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FRACTIONAL CALCULUS ON UNIFIED CLASS OF

SPIRAL-LIKE FUNCTIONS INVOLVING SRIVASTAVA-ATTIYA

OPERATOR

(COMMUNICATED BY H.M.SRIVASTAVA)

M.K.AOUF, G.MURUGUSUNDARAMOORTHY AND K.THILAGAVATHI

Abstract. Making use of convolution product, we introduce a unified class of
spiral-like functions and obtain the coefficient bounds, extreme points and ra-
dius of starlikeness for functions belonging to the generalized class Pλ

µ (α, β, γ).

Furthermore, Distortion theorems for the fractional derivative and fractional
integration are obtained. Also we get result about coefficient inequality.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

which are analytic and univalent in the open disc U = {z : z ∈ C, |z| < 1}. For
functions f ∈ A given by (1.1) and g ∈ A given by g(z) = z +

∞∑
n=2

bnz
n, we define

the Hadamard product (or convolution ) of f and g by

(f ∗ g)(z) = z +
∞∑

n=2

anbnz
n, z ∈ U. (1.2)

We recall here a general Hurwitz-Lerch Zeta function Φ(z, s, a) defined by [18].

Φ(z, s, a) :=
∞∑

n=0

zn

(n+ a)s
(1.3)

(a ∈ C \ Z−
0 ; s ∈ C,when|z| < 1;R(s) > 1 when |z| = 1) where, as usual, Z−

0 :=
Z \ {N}, (Z := {0,±1,±2,±3, ...});N := {1, 2, 3, ...}. Several interesting properties
and characteristics of the Hurwitz-Lerch Zeta function Φ(z, s, a) can be found in
the recent investigations by Choi and Srivastava [3], Ferreira and Lopez [4], Garg et
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al. [6], Lin and Srivastava [8], Lin et al. [9], and others. Srivastava and Attiya [17]
(see also Raducanu and Srivastava [15], and Prajapat and Goyal [14]) introduced
and investigated the linear operator:

J µ
b : A → A

defined in terms of the Hadamard product by

J µ
b f(z) = Gµ

b ∗ f(z) (1.4)

(z ∈ U ; b ∈ C \ {Z−
0 };µ ∈ C; f ∈ A), where, for convenience,

Gµ
b := (1 + b)µ[Φ(z, µ, b)− b−µ] (z ∈ U). (1.5)

We recall here the following relationships (given earlier by [14], [15]) which follow
easily by using (1.1), (3.3) and (1.5)

J µ
b f(z) = z +

∞∑
n=2

Cn(b, µ)anz
n (1.6)

where

Cn(b, µ) = |
(
1 + b

n+ b

)µ

| (1.7)

and (throughout this paper unless otherwise mentioned) the parameters µ, b are
constrained as b ∈ C \ {Z−

0 };µ ∈ C.
(1) For µ = 0 and b = 0

J 0
0 f(z) := f(z). (1.8)

(2) For µ = 1and b = 0

J 1
0 f(z) :=

∫ z

0

f(t)

t
dt := Lf(z) := z +

∞∑
n=2

(
1

n

)
anz

n. (1.9)

(3) For µ = 1 and b = ν(ν > −1)

J 1
ν f(z) :=

1 + ν

zν

∫ z

0

t1−νf(t)dt := Bνf(z) := z +
∞∑

n=2

(
1 + ν

n+ ν

)
anz

n. (1.10)

(4) For µ = σ(σ > 0) and b = 1

J σ
1 f(z) := z +

∞∑
n=2

(
2

n+ 1

)σ

anz
n = Iσf(z), (1.11)

where L and Bν are the integral operators introduced by Alexandor [1] and Bernardi
[2], respectively, and Iσ(f) is the Jung-Kim-Srivastava integral operator [7] closely
related to some multiplier transformation studied by Fleet [5].

For β real, |β| < π
2 a function f in the form (1.1) is said in Sβ

p the class of
β-spiral-like functions satisfying the analytic criteria

Re

(
eiβ

zf ′(z)

f(z)

)
> 0, z ∈ U

was introduced and shown to be a subfamily ofA by Spacek [16]. Later, Zamorski[20]
obtained sharp coefficient bounds for the function class class.Motivated by the ear-
lier works on analytic functions involving Hurwitz-Lerch Zeta functions (see[10, 11,
12, 13, 14, 17] and making use of the operator J µ

b , we introduce a new subclass
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of spiral-like functions and discuss some some usual properties of the geometric
function theory of this generalized function class.

