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ON SOLUTIONS OF A SYSTEM OF HIGHER-ORDER

NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

(COMMUNICATED BY DOUGLAS R. ANDERSON)

ZHENYU GUO, MIN LIU

Abstract. A system of higher-order nonlinear fractional differential equa-
tions is studied in this article, and some sufficient conditions for existence

and uniqueness of a solution for the system is established by the nonlinear
alternative of Leray-Schauder and Banach contraction principle.

1. Introduction and preliminaries

This article is concerned with the initial value problem for the following system
of fractional order differential equations:

cDρu(t) = f
(
t, v(n)(t),c Dβv(t)

)
, u(k)(0) = ηk, 0 < t ≤ T, (1.1)

cDσv(t) = g
(
t, u(n)(t),c Dαu(t)

)
, v(k)(0) = ξk, 0 < t ≤ T, (1.2)

where cD denotes the Caputo fractional derivative, f, g : [0, T ] × R2 → R are
given functions, ρ, σ ∈ (m − 1,m), α, β ∈ (n − 1, n),m, n ∈ N, ρ > β, σ > α,
k = 0, 1, 2, · · · ,m− 1, T > 0, and ηk, ξk are suitable real constants. In this article,
we consider the case that all of ρ, σ, β and α are non-integer valued.

Recently, fractional order differential equations and systems have been of great
interest. For example, in 2010, Li[9] discussed the existence and uniqueness of mild
solution for

dqx(t)

dtq
= −Ax(t) + f

(
t, x(t), Gx(t)

)
, t ∈ [0, T ],

x(0) + g(x) = x0.
(1.3)

Li and Guérékata[10] studied mild solutions of the fractional integrodifferential
equations as follows

dqx(t)

dtq
+Ax(t) = f(t, x(t)) +

∫ t

0

a(t− s)g(s, x(s))ds, t ∈ [0, T ], x(0) = x0.

(1.4)

2000 Mathematics Subject Classification. 34K15, 34C10.
Key words and phrases. System of fractional differential equations; the nonlinear alternative

of Leray-Schauder; Banach contraction principle; fixed point.
c⃝2011 Universiteti i Prishtinës, Prishtinë, Kosovë.
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In 2011, Anguraj, Karthikeyan and Trujillo[1] investigated the existence and the
uniqueness of the solution for the following fractional integrodifferential equation

dqx(t)

dtq
= f

(
t, x(t),

∫ t

0

k
(
t, s, x(s)

)
ds,

∫ 1

0

h
(
t, s, x(s)

)
ds
)
, t ∈ [0, 1],

x(0) =

∫ 1

0

g(s)x(s)ds.

(1.5)

Guo and Liu[4] studied the existence of unique solutions of initial value problems
of the following system of fractional order differential equations with infinite delay

Dαy1(t) = f1[t, y1t, y2t], t ∈ [0, b],

y1(t) = ϕ1(t), t ∈ (−∞, 0],

Dαy2(t) = f2[t, y1t, y2t], t ∈ [0, b],

y2(t) = ϕ2(t), t ∈ (−∞, 0].

(1.6)

For detailed discussion on this topic, refer to the monographs of Kilbas et al.[5],
and the papers by Ahmad and Alsaedi [2], Guo and Liu [3], Kosmatov [6], Lak-
shmikantham and Vatsala [7], Li and Deng [8], Su [11], Goodrich [12,13], Bonilla
et al. [14], Bai and Fang [15], Kobayashi [16], Wang et al. [17] and the references
therein.

Applying the nonlinear alternative of Leray-Schauder, we obtain a result of ex-
istence of a solution for system (1.1)-(1.2). The uniqueness of a solution for the
system is established by Banach contraction principle.

The following notations, definitions, and preliminary facts will be used through-
out this paper.

Let X = {u : u ∈ C([0, T ])} and Y = {v : v ∈ C([0, T ])} be normed spaces with
the sup-norm ∥u∥X and ∥v∥Y , respectively, where C([0, T ]) denotes the space of all
continuous functions defined on [0, T ]. Then, (X×Y, ∥ · · · ∥X×Y ) is a normed space
endowed with the sup-norm given by ∥(u, v)∥X×Y := max{∥u∥X , ∥v∥Y }.

