n+ γ + α+ η + 1)
xn−δ−β , (2.20)

which in view of Theorem2.1(a) is equivalent to the right side of (2.15).
Parts (b) and (c) can be established on similar lines, by using the result (2.11) . �
Theorem 2.3. For the function f (x) represented by a power series

∑∞
n=0 anx

n,
with radius of convergence R, the following three composition formulas hold. For
0 < |q| < 1, ℜ(α) > 0, β and η being real or complex

(a). If β, δ /∈ Z0 = Z − {0} and η /∈ Z, then

Kγ,δ,α+η
q Kα,β,η

q f (x) = qγ(α+β)Kα+γ,β+δ,η
q f (x) . (2.21)

(b). If β, δ /∈ Z0 = Z − {0} and η, γ /∈ Z, then

Kγ,δ,η−β−γ−δ
q Kα,β,η

q f (x) = qγ(α+β)Kα+γ,β+δ,η−γ−δ
q f (x) . (2.22)

(c). If β /∈ Z0 = Z − {0} and η /∈ Z, then

Kγ,δ,α+β+η+δ
q xβ+δKα,β,η

q f (x) = qα(γ+δ)xβKα+γ,β+δ,η+δ
q xδf (x) . (2.23)

Theorem2.3, can be proved on the lines of Theorem2.2 by using Theorem2.1(b).

Theorem 2.4. If f (x) and g (x) are functions expressible in power series with
radii of convergnce R and S respectively, then for 0 < |q| < 1,ℜ (α) > 0 , β and η
being real or complex, we have the following result for fractional q-integration
by parts

∞∫
0

f (x)Kα,β,η
q g (x) dqx = q−α(α+1)/2

∞∫
0

g
(
xq−α

)
Iα,β,ηq f (x) dqx, (2.24)

provided the q-integrals exist.



q-ANALOGUES OF SAIGO’S FRACTIONAL CALCULUS OPERATORS 175

Proof. The left hand side of (2.24) on using (2.6) , can be written as

q−α(α+1)/2(1− q)
α

∞∫
0

f (x)x−β

×
∞∑

m=0

(
qα+β ; q

)
m
(q−η; q)m

(q; q)m
qηm

∞∑
k=0

qβk
(qα+m; q)k
(q; q)k

g
(
xq−α−k−m

)
dqx

(2.25)

On interchanging the orders of integration and summations and using the definition
(1.9), we get

q−α(α+1)/2(1− q)
α+1

∞∑
m=0

(
qα+β ; q

)
m
(q−η; q)m

(q; q)m
qηm

×
∞∑
k=0

qβk
(qα+m; q)k
(q; q)k

∞∑
r=−∞

qr(1−β)g
(
qr−α−k−m

)
f (qr)

= q−α(α+1)/2(1− q)
α+1

×
∞∑

r=−∞

∞∑
k=0

∞∑
m=0

(
qα+β ; q

)
m
(q−η; q)m

(q; q)m
q(η+1)mqk

(qα+m; q)k
(q; q)k

g
(
qr−α

)
qr(1−β)f

(
qk+m+r

)
(2.26)

Using (1.9) to replace the basic bilateral series by the integral, we get

q−α(α+1)/2(1− q)
α

∞∫
0

g
(
xq−α

)
x−β

×
∞∑

m=0

(
qα+β ; q

)
m
(q−η; q)m

(q; q)m
q(η−β+1)m

∞∑
k=0

qk
(qα+m; q)k
(q; q)k

f
(
xqk+m

)
dqx

(2.27)

Finally, on using (2.5) it gives the right hand side of (2.24). �

On reducing Iα,β,ηq and Kα,β,η
q to q-analogues of Riemann-Liouville, Weyl and

Kober operators, we shall get fractional q-integration by parts for these operators
as given by Agrawal [1].

3. q-analogues of Saigo’s fractional derivatives

First, we shall establish following result, which gives the extensions of operators
Iα,β,ηq and Kα,β,η

q for ℜ(α) < 0. This will be required to define the fractional
q-derivatives.