For 0 ≤ λ ≤ 1, 0 ≤ α < 1, 0 ≤ γ < 1, and |β| < π
2 , we let Pλ

µ (α, β, γ) be the
subclass of A consisting of functions of the form (1.1) and satisfying the inequality∣∣∣∣ F (z)− 1

(2α− 1)[F (z)− 1] + 2α(1− γ)e−iβcosβ

∣∣∣∣ < 1 (1.12)

where

F (z) =
z(J µ

b f)′(z) + λz2(J µ
b f)′′(z)

(1− λ)J µ
b f(z) + λz(J µ

b f)′(z)
(1.13)

where z ∈ U, J µ
b f(z) is given by (1.6) . In particular, for 0 ≤ λ ≤ 1, the class

Pλ
µ (α, β, γ) provides a transition from starlike functions to convex functions.By

suitably specializing the values of µ, α, β and λ the class Pλ
µ (α, β, γ) reduces to the

various new subclasses.
As illustrations, we present few following examples:

Example 1: If µ = 0 and b = 0, then

P(α, β, γ) :=

{
f ∈ A :

∣∣∣∣ F (z)− 1

(2α− 1)[F (z)− 1] + 2α(1− γ)e−iβcosβ

∣∣∣∣ < 1

}
, (1.14)

where F (z) = zf ′(z)+λz2f ′′(z)
(1−λ)f(z)+λzf ′(z) .

Example 2: If µ = 1 and f(z) is as defined in (1.9), then

P0
1 (α, β, γ) ≡ Lλ(α, β, γ) :=

{
f ∈ A :

∣∣∣∣ F (z)− 1

(2α− 1)[F (z)− 1] + 2α(1− γ)e−iβcosβ

∣∣∣∣ < 1

}
,

where F (z) = z(Lf)′(z)+λz2(Lf)′′(z)
(1−λ)Lf(z)+λz(Lf)′(z) .

Example 3: If µ = 1, b = ν(ν > −1) and f(z)is as defined in (1.10), then

P0
1 (α, β, γ) ≡ Fλ

ν (α, β, γ) :=

{
f ∈ A :

∣∣∣∣ F (z)− 1

(2α− 1)[F (z)− 1] + 2α(1− γ)e−iβcosβ

∣∣∣∣ < 1

}
,

where F (z) = z(Bf)′(z)+λz2(Bf)′′(z)
(1−λ)Bf(z)+λz(Bf)′(z) .

Example 4: If µ = σ(σ > 0), b = 1 and f(z) is defined in (1.11), then

P1
σ(α, β, γ) ≡ Iσ

λ (α, β, γ) :=

{
f ∈ A :

∣∣∣∣ F (z)− 1

(2α− 1)[F (z)− 1] + 2α(1− γ)e−iβcosβ

∣∣∣∣ < 1

}
.

where F (z) = z(Iσf)′(z)+λz2(Iσf)′′(z)
(1−λ)Iσf(z)+λz(Iσf)′(z) .

Similarly when λ = 0 and λ = 1 one can state various subclasses of starlike and
convex functions respectively.

The main object of this paper is to study the coefficient bounds,for functions
belong to the generalized class Pλ

µ (α, β, γ). Furthermore, Distortion theorems for
the fractional derivative and fractional integration are obtained. Also we get result
about coefficient inequality.

2. Coefficient Bounds

In this section we obtain a necessary and sufficient condition for functions f(z)
in the classes Pλ

µ (α, β, γ)
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Theorem 2.1. A function f(z) of the form (1.1) is in Pλ
µ (α, β, γ) if and only if

∞∑
n=2

[(n−1)(1−α)+α(1−γ)|e−iβcosβ|](1−λ+λn)|Cn(b, µ)||an| ≤ α(1− γ)|e−iβcosβ|,

(2.1)
0 ≤ λ ≤ 1, 0 ≤ α < 1, 0 ≤ γ < 1, and |β| < π

2 where Cn(b, µ) is given by (1.7).