Definition 1.1. For a function f ∈ Cm([0, T ]),m ∈ N, where Cm([0, T ]) denotes
the space of all continuous functions with mth order derivative, the Caputo deriva-
tive of fractional order α ∈ (m− 1,m) is defined by

cDαf(t) =
1

Γ(m− α)

∫ t

0

(t− s)m−α−1f (m)(s)ds. (1.7)

Definition 1.2. The Riemann-Liouville fractional integral of order α, inversion of
Dα, is defined by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds. (1.8)

Lemma 1.3. [8] If α ∈ (m− 1,m),m ∈ N, f ∈ Cm([0, T ]) and g ∈ C1([0, T ]), then

(1) cDαIαg(t) = g(t);

(2) Iα(cDα)f(t) = f(t)−
m−1∑
k=0

tk

k!
f (k)(0).

Lemma 1.4. [6] If m − 1 < α < β < m and f ∈ Cm([0, T ]), then for all k ∈
{1, 2, · · · ,m− 1} and for all t ∈ [0, T ], the following relations hold:

cDβ−m+kfm−k(t) =c Dβf(t), (1.9)
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cDβ−α cDαf(t) =c Dβf(t). (1.10)

Theorem 1.5. (the nonlinear alternative of Leray-Schauder) Let X be a normed
linear space, S ⊂ X be a convex set, U be open in S with 0 ∈ U , and F : U → S be
a continuous and compact mapping. Then either the mapping F has a fixed point
in U or there exist n ∈ ∂U and λ ∈ (0, 1) with n = λFn.

Now list the following hypotheses for convenience:
(H1) f : [0, T ]×R2 → R are continuously differentiable function with f(0, 0, 0) =

0 and f(t, 0, 0) ̸= 0 on a compact subinterval of (0, T ];
(H2) g : [0, T ]×R2 → R are continuously differentiable function with g(0, 0, 0) =

0 and g(t, 0, 0) ̸= 0 on a compact subinterval of (0, T ];
(H3) there exist nonnegative functions a1, a2, a3, b1, b2, b3 ∈ C([0, T ]) such that

|f(t, x, y)| ≤ a1(t) + a2(t)|x|+ a3(t)|y|, t ∈ [0, T ],

|g(t, x, y)| ≤ b1(t) + b2(t)|x|+ b3(t)|y|, t ∈ [0, T ];
(1.11)

(H4) there exist nonnegative functions l1, l2, l3, l4 ∈ C([0, T ]) such that

|f(t, x1, y1)− f(t, x2, y2)| ≤ l1(t)|x1 − x2|+ l2(t)|y1 − y2|, t ∈ [0, T ],

|g(t, x1, y1)− g(t, x2, y2)| ≤ l3(t)|x1 − x2|+ l4(t)|y1 − y2|, t ∈ [0, T ].
(1.12)

2. Existence and uniqueness of a solution

In this section, the theorems of existence and uniqueness of a solution for system
(1.1)-(1.2) will be given.

Lemma 2.1. Let (H1)-(H2) hold and n−1 < α, β < n ≤ m−1 < ρ, σ < m. Then,
a function u ∈ Cm([0, T ]) is a solution of the initial value problem (1.1) if and only
if

u(t) =
n−1∑
k=0

tk

k!
ηk +

∫ t

0

(t− s)n−1

Γ(n)
w1(s)ds, 0 < t ≤ 1, (2.1)

where w1(t) = u(n)(t) ∈ Cm−n([0, T ]) with u(n+i)(t) = w
(i)
1 (t), 0 ≤ i ≤ m − n − 1

is a solution of the integral equation

w1(t) =
m−n−1∑

i=0

ti

i!
ηn+i +

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)
f
(
s, w2(s),

∫ s

0

(s− τ)n−β−1

Γ(n− β)
w2(τ)dτ

)
ds,

(2.2)
and a function v ∈ Cm([0, T ]) is a solution of the initial value problem (1.2) if and
only if

v(t) =
n−1∑
k=0

tk

k!
ξk +

∫ t

0

(t− s)n−1

Γ(n)
w2(s)ds, 0 < t ≤ 1, (2.3)

where w2(t) = v(n)(t) ∈ Cm−n([0, T ]) with v(n+i)(t) = w
(i)
2 (t) is a solution of the

integral equation

w2(t) =

m−n−1∑
i=0

ti

i!
ξn+i +

∫ t

0

(t− s)σ−n−1

Γ(σ − n)
g
(
s, w1(s),

∫ s

0

(s− τ)n−α−1

Γ(n− α)
w1(τ)dτ

)
ds.