Theorem 3.1. For the function f (x) represented by a power series
∑∞

n=0 anx
n,

with radius of convergence R, the following relations hold. For 0 < |q| < 1, ℜ(α +
n) > 0,n ∈ N ,β and η being real or complex

(a). If ℜ(η − β + 1) > 0, then

Iα,β,ηq f (x) = Dn
q I

α+n,β−n,η−n
q f (x) . (3.1)

(b). If β /∈ Z0 = Z − {0} and η /∈ Z, then

Kα,β,η
q f (x) =

(
−q(α+β)Dq

)n

Kα+n,β−n,η
q f (x) . (3.2)
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Proof. (a). We first establish the following

Iα,β,ηq f (x) = DqI
α+1,β−1,η−1
q f (x) . (3.3)

We have

f (x) =
∞∑

n=0

anx
n, |x| < R, (3.4)

By using (3.4) in right side of (3.3), changing the orders of summations and using
Theorem2.1(a), it can be written as

Dq

∞∑
n=0

an
Γq (n+ 1)Γq (n− β + η + 1)

Γq (n− β + 2)Γq (n+ α+ η + 1)
xn−β+1. (3.5)

On using (1.6) and doing some simplifications, we get
∞∑

n=0

an
Γq (n+ 1)Γq (n− β + η + 1)

Γq (n− β + 1)Γq (n+ α+ η + 1)
xn−β , (3.6)

which in view of Theorem2.1(a) is equivalent to the left side of (3.3).
Repeated application of this result will give (3.2).
The part (b) can be established on similar lines, by using Theorem2.1(b) and (1.6).

�

Now, we define q-analogues of Saigo’s fractional derivatives for n − 1 <
ℜ(α) 6 n, n ∈ N ,β and η being real or complex as follows

Dα,β,η
q f (x) = Dn

q I
−α+n,−β−n,α+η−n
q f (x) (3.7)

and

Pα,β,η
q f (x) = qα(α+β)

(
−q−(α+β)Dq

)n

K−α+n,−β−n,α+η
q f (x) , (3.8)

where Iα,β,ηq and Kα,β,η
q are given by (2.1) and (2.2) respectively.

For q → 1, the operators (3.7) and (3.8) reduce to the Saigo’s fractional derivatives
as given in [16] .
Also, if we take β = −α in (3.7) and (3.8) they reduce to q-analogues of Riemann-
Liouville and Weyl fractional derivatives given by (1.15) and (1.17) respectively.
In the following theorem, we shall prove that, the q-analogues of Saigo’s fractional
derivatives (3.7) and (3.8) act as left inverse to the fractional integral operators
(2.1) and (2.2) respectively.

Theorem 3.2. For the function f (x) represented by a power series
∑∞

n=0 anx
n,

with radius of convergence R, the following results hold. For 0 < |q| < 1, ℜ(α) > 0,
β and η being real or complex

(a).

Dα,β,η
q Iα,β,ηq f (x) = f (x) . (3.9)

(b).

Pα,β,η
q Kα,β,η

q f (x) = f (x) . (3.10)

Proof. By using the definition (3.7) and Theorem2.2(a), we obtain

Dα,β,η
q Iα,β,ηq f (x) = Dn

q I
n,−n,α+η−n
q f (x) , (3.11)

on using Theorem3.1(a) in the right hand side of (3.11), we get

Dα,β,η
q Iα,β,ηq f (x) = I0,0,α+η

q f (x) . (3.12)
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Since I0,0,α+η
q is an identity operator for any η, we get the result (3.9).

The part (b) can be established on similar lines, on using definition (3.8), Theo-
rem2.3(a) and Theorem3.1(b). �

In the next theorem, we obtain images of the power function under fractional deriva-
tives (3.7) and (3.8).

Theorem 3.3. For 0 < |q| < 1, n − 1 < ℜ(α) 6 n, n ∈ N , β and η being real or
complex

(a). If ℜ(µ+ 1) > 0 and ℜ(µ+ α+ β1 + η + 1) > 0, then

Dα,β,η
q xµ =

Γq (µ+ 1)Γq (µ+ α+ β + η + 1)

Γq (µ+ β + 1)Γq (µ+ η + 1)
xµ+β . (3.13)

(b). If ℜ(−β − µ) > 0 and ℜ(α+ η − µ) > 0, then

Pα,β,η
q xµ =

Γq (−β − µ) Γq (α+ η − µ)

Γq (−µ) Γq (−β + η − µ)
qα(β+µ)+α(α−1)/2xµ+β . (3.14)

