REMARKS ON THE DOMINATION THEOREM FOR SUMMING OPERATORS

(COMMUNICATED BY DANIEL PELLEGRINO)

ANTONIO NUNES

Abstract

In this note we provide some applications of the general Pietsch Domination Theorem.

1. Introduction

Pietsch Domination Theorem plays a central role in the theory of absolutely summing linear operators (see [6]). In the last years, several Pietsch-type theorems have been presented in different nonlinear settings (we mention, for example, [1, 4, $5,7,8,9,10,12,15])$; in $[3]$ an abstract approach to the PDT was presented as an attempt of unification (see also [13, 14]).

From now on the Banach spaces will be considered over a fixed scalar field \mathbb{K} that can be \mathbb{R} or \mathbb{C}. The topological dual of a Banach space X will be denoted by X^{*} and its closed unit ball will be represented by $B_{X^{*}}$.

Let us recall the General Pietsch Domination Theorem recently presented in $[3,13]$:

Let X, Y and E be (arbitrary) non-void sets, \mathcal{H} be a family of mappings from X to Y, G be a Banach space and K be a compact Hausdorff topological space. Let

$$
S: \mathcal{H} \times E \times G \longrightarrow[0, \infty)
$$

be an arbitrary map and

$$
R: K \times E \times G \longrightarrow[0, \infty)
$$

be such that

$$
R_{x, b}: K \longrightarrow[0, \infty) \text { defined by } R_{x, b}(\varphi)=R(\varphi, x, b)
$$

is continuous for every $x \in E$ and $b \in G$.

[^0]If R and S are as above and $0<p<\infty$, a mapping $f \in \mathcal{H}$ is said to be R-S-abstract p-summing if there is a constant $C_{1}>0$ so that

$$
\begin{equation*}
\left(\sum_{j=1}^{m} S\left(f, x_{j}, b_{j}\right)^{p}\right)^{\frac{1}{p}} \leq C_{1} \sup _{\varphi \in K}\left(\sum_{j=1}^{m} R\left(\varphi, x_{j}, b_{j}\right)^{p}\right)^{\frac{1}{p}} \tag{1.1}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{m} \in E, b_{1}, \ldots, b_{m} \in G$ and $m \in \mathbb{N}$.
The general unified PDT reads as follows:
Theorem 1.1 (General Pietsch Domination Theorem). Let R and S be as above, $0<p<\infty$ and $f \in \mathcal{H}$. Then f is R - S-abstract p-summing if and only if there is a constant $C>0$ and a Borel probability measure μ on K such that

$$
\begin{equation*}
S(f, x, b) \leq C\left(\int_{K} R(\varphi, x, b)^{p} d \mu\right)^{\frac{1}{p}} \tag{1.2}
\end{equation*}
$$

for all $x \in E$ and $b \in G$.
In [3] the following concept was introduced, as a natural adaptation of [11, Definition 3.1]:
Definition 1. Let X and Y be Banach spaces. An arbitrary mapping $f: X \longrightarrow Y$ is absolutely p-summing at $a \in X$ if there is $a C \geq 0$ so that

$$
\sum_{j=1}^{m}\left\|f\left(a+x_{j}\right)-f(a)\right\|^{p} \leq C \sup _{\varphi \in B_{X^{*}}} \sum_{j=1}^{m}\left|\varphi\left(x_{j}\right)\right|^{p}
$$

for every natural number m and every $x_{1}, \ldots, x_{m} \in X$.
Also in [3], as an application of Theorem 1.1, the following Pietsch Domination type theorem is proved:

