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OPERATORS
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ANTONIO NUNES

Abstract. In this note we provide some applications of the general Pietsch

Domination Theorem.

1. Introduction

Pietsch Domination Theorem plays a central role in the theory of absolutely
summing linear operators (see [6]). In the last years, several Pietsch-type theorems
have been presented in different nonlinear settings (we mention, for example, [1, 4,
5, 7, 8, 9, 10, 12, 15]); in [3] an abstract approach to the PDT was presented as an
attempt of unification (see also [13, 14]).

From now on the Banach spaces will be considered over a fixed scalar field K
that can be R or C. The topological dual of a Banach space X will be denoted by
X∗ and its closed unit ball will be represented by BX∗ .

Let us recall the General Pietsch Domination Theorem recently presented in
[3, 13]:

Let X, Y and E be (arbitrary) non-void sets, H be a family of mappings from
X to Y , G be a Banach space and K be a compact Hausdorff topological space.
Let

S : H× E ×G −→ [0,∞)

be an arbitrary map and

R : K × E ×G −→ [0,∞)

be such that

Rx,b : K −→ [0,∞) defined by Rx,b(φ) = R(φ, x, b)

is continuous for every x ∈ E and b ∈ G.
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If R and S are as above and 0 < p < ∞, a mapping f ∈ H is said to be
R-S-abstract p-summing if there is a constant C1 > 0 so that m∑

j=1

S(f, xj , bj)
p

 1
p

≤ C1 sup
φ∈K

 m∑
j=1

R (φ, xj , bj)
p

 1
p

, (1.1)

for all x1, . . . , xm ∈ E, b1, . . . , bm ∈ G and m ∈ N.
The general unified PDT reads as follows:

Theorem 1.1 (General Pietsch Domination Theorem). Let R and S be as above,
0 < p < ∞ and f ∈ H. Then f is R-S-abstract p-summing if and only if there is a
constant C > 0 and a Borel probability measure µ on K such that

S(f, x, b) ≤ C

(∫
K

R (φ, x, b)
p
dµ

) 1
p

(1.2)

for all x ∈ E and b ∈ G.

In [3] the following concept was introduced, as a natural adaptation of [11,
Definition 3.1]:

Definition 1. Let X and Y be Banach spaces. An arbitrary mapping f : X −→ Y
is absolutely p-summing at a ∈ X if there is a C ≥ 0 so that

m∑
j=1

∥f(a+ xj)− f(a)∥p ≤ C sup
φ∈BX∗

m∑
j=1

|φ(xj)|p

for every natural number m and every x1, . . . , xm ∈ X.

Also in [3], as an application of Theorem 1.1, the following Pietsch Domination
type theorem is proved:

Theorem 1.2. Let X and Y be Banach spaces. An arbitrary mapping f : X −→ Y
is absolutely p-summing at a ∈ X if and only if there is a constant Ca ≥ 0 and a
Borel probability measure µa on (BX∗ , (σ(X∗, X))) such that

∥f(a+ x)− f(a)∥ ≤ Ca

(∫
BX∗

|φ(x)|p dµa (φ)

) 1
p

for all x ∈ X.

From the theorem above, if f : X −→ Y is absolutely p-summing at every a ∈ X
we have a family of constants (Ca)a∈X and a family of probability measures (µa)a∈X

on (BX∗ , (σ(X∗, X))) so that

∥f(a+ x)− f(a)∥ ≤ Ca

(∫
BX∗

|φ(x)|p dµa (φ)

) 1
p

for all x ∈ X.
A natural question arises:

Problem 1.3. If f : X −→ Y is absolutely p-summing at every a ∈ X, does
there exist an universal constant C ≥ 0 and a Borel probability measure µ on
(BX∗ , (σ(X∗, X))) such that

∥f(a+ x)− f(a)∥ ≤ C

(∫
BX∗

|φ(x)|p dµ (φ)

) 1
p

(1.3)
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for all (a, x) ∈ X ×X ?

In this note, among other results, we solve partially this question by character-
izing the maps satisfying (1.3).