Proof. (a). To obtain Dα,β,η
q xµ, we use the definition (3.7) and the result (2.11),

to get

Dα,β,η
q xµ = Dn

q

Γq (µ+ 1)Γq (µ+ α+ β + η + 1)

Γq (µ+ β + n+ 1)Γq (µ+ η + 1)
xµ+β+n. (3.15)

On using (1.6), we get the result (3.13).
The part (b), can be established on similar lines, by using the definition (3.8) and
the results (2.12) and (1.6). �

4. q-Mellin transform of q-analogues of Saigo’s fractional integral
operators and derivatives

Theorem 4.1. For 0 < |q| < 1, ℜ(α) > 0, β and η being real or complex

(a). If ℜ(1 + β − s) > 0 and ℜ(1 + η − s) > 0, then

Mq

(
Iα,β,ηq f (x)

)
(s) =

Γq (1 + β − s) Γq (1 + η − s)

Γq (1− s) Γq (1 + β + α+ η − s)
Mq (f (x)) (s− β) . (4.1)

(b). If ℜ(s) > 0 and ℜ(s− β + η) > 0, then

Mq

(
Kα,β,η

q f (x)
)
(s) =

Γq (s) Γq (s− β + η)

Γq (s− β) Γq (s+ α+ η)
q−α(α+1)/2Mq

(
f
(
xq−α

))
(s− β) .

(4.2)
(c). If ℜ(1− β − s) > 0 and ℜ(1 + α+ η − s) > 0, then

Mq

(
Dα,β,η

q f (x)
)
(s) =

Γq (1− β − s) Γq (1 + α+ η − s)

Γq (1− s) Γq (1− β + η − s)
Mq (f (x)) (s+ β) . (4.3)

(d). If ℜ(s) > 0 and ℜ(s+ β + α+ η) > 0, then

Mq

(
Pα,β,η
q f (x)

)
(s)

= qαβ+α(α+1)/2−n(s+β) Γq(s)Γq(s+β+η+α)
Γq(s+β)Γq(s+η) Mq (f (xqα−n)) (s+ β) ,

(4.4)

where n = [R (α)] + 1, n ∈ N .
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Proof. (a). The left hand side of (4.1) on using definition (1.12) and (2.5), can
be written as

(1− q)
α

∞∫
0

xs−β−1
∞∑

m=0

(qα+β ;q)
m
(q−η;q)

m

(q;q)m
q(η−β+1)m

×
∞∑
k=0

qk
(qα+m;q)

k

(q;q)k
f
(
xqk+m

)
dqx

(4.5)

On interchanging the orders of integration and summations and using the definition
(1.9), we get

(1− q)
α+1

∞∑
m=0

(qα+β ;q)
m
(q−η;q)

m

(q;q)m
q(η−β+1)m

×
∞∑
k=0

qk
(qα+m;q)

k

(q;q)k

∞∑
r=−∞

qr(s−β)f
(
qk+m+r

) (4.6)

= (1− q)
α+1

∞∑
m=0

(qα+β ;q)
m
(q−η;q)

m

(q;q)m
q(η+s+1)m

×
∞∑
k=0

qk(1−s+β) (q
α+m;q)

k

(q;q)k

∞∑
r=−∞

qr(s−β)f (qr)
(4.7)

Using (1.10) and (1.2) it is further simplified as

(1− q)
α+1

∞∑
m=0

(
qα+β ; q

)
m
(q−η; q)m

(q; q)m(q1−s+β ; q)α+m

q(η+s+1)m
∞∑

r=−∞
qr(s−β)f (qr) (4.8)

On doing some simplifications, using q-analogue of Gauss summation theorem
(1.11) and the result (1.9), we get the desired result (4.1).
The part (b) can be established on similar lines, by using (2.6) and (1.9).

To establish the part (c), we use the definition (3.7) and the result (1.13) in left
side of (4.3) to get

qn(n+1)/2−ns(−1)n
Γq(s)

Γq(s− n)
Mq[I

−α+n,−β−n,α+η−n
q f(x)](s− n) (4.9)

On using part (a) and doing some simplifications, we arrive at right side of (4.3).
The part (d) can be established on similar lines, by using definition (3.8) with

the results (1.13) and (4.2). �
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