Theorem 1.2. Let X and Y be Banach spaces. An arbitrary mapping $f: X \longrightarrow Y$ is absolutely p-summing at $a \in X$ if and only if there is a constant $C_{a} \geq 0$ and a Borel probability measure μ_{a} on $\left(B_{X^{*}},\left(\sigma\left(X^{*}, X\right)\right)\right)$ such that

$$
\|f(a+x)-f(a)\| \leq C_{a}\left(\int_{B_{X^{*}}}|\varphi(x)|^{p} d \mu_{a}(\varphi)\right)^{\frac{1}{p}}
$$

for all $x \in X$.
From the theorem above, if $f: X \longrightarrow Y$ is absolutely p-summing at every $a \in X$ we have a family of constants $\left(C_{a}\right)_{a \in X}$ and a family of probability measures $\left(\mu_{a}\right)_{a \in X}$ on $\left(B_{X^{*}},\left(\sigma\left(X^{*}, X\right)\right)\right)$ so that

$$
\|f(a+x)-f(a)\| \leq C_{a}\left(\int_{B_{X^{*}}}|\varphi(x)|^{p} d \mu_{a}(\varphi)\right)^{\frac{1}{p}}
$$

for all $x \in X$.
A natural question arises:
Problem 1.3. If $f: X \longrightarrow Y$ is absolutely p-summing at every $a \in X$, does there exist an universal constant $C \geq 0$ and a Borel probability measure μ on $\left(B_{X^{*}},\left(\sigma\left(X^{*}, X\right)\right)\right)$ such that

$$
\begin{equation*}
\|f(a+x)-f(a)\| \leq C\left(\int_{B_{X^{*}}}|\varphi(x)|^{p} d \mu(\varphi)\right)^{\frac{1}{p}} \tag{1.3}
\end{equation*}
$$

for all $(a, x) \in X \times X$?
In this note, among other results, we solve partially this question by characterizing the maps satisfying (1.3).

2. Results

We begin this section by recalling the notion of summability at a given point and introducing some concepts related to the notion of everywhere absolutely summing multilinear operators:

Definition 2. Let X, Y be Banach spaces.
(i) A map $f: X \rightarrow Y$ is absolutely p-summing at $a \in X$ if there is a constant $C \geq 0$ such that

$$
\begin{equation*}
\left(\sum_{j=1}^{m}\left\|f\left(a+x_{j}\right)-f(a)\right\|^{p}\right)^{\frac{1}{p}} \leq C\left\|\left(x_{j}\right)_{j=1}^{m}\right\|_{w, p} \tag{2.1}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{m} \in X$ and $m \in \mathbb{N}$.
(ii) A map $f: X \rightarrow Y$ is strongly absolutely p-summing at $A \subset X$ if there is a constant $C \geq 0$ such that

$$
\begin{equation*}
\left(\sum_{j=1}^{m}\left\|f\left(a_{j}+x_{j}\right)-f\left(a_{j}\right)\right\|^{p}\right)^{\frac{1}{p}} \leq C\left\|\left(x_{j}\right)_{j=1}^{m}\right\|_{w, p} \tag{2.2}
\end{equation*}
$$

for all $a_{1}, \ldots, a_{m} \in A, x_{1}, \ldots, x_{m} \in X$ and $m \in \mathbb{N}$.
(iii) When $A=X$ in (ii) f is called strongly everywhere absolutely p-summing.

The next theorem characterizes the maps satisfying (1.3):
Theorem 2.1. A map $f: X \rightarrow Y$ is strongly absolutely p-summing at A if and only if there are a constant $C \geq 0$ and a Borel probability measure μ on $\left(B_{X^{*}},\left(\sigma\left(X^{*}, X\right)\right)\right)$ such that

$$
\|f(a+x)-f(a)\| \leq C\left(\int_{B_{X^{*}}}|\varphi(x)|^{p} d \mu(\varphi)\right)^{\frac{1}{p}}
$$

for all $(x, a) \in X \times A$.
Proof. Let \mathcal{H} be the set of all maps from X to Y. Now choose the parameters

$$
\begin{aligned}
E & =A \times X \\
G & =\mathbb{K} \\
K & =\left(B_{X^{*}},\left(\sigma\left(X^{*}, X\right)\right)\right)
\end{aligned}
$$