Proof. For |z| = 1, we have

|F (z)− 1| − |(2α− 1)[F (z)− 1] + 2α(1− γ)e−iβcosβ| = |
∞∑

n=2

[1− λ+ nλ](n− 1)Cn(b, µ)anz
n|

−|2α(1− γ)e−iβcosβz −
∞∑

n=2

[1− λ+ nλ][(1− n)(1− 2α)− 2α(1− γ)e−iβcosβ]Cn(b, µ)anz
n|

≤
∞∑

n=2

[1− λ+ nλ](n− 1)Cn(b, µ)an − 2α(1− γ)e−iβcosβ

−
∞∑

n=2

[1− λ+ nλ][(n− 1)(1− 2α)− 2α(1− γ)e−iβcosβ]Cn(b, µ)an

=
∞∑

n=2

[(n− 1)(1− α) + α(1− γ)|e−iβcosβ|][1− λ+ nλ]Cn(b, µ)an − α(1− γ)|e−iβcosβ| ≤ 0,

by hypothesis.Thus by Maximum Modulus theoremf ∈ Pλ
µ (α, β, γ). Conversely,

assume ∣∣∣∣ F (z)− 1

(2α− 1)[F (z)− 1] + 2α(1− γ)e−iβcosβ

∣∣∣∣
=

∣∣∣∣∣∣
z(J µ

b f)′(z)+λz2(J µ
b f)′′(z)

(1−λ)(J µ
b f)(z)+λz(J µ

b f)′(z)
− 1

(2α− 1)[
z(J µ

b f)′(z)+λz2(J µ
b f)′′(z)

(1−λ)J µ
b f(z)+λz(J µ

b f)′(z)
− 1] + 2α(1− γ)e−iβcosβ

∣∣∣∣∣∣ < 1.

Substituting the values of J µ
b f(z), (J µ

b f(z))′ (J µ
b f(z))′′ and simple computation

yields,∣∣∣∣∣∣∣∣
∞∑

n=2
[1− λ+ nλ](n− 1)Cn(b, µ)anz

n

2α(1− γ)e−iβcosβz −
∞∑

n=2
[1− λ+ nλ][(n− 1)(1− 2α)− 2α(1− γ)e−iβcosβ]Cn(b, µ)anzn

∣∣∣∣∣∣∣∣ < 1.

Re


∞∑

n=2
[1− λ+ nλ](n− 1)Cn(b, µ)anz

n

2α(1− γ)e−iβcosβz −
∞∑

n=2
[1− λ+ nλ][(n− 1)(1− 2α)− 2α(1− γ)e−iβcosβ]Cn(b, µ)anzn

 < 1.

We can choose value of z on the real axis so that J µ
b f(z) is real and letting z → 1−

through real values, so we can write the above inequality as
∞∑

n=2

[(n−1)(1−α)+α(1−γ)|e−iβcosβ|](1−λ+λn)|Cn(b, µ)||an| ≤ α(1− γ)|e−iβcosβ|

and hence the proof is complete. �
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Corollary 2.2. Let f(z) to be in the class Pλ
µ (α, β, γ) then

an ≤ α(1− γ)|e−iβcosβ|
[(n− 1)(1− α) + α(1− γ)|e−iβcosβ|](1− λ+ nλ)Cn(b, µ)

, (2.2)

and it is sharp for the function

f(z) = z +
α(1− γ)|e−iβcosβ|

[(n− 1)(1− α) + α(1− γ)|e−iβcosβ|](1− λ+ nλ)Cn(b, µ)
z2, z ∈ U.

(2.3)
For 0 ≤ λ ≤ 1, 0 ≤ α < 1, 0 ≤ γ < 1, and |β| < π

2 , in view of the Examples
1 to 4 in Section 1 and Theorem 2.2, we have following corollaries for the classes
defined in these examples.

Corollary 2.3. A necessary and sufficient condition for f(z) of the form (1.1) to
be in the class P(α, β, γ), is that

∞∑
n=2

[(n− 1)(1− α) + α(1− γ)|e−iβcosβ|](1− λ+ λn)|an| ≤ α(1− γ)|e−iβcosβ|

Corollary 2.4. A necessary and sufficient condition for f(z) of the form (1.1) to
be in the class Pλ(α, β, γ), is that

∞∑
n=2

[(n− 1)(1− α) + α(1− γ)|e−iβcosβ|](1− λ+ λn)|an| ≤ α(1− γ)|e−iβcosβ|,

Corollary 2.5. A necessary and sufficient condition for f(z) of the form (1.1) to
be in the class Lλ(α, β, γ), is that

∞∑
n=2

[(n− 1)(1− α) + α(1− γ)|e−iβcosβ|](1− λ+ λn)
|an|
n

≤ α(1− γ)|e−iβcosβ|

Corollary 2.6. A necessary and sufficient condition for f(z) of the form (1.1) to
be in the class Fλ

ν (α, β, γ), is that
∞∑

n=2

[(n−1)(1−α)+α(1−γ)|e−iβcosβ|](1−λ+λn)

(
1 + ν

n+ ν

)
|an| ≤ α(1− γ)|e−iβcosβ|

Corollary 2.7. A necessary and sufficient condition for f(z) of the form (1.1) to
be in the class Iσ

λ (α, β, γ), is that
∞∑

n=2

[(n−1)(1−α)+α(1−γ)|e−iβcosβ|](1−λ+λn)

(
2

n+ 1

)σ

an ≤ α(1− γ)|e−iβcosβ|.