(2.4)



62 Z. GUO, M. LIU

Proof. Since the two parts of the Lemma is similar, we only give the proof of the
first part briefly. Lemma 1.4 ensures that

cDρ−nu(n)(t) =c Dρu(t) = f
(
t, v(n)(t),c Dβv(t)

)
. (2.5)

By Definition 1.1, we obtain

cDρ−nu(n)(t) = f
(
t, v(n)(t),

∫ t

0

(t− s)n−β−1

Γ(n− β)
v(n)(s)ds

)
. (2.6)

It follows from Definition 1.2, Lemma 1.3 (2) and the substitutions u(n)(t) =
w1(t), v

(n)(t) = w2(t) that

w1(t) = u(n)(t) =
m−n−1∑

i=0

ti

i!
u(n+i)(0) + Iρ−n(cDρ−nu(n)(t))

=
m−n−1∑

i=0

ti

i!
w

(i)
1 (0)

+

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)
f
(
s, v(n)(s),

∫ s

0

(s− τ)n−β−1

Γ(n− β)
v(n)(τ)dτ

)
ds

=
m−n−1∑

i=0

ti

i!
ηn+i

+

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)
f
(
s, w2(s),

∫ s

0

(s− τ)n−β−1

Γ(n− β)
w2(τ)dτ

)
ds.

(2.7)

Conversely, suppose that w1 ∈ Cm−n([0, T ]) is a solution of (2.2). Then,

u(n)(t) = w1(t) =

m−n−1∑
i=0

ti

i!
ηn+i

+

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)
f
(
s, w2(s),

∫ s

0

(s− τ)n−β−1

Γ(n− β)
w2(τ)dτ

)
ds

=
m−n−1∑

i=0

ti

i!
ηn+i + Iρ−nf

(
t, v(n)(t),c Dβv(t)

)
.

(2.8)

Since ρ− n ∈ (m− n− 1,m− n), by Lemma 1.3 (1) and Lemma 1.4, we have

cDρu(t) =c Dρ−nu(n)(t)

=c Dρ−n
(m−n−1∑

i=0

ti

i!
ηn+i

)
+c Dρ−nIρ−nf

(
t, v(n)(t),c Dβv(t)

)
= f

(
t, v(n)(t),c Dβv(t)

)
, 0 < t ≤ 1.

(2.9)

Differentiating (2.2), we get

w
(k)
1 =

m−n−k−1∑
i=0

ti

i!
ηn+i+k +

k∏
j=1

(ρ− n− j)

∫ t

0

(t− s)ρ−n−1−k

Γ(ρ− n)

f
(
s, w2(s),

∫ s

0

(s− τ)n−β−1

Γ(n− β)
w2(τ)dτ

)
ds

(2.10)
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for each k = 0, 1, · · · ,m − n − 1. As ρ − n − 1 − k ∈ (−1,m − n − 1), the second
term in (2.10) goes to zero as t → 0. Thus, we have

u(n+k)(0) = w
(k)
1 (0) = ηn+k, k = 0, 1, · · · ,m− n− 1, (2.11)

which means that u(k)(0) = ηk, k = 0, 1, · · · ,m − 1. Clearly, w
(m−n)
1 = u(m) ∈

C([0, T ]). Therefore, u is a solution of (1.1). �

For the sake of simplicity, Lemma 2.1 can be rewritten as

Lemma 2.2. Let f, g : [0, T ]×R → R be continuous functions. Then (u, v) ∈ X×Y
is a solution of (1.1)-(1.2) if and only if (u, v) ∈ X×Y is a solution of (2.1)-(2.4).

Theorem 2.3. Assume (H1)-(H3) hold, and

B1 = sup
t∈[0,T ]

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)

(
a2(s) +

sn−β

Γ(n− β + 1)
a3(s)

)
ds < 1,

B2 = sup
t∈[0,T ]

∫ t

0

(t− s)σ−n−1

Γ(σ − n)

(
b2(s) +

sn−α

Γ(n− α+ 1)
b3(s)

)
ds < 1,

0 < C1 = sup
t∈[0,T ]

(
|η(t)|+

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)
a1(s)ds

)
< +∞,

0 < C2 = sup
t∈[0,T ]

(
|ξ(t)|+

∫ t

0

(t− s)σ−n−1

Γ(σ − n)
b1(s)ds

)
< +∞,

(2.12)

where

η(t) =

m−n−1∑
i=0

ti

i!
ηn+i, ξ(t) =

m−n−1∑
i=0

ti

i!
ξn+i. (2.13)

Then the system of integral equations (2.1)-(2.4) has a solution.