Define

$$
\begin{aligned}
& S: \mathcal{H} \times(A \times X) \times \mathbb{K} \rightarrow[0, \infty) \\
& R:\left(B_{X^{*}},\left(\sigma\left(X^{*}, X\right)\right)\right) \times(A, X) \times \mathbb{K} \rightarrow[0, \infty)
\end{aligned}
$$

by

$$
\begin{aligned}
S(f,(a, x), b) & =\|f(a+x)-f(a)\| \\
R(\varphi,(a, x), b) & =|\varphi(x)|
\end{aligned}
$$

Note that (2.2) is equivalent to

$$
\left(\sum_{j=1}^{m} S\left(f,\left(a_{j}, x_{j}\right), b_{j}\right)^{p}\right)^{\frac{1}{p}} \leq C \sup _{\varphi \in K}\left(\sum_{j=1}^{m} R\left(\varphi,\left(a_{j}, x_{j}\right), b_{j}\right)^{p}\right)^{\frac{1}{p}}
$$

for all $\left(a_{1}, x_{1}\right), \ldots,\left(a_{m}, x_{m}\right) \in E, b_{1}, \ldots, b_{m} \in G$ and $m \in \mathbb{N}$.
From Theorem 1.1 we have

$$
S(f,(a, x), b) \leq C\left(\int_{K} R(\varphi,(a, x), b)^{p} d \mu(\varphi)\right)^{1 / p}
$$

for all $a \in A, x \in X$ and $b \in \mathbb{K}$, i.e.,

$$
\|f(a+x)-f(a)\| \leq C\left(\int_{K}|\varphi(x)|^{p} d \mu(\varphi)\right)^{\frac{1}{p}}
$$

for all $(x, a) \in X \times A$.
Corollary 2.2. A map $f: X \rightarrow Y$ is strongly everywhere absolutely p-summing if and only if there are a constant $C \geq 0$ and a Borel probability measure μ on $B_{X^{*}}$ such that

$$
\|f(a+x)-f(a)\| \leq C\left(\int_{B_{X^{*}}}|\varphi(x)|^{p} d \mu(\varphi)\right)^{\frac{1}{p}}
$$

for all $(x, a) \in X \times X$.
Now we note that the general PDT allows a local version.

Definition 3. Let X, Y be Banach spaces.

(i) A map $f: X \rightarrow Y$ is locally absolutely p-summing at $a \in X$ if there are $C \geq 0, \delta>0$ such that

$$
\begin{equation*}
\left(\sum_{j=1}^{m}\left\|f\left(a+x_{j}\right)-f(a)\right\|^{p}\right)^{\frac{1}{p}} \leq C\left\|\left(x_{j}\right)_{j=1}^{m}\right\|_{w, p} \tag{2.3}
\end{equation*}
$$

for every $x_{1}, \ldots, x_{m} \in X$ so that $\left\|x_{j}\right\|<\delta$.
(ii) A map $f: X \rightarrow Y$ is locally strongly absolutely p-summing at $A \subset X$ if there are $C \geq 0, \delta>0$ such that

$$
\left(\sum_{j=1}^{m}\left\|f\left(a_{j}+x_{j}\right)-f\left(a_{j}\right)\right\|^{p}\right)^{\frac{1}{p}} \leq C\left\|\left(x_{j}\right)_{j=1}^{m}\right\|_{w, p}
$$

for every $a \in A$ and every $x_{1}, \ldots, x_{m}, a_{1}, \ldots, a_{m} \in X$ so that $\left\|x_{j}\right\|<\delta$.
(iii) When $A=X$ in (ii) f is called locally strongly everywhere absolutely p summing.

Theorem 2.3. A map $f: X \rightarrow Y$ is locally strongly absolutely p-summing at A if and only if there are $C \geq 0, \delta>0$ and a Borel probability measure μ on $\left(B_{X^{*}},\left(\sigma\left(X^{*}, X\right)\right)\right)$ such that

$$
\|f(a+x)-f(a)\| \leq C\left(\int_{B_{X^{*}}}|\varphi(x)|^{p} d \mu(\varphi)\right)^{\frac{1}{p}}
$$

for all $(x, a) \in B(0, \delta) \times A$.