Similarly by taking λ = 0 and λ = 1 many known results can be obtained as
particular cases so we omit stating the particular cases for the above corollaries.

3. Fractional Calculus and Distortion Bounds

We recall the following definitions due to Srivastava and Owa [19] .

Definition 1. Let the function f(z) be analytic in a simply - connected region of
the z− plane containing the origin. The fractional integral of f of order δ is defined
by

D−δ
z f(z) =

1

Γ(δ)

z∫
0

f(ξ)

(z − ξ)1−δ
dξ, δ > 0, (3.1)
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where the multiplicity of (z − ξ)1−δ is removed by requiring log(z − ξ) to be real
when z − ξ > 0.

Definition 2. The fractional derivatives of order δ, is defined for a function f(z),
by

Dδ
zf(z) =

1

Γ(1− δ)

d

dz

z∫
0

f(ξ)

(z − ξ)δ
dξ, 0 ≤ δ < 1, (3.2)

where the function f(z) is constrained, and the multiplicity of the function (z−ξ)−δ

is removed as in Definition 3.10.

Definition 3. Under the hypothesis of Definition 3.11, the fractional derivative of
order n+ δ is defined by

Dn+δ
z f(z) =

dn

dzn
Dδ

zf(z), (0 ≤ δ < 1 ; n ∈ N0). (3.3)

Theorem 3.1. Let f(z) to be in the class Pλ
µ (α, β, γ) then

|D−δ
z f(z)| ≤ 1

Γ(2 + δ)
|z|1+δ

[
1 +

2α(1− γ)|e−iβcosβ||z|
(2 + δ)(1 + α((1− γ)|e−iβcosβ| − 1)(1 + λ)Cn(b, µ))

]
(3.4)

|D−δ
z f(z)| ≥ 1

Γ(2 + δ)
|z|1+δ

[
1− 2α(1− γ)|e−iβcosβ||z|

(2 + δ)(1 + α((1− γ)|e−iβcosβ| − 1)(1 + λ)Cn(b, µ))

]
(3.5)

Proof. By using Theorem 2.2,we have
∞∑

n=2

an ≤ α(1− γ)|e−iβcosβ|
[(n− 1)(1− α) + α(1− γ)|e−iβcosβ|](1− λ+ nλ)Cn(b, µ)

(3.6)

By Definition 1 we have

D−δ
z f(z) =

1

Γ(2 + δ)
z1+δ +

∞∑
n=2

Γ(n+ 1)

Γ(n+ 1 + δ)
anz

1+δ (3.7)

and

Γ(2 + δ)z−δD−δ
z f(z) = z +

∞∑
n=2

Γ(n+ 1)Γ(2 + δ)

Γ(n+ 1 + δ)
anz

n = z +
∞∑

n=2

θ(n)azz
n (3.8)

where

θ(n) =
Γ(n+ 1)Γ(2 + δ)

Γ(n+ 1 + δ)
. (3.9)

We know that θ(n) is a decreasing function of n and 0 < θ(n) ≤ θ(2) = 2
2+δ .

Using (3.6)and (3.8) we have

Γ(2+δ)z−δD−δ
z f(z)| ≤ |z|+θ(2)|z|2

∞∑
n=2

an ≤ |z|+ 2α(1− γ)|e−iβcosβ||z|2

(2 + δ)(1 + α((1− γ)|e−iβcosβ| − 1)(1 + λ)Cn(b, µ)

which gives(3.4);we also have

|Γ(2 + δ)z−δD−δ
z f(z)| ≥ |z|+ θ(2)|z|2

∞∑
n=2

an ≥ |z| − 2α(1− γ)|e−iβcosβ||z|2

(2 + δ)(1 + α((1− γ)|e−iβcosβ| − 1)(1 + λ)Cn(b, µ)

which gives(3.5). �



FRACTIONAL INTEGRAL INEQUALITIES 229

Theorem 3.2. Let f(z) to be in the class Pλ
µ (α, β, γ) then

|Dδ
zf(z)| ≤

1

Γ(2− δ)
|z|1−δ

[
1 +

2α(1− γ)|e−iβcosβ||z|
(2− δ)(1 + α((1− γ)|e−iβcosβ| − 1)(1 + λ)Cn(b, µ))