Proof. Define a mapping F : X × Y → X × Y and a ball U in the normed space
X × Y by

F (w1, w2)(t) = (F1w2(t), F2w1(t)), (2.13)

and

U = {(w1(t), w2(t)) : (w1(t), w2(t)) ∈ X × Y, ∥(w1(t), w2(t))∥X×Y < R, t ∈ [0, T ]},
(2.14)

where

F1w2(t) = η(t) +

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)
f
(
s, w2(s),

∫ s

0

(s− τ)n−β−1

Γ(n− β)
w2(τ)dτ

)
ds,

F2w1(t) = ξ(t) +

∫ t

0

(t− s)σ−n−1

Γ(σ − n)
g
(
s, w1(s),

∫ s

0

(s− τ)n−α−1

Γ(n− α)
w1(τ)dτ

)
ds,

(2.15)
and

R =
C

1−B
, B = max{B1, B2}, C = max{C1, C2}. (2.16)
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Clearly, by (H1) and (H2), F is well defined and continuous. Let (w1, w2) ∈ U .
Then ∥(w1, w2)∥X×Y ≤ R, and

∥F1w2∥X

= sup
t∈[0,T ]

∣∣∣η(t) + ∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)
f
(
s, w2(s),

∫ s

0

(s− τ)n−β−1

Γ(n− β)
w2(τ)dτ

)
ds
∣∣∣

≤ sup
t∈[0,T ]

(
|η(t)|+

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)

∣∣∣f(s, w2(s),

∫ s

0

(s− τ)n−β−1

Γ(n− β)
w2(τ)dτ

)∣∣∣ds)
≤ sup

t∈[0,T ]

(
|η(t)|+

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)

(
a1(s) + a2(s)|w2(s)|

+ a3(s)

∫ s

0

(s− τ)n−β−1

Γ(n− β)
|w2(τ)|dτ

)
ds
)

≤ sup
t∈[0,T ]

(
|η(t)|+

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)
a1(s)ds

)
+ sup

t∈[0,T ]

(∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)

(
a2(s) + a3(s)

∫ s

0

(s− τ)n−β−1

Γ(n− β)
dτ

)
ds
)
∥w2∥Y

≤ sup
t∈[0,T ]

(
|η(t)|+

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)
a1(s)ds

)
+ sup

t∈[0,T ]

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)

(
a2(s) +

sn−β

Γ(n− β + 1)
a3(s)

)
ds∥w2∥Y

=C1 +B1∥w2∥Y ≤ C +BR = R.

(2.17)
Similarly, we have

∥F2w1∥Y ≤ C2 +B2∥w1∥X ≤ C +BR = R. (2.18)

Therefore, ∥F (w1, w2)∥X×Y ≤ R, which implies that F (w1, w2) ∈ U . In order to
show that F is completely continuous (continuous and compact), put

Mf = max
t∈[0,T ]

∣∣∣f(t, w2(t),

∫ t

0

(t− τ)n−β−1

Γ(n− β)
w2(τ)dτ

)∣∣∣,
Mg = max

t∈[0,T ]

∣∣∣g(t, w1(t),

∫ t

0

(t− τ)n−α−1

Γ(n− α)
w1(τ)dτ

)∣∣∣. (2.19)

For (w1, w2) ∈ U and t1, t2 ∈ [0, T ] with t1 < t2, we obtain

|F1w2(t2)− F1w2(t1)|

=
∣∣∣η(t2)− η(t1) +

∫ t2

0

(t2 − s)ρ−n−1

Γ(ρ− n)
f
(
s, w2(s),

∫ s

0

(s− τ)n−β−1

Γ(n− β)
w2(τ)dτ

)
−
∫ t1

0

(t1 − s)ρ−n−1

Γ(ρ− n)
f
(
s, w2(s),

∫ s

0

(s− τ)n−β−1

Γ(n− β)
w2(τ)dτ

)
ds
∣∣∣

≤|η(t2)− η(t1)|+Mf

∣∣∣ ∫ t2

0

(t2 − s)ρ−n−1

Γ(ρ− n)
ds−

∫ t1

0

(t1 − s)ρ−n−1

Γ(ρ− n)
ds
∣∣∣

≤|η(t2)− η(t1)|+
Mf

Γ(ρ− n+ 1)
|tρ−n
2 − tρ−n

1 |,

(2.20)
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and, in a similar manner,

|F2w1(t2)− F2w1(t1)| ≤ |ξ(t2)− ξ(t1)|+
Mg

Γ(σ − n+ 1)
|tσ−n
2 − tσ−n

1 |. (2.21)

It follows from the uniform continuity of functions tk, tρ−n and tσ−n on [0, T ] that
FU is an equicontinuous set. Moreover, it is uniformly bounded as FU ⊂ U . Hence,
F is a completely continuous mapping.