Proof. Let \mathcal{H} be the set of all maps from X to Y. Consider also the sets

$$
\begin{aligned}
& E=A \times B(0, \delta) \\
& G=\mathbb{K} \text { and } K=B_{X^{*}}
\end{aligned}
$$

The proof follows the lines of the proof of Theorem 2.1.
Corollary 2.4. A map $f: X \rightarrow Y$ is locally strongly everywhere absolutely p summing if and only if there are $C \geq 0, \delta>0$ and a Borel probability measure μ on $B_{X^{*}}$ such that

$$
\|f(a+x)-f(a)\| \leq C\left(\int_{B_{X^{*}}}|\varphi(x)|^{p} d \mu(\varphi)\right)^{\frac{1}{p}}
$$

for all $(x, a) \in B(0, \delta) \times X$.

References

[1] D. Achour and L. Mezrag, On the Cohen strongly p-summing multilinear operators, J. Math. Anal. Appl. 327 (2007), 550-563.
[2] G. Botelho, D. Pellegrino and P. Rueda, A nonlinear Pietsch Domination Theorem, Monatsh. Math. 158 (2009), 247-257.
[3] G. Botelho, D. Pellegrino and P. Rueda, A unified Pietsch Domination Theorem, J. Math. Anal. Appl. 365 (2010), 269-276.
[4] G. Botelho, D. Pellegrino and P. Rueda, Pietsch's factorization theorem for dominated polynomials, J. Funct. Anal 243 (2007), 257-269.
[5] E. Çaliskan and D.M. Pellegrino, On the multilinear generalizations of the concept of absolutely summing operators, Rocky Mount. J. Math. 37 (2007), 1137-1154.
[6] J. Diestel, H. Jarchow, A. Tonge, Absolutely summing operators, Cambridge University Press 1995.
[7] J. Farmer and W. B. Johnson, Lipschitz p-summing operators, Proc. Amer. Math. Soc. 137 (2009), 2989-2995.
[8] S. Geiss, Ideale multilinearer Abbildungen, Diplomarbeit, 1985.
[9] F. Martínez-Giménez and E. A. Sánchez-Pérez, Vector measure range duality and factorizations of (D, p)-summing operators from Banach function spaces, Bull. Braz. Math. Soc. New series 35 (2004), 51-69.
[10] M. C. Matos, Absolutely summing holomorphic mappings, An. Acad. Bras. Ci. 68 (1996), 1-13.
[11] M. C. Matos, Nonlinear absolutely summing mappings, Math. Nachr. 258 (2003), 71-89.
[12] X. Mujica, $\tau(p ; q)$-summing mappings and the domination theorem, Port. Math. 65 (2008), 221-226.
[13] D. Pellegrino and J. Santos, A general Pietsch Domination Theorem, J. Math. Anal. Appl. 375 (2011), 371-374.
[14] D. Pellegrino and J. Santos, On summability of nonlinear mappings: a new approach, to appear in Math. Z. doi: 10.1007/s00209-010-0792-4.
[15] A. Pietsch, Ideals of multilinear functionals (designs of a theory), Proceedings of the second international conference on operator algebras, ideals, and their applications in theoretical physics (Leipzig, 1983), 185-199, Teubner-Texte Math., 67, Teubner, Leipzig, 1984.
(A. Nunes) Departamento de Ciências Exatas e Naturais, Universidade Federal Rural do Semi-Árido, 59.625-900 Mossoró - RN, Brazil

E-mail address: nunesag@gmail.com

[^0]: 2000 Mathematics Subject Classification. 47B10, 46G99, 46G25.
 Key words and phrases. Pietsch Domination Theorem, Absolutely mapping operators.
 © 2011 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted May 10, 2011. Published September 2, 2011.