]
(3.10)

|Dδ
zf(z)| ≥

1

Γ(2− δ)
|z|1−δ

[
1− 2α(1− γ)|e−iβcosβ||z|

(2− δ)(1 + α((1− γ)|e−iβcosβ| − 1)(1 + λ)Cn(b, µ))

]
(3.11)

The inequalities in(3.10),(3.11) are attained for the function f(z) given by(2.3)

Proof. From Definition 2, we have

Dδ
zf(z) =

z1−δ

Γ(2− δ)
+

∞∑
n=2

Γ(n+ 1)

Γ(n+ 1− δ)
anz

n−δ

Γ(2− δ)zδDδ
z = z +

∞∑
n=2

Γ(n+ 1)(2− δ)

Γ(n+ 1− δ)
anz

z = z +

∞∑
n=2

ϕ(n)anz
n

where ϕ(n) = Γ(n+1)Γ(2−δ)
Γ(n+1−δ) for n ≥ 2, ϕ(n) is a decreasing function of n, then

ϕ(n) ≤ ϕ(2) =
Γ(3)Γ(2− δ)

Γ(3− δ)
=

2

2− δ
. (3.12)

By using Theorem 2.2 , we have

∞∑
n=2

an ≤ α(1− γ)|e−iβcosβ|
[(n− 1)(1− α) + α(1− γ)|e−iβcosβ|](1− λ+ nλ)Cn(b, µ)

(3.13)

Thus

|Γ(2−δ)zδDδ
zf(z)| ≤ |z|+ϕ(2)|z|2

∞∑
n=2

an ≤ |z|+ 2α(1− γ)|e−iβcosβ||z|2

(2− δ)(1 + α((1− γ)|e−iβcosβ| − 1)(1 + λ)C2(b, µ)

which yields (3.10) and by same way we obtain

|Γ(2− δ)zδD−δ
z f(z)| ≥ |z| − ϕ(2)|z|2

∞∑
n=2

an ≥ |z| − 2α(1− γ)|e−iβcosβ||z|2

(2− δ)(1 + α((1− γ)|e−iβcosβ| − 1)(1 + λ)C2(b, µ)

which gives(3.11). �

Corollary 3.3. For every f(z) to be in the class Pλ
µ (α, β, γ) we have

|z|2

2

[
1− 2α(1− γ)|e−iβcosβ||z|

3(1 + α((1− γ)|e−iβcosβ| − 1)(1 + λ)Cn(b, µ)

]
≤ |

∫ 2

0

f(t)dt| (3.14)

≤ |z|2

2

[
1 +

2α(1− γ)|e−iβcosβ||z|
3(1 + α((1− γ)|e−iβcosβ| − 1)(1 + λ)Cn(b, µ)

]
and

|z|
[
1− α(1− γ)|e−iβcosβ||z|

(1 + α((1− γ)|e−iβcosβ| − 1)(1 + λ)Cn(b, µ)

]
≤ |f(z)|

≤ |z|
[
1 +

α(1− γ)|e−iβcosβ||z|
(1 + α((1− γ)|e−iβcosβ| − 1)(1 + λ)Cn(b, µ)

]
(3.15)
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Corollary 3.4. D−δ
z f(z) and Dδ

zf(z) are included in the disk with center at the
origin and radii

1

Γ(2 + δ)

[
1 +

2α(1− γ)|e−iβcosβ||z|
(2 + δ)(1 + α((1− γ)|e−iβcosβ| − 1)(1 + λ)C2(b, µ)

]
, (3.16)

1

Γ(2− δ)

[
1 +

2α(1− γ)|e−iβcosβ||z|
(2− δ)(1 + α((1− γ)|e−iβcosβ| − 1)(1 + λ)C2(b, µ)

]
. (3.17)

The proof of the corollaries 3.1 and 3.2 follows immediately by Definitions 1 and
2 and Theorems 3.1 and 3.2for δ = 1 and δ = 0 respectively, hence we omit the
details.

Concluding Remarks: By suitably specializing the various parameters involved
in Theorem 2.2 to Theorem 3.2, one can state the corresponding results for many
relatively more familiar function classes.

Acknowledgments. The authors would like to thank the referee(s) for his sug-
gestions.
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