2. Results

We begin this section by recalling the notion of summability at a given point and
introducing some concepts related to the notion of everywhere absolutely summing
multilinear operators:

Definition 2. Let X,Y be Banach spaces.
(i) A map f : X → Y is absolutely p-summing at a ∈ X if there is a constant

C ≥ 0 such that (
m∑
j=1

∥f(a+ xj)− f(a)∥p
) 1

p

≤ C
∥∥(xj)

m
j=1

∥∥
w,p

(2.1)

for all x1, . . . , xm ∈ X and m ∈ N.
(ii) A map f : X → Y is strongly absolutely p-summing at A ⊂ X if there is a

constant C ≥ 0 such that(
m∑
j=1

∥f(aj + xj)− f(aj)∥p
) 1

p

≤ C
∥∥(xj)

m
j=1

∥∥
w,p

(2.2)

for all a1, ..., am ∈ A, x1, . . . , xm ∈ X and m ∈ N.
(iii) When A = X in (ii) f is called strongly everywhere absolutely p-summing.

The next theorem characterizes the maps satisfying (1.3):

Theorem 2.1. A map f : X → Y is strongly absolutely p-summing at A if
and only if there are a constant C ≥ 0 and a Borel probability measure µ on
(BX∗ , (σ(X∗, X))) such that

∥f(a+ x)− f(a)∥ ≤ C

(∫
BX∗

|φ(x)|p dµ(φ)
) 1

p

for all (x, a) ∈ X ×A.

Proof. Let H be the set of all maps from X to Y . Now choose the parameters

E = A×X

G = K
K = (BX∗ , (σ(X∗, X))) .

Define

S : H× (A×X)×K → [0,∞)

R : (BX∗ , (σ(X∗, X)))× (A,X)×K → [0,∞)

by

S(f, (a, x), b) = ∥f(a+ x)− f(a)∥
R(φ, (a, x), b) = |φ(x)| .



48 ANTONIO NUNES

Note that (2.2) is equivalent to m∑
j=1

S(f, (aj , xj), bj)
p

 1
p

≤ C sup
φ∈K

 m∑
j=1

R (φ, (aj , xj), bj)
p

 1
p

,

for all (a1, x1) , . . . , (am, xm) ∈ E, b1, . . . , bm ∈ G and m ∈ N.
From Theorem 1.1 we have

S(f, (a, x), b) ≤ C

(∫
K

R (φ, (a, x), b)
p
dµ(φ)

)1/p

for all a ∈ A, x ∈ X and b ∈ K, i.e.,

∥f(a+ x)− f(a)∥ ≤ C

(∫
K

|φ(x)|p dµ(φ)
) 1

p

for all (x, a) ∈ X ×A. �

Corollary 2.2. A map f : X → Y is strongly everywhere absolutely p-summing if
and only if there are a constant C ≥ 0 and a Borel probability measure µ on BX∗

such that

∥f(a+ x)− f(a)∥ ≤ C

(∫
BX∗

|φ(x)|p dµ(φ)
) 1

p

for all (x, a) ∈ X ×X.

Now we note that the general PDT allows a local version.

Definition 3. Let X,Y be Banach spaces.
(i) A map f : X → Y is locally absolutely p-summing at a ∈ X if there are

C ≥ 0, δ > 0 such that(
m∑
j=1

∥f(a+ xj)− f(a)∥p
) 1

p

≤ C
∥∥(xj)

m
j=1

∥∥
w,p

(2.3)

for every x1, ..., xm ∈ X so that ∥xj∥ < δ.
(ii) A map f : X → Y is locally strongly absolutely p-summing at A ⊂ X if there

are C ≥ 0, δ > 0 such that(
m∑
j=1

∥f(aj + xj)− f(aj)∥p
) 1

p

≤ C
∥∥(xj)

m
j=1

∥∥
w,p

for every a ∈ A and every x1, ..., xm, a1, ..., am ∈ X so that ∥xj∥ < δ.
(iii) When A = X in (ii) f is called locally strongly everywhere absolutely p-

summing.

Theorem 2.3. A map f : X → Y is locally strongly absolutely p-summing at
A if and only if there are C ≥ 0, δ > 0 and a Borel probability measure µ on
(BX∗ , (σ(X∗, X))) such that

∥f(a+ x)− f(a)∥ ≤ C

(∫
BX∗

|φ(x)|p dµ(φ)
) 1

p

for all (x, a) ∈ B(0, δ)×A.
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Proof. Let H be the set of all maps from X to Y . Consider also the sets

E = A×B(0, δ)

G = K and K = BX∗ .

The proof follows the lines of the proof of Theorem 2.1. �
Corollary 2.4. A map f : X → Y is locally strongly everywhere absolutely p-
summing if and only if there are C ≥ 0, δ > 0 and a Borel probability measure µ
on BX∗ such that

∥f(a+ x)− f(a)∥ ≤ C

(∫
BX∗

|φ(x)|p dµ(φ)
) 1

p

for all (x, a) ∈ B(0, δ)×X.
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