Now to consider the following eigenvalue problem

(w1, w2) = λF (w1, w2) = (λF1w2, λF2w1), λ ∈ (0, 1). (2.22)

Assume that (w1, w2) is a solution of (2.22) for λ ∈ (0, 1). Then,

∥w1∥X
= sup

t∈[0,T ]

|λF1w2(t)|

=λ sup
t∈[0,T ]

∣∣∣η(t) + ∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)
f
(
s, w2(s),

∫ s

0

(s− τ)n−β−1

Γ(n− β)
w2(τ)dτ

)
ds
∣∣∣

≤λ sup
t∈[0,T ]

(
|η(t)|+

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)

∣∣∣f(s, w2(s),

∫ s

0

(s− τ)n−β−1

Γ(n− β)
w2(τ)dτ

)∣∣∣ds)
≤λ(C +B∥w2∥Y ),

(2.23)
and, similarly,

∥w2∥Y = sup
t∈[0,T ]

|λF2w1(t)| ≤ λ(C +B∥w1∥X). (2.24)

(2.23) and (2.24) guarantee that (w1, w2) ̸∈ ∂U . Therefore, by Theorem 1.5, there
exists a fixed point (w10, w20) in U such that ∥(w10, w20)∥X×Y ≤ R, which com-
pletes the proof. �

It follows from Lemma 2.1 and Theorem 2.3 that the solution (u0, v0) of (1.1)-
(1.2) is given by

u0(t) =
n−1∑
k=0

tk

k!
ηk +

∫ t

0

(t− s)n−1

Γ(n)
w10(s)ds,

v0(t) =
n−1∑
k=0

tk

k!
ξk +

∫ t

0

(t− s)n−1

Γ(n)
w20(s)ds,

(2.25)

where

w10(t) =
m−n−1∑

i=0

ti

i!
ηn+i

+

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)
f
(
s, w20(s),

∫ s

0

(s− τ)n−β−1

Γ(n− β)
w20(τ)dτ

)
ds,

w20(t) =
m−n−1∑

i=0

ti

i!
ξn+i

+

∫ t

0

(t− s)σ−n−1

Γ(σ − n)
g
(
s, w10(s),

∫ s

0

(s− τ)n−α−1

Γ(n− α)
w10(τ)dτ

)
ds.

(2.26)
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Theorem 2.4. Assume (H1), (H2) and (H4) hold, and

D1 = sup
t∈[0,T ]

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)

(
l1(s) +

sn−β

Γ(n− β + 1)
l2(s)

)
ds < 1,

D2 = sup
t∈[0,T ]

∫ t

0

(t− s)σ−n−1

Γ(σ − n)

(
l3(s) +

sn−α

Γ(n− α+ 1)
l4(s)

)
ds < 1,

0 < sup
t∈[0,T ]

(∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)
|f(s, 0, 0)|ds

)
< +∞,

0 < sup
t∈[0,T ]

(∫ t

0

(t− s)σ−n−1

Γ(σ − n)
|g(s, 0, 0)|ds

)
< +∞

(2.27)

Then the system of integral equations (2.1)-(2.4) has a unique solution.

Proof. Define the mapping F and the ball U as those in the proof of Theorem 2.3,
where

R =
1

1−D1
sup

t∈[0,T ]

(∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)
|f(s, 0, 0)|ds

)
. (2.28)

Then F is well defined and continuous. For (w1, w2) ∈ U , we obtain

∥F1w2∥X ≤∥F1w2 − F10∥X + ∥F10∥X

≤ sup
t∈[0,T ]

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)

(
l1(s) +

sn−β

Γ(n− β + 1)
l2(s)

)
ds∥w2∥Y

+ sup
t∈[0,T ]

(∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)
|f(s, 0, 0)|ds

)
≤D1R+ (1−D1)R ≤ R.

(2.29)

Similarly, ∥F2w1∥Y ≤ R. Therefore, FU ⊂ U .
For (w1, w2), (w

′
1, w

′
2) ∈ U , we have

∥F1w2 − F1w
′
2∥X

≤ sup
t∈[0,T ]

|F1w2(t)− F1w
′
2(t)|

≤ sup
t∈[0,T ]

∫ t

0

(t− s)ρ−n−1

Γ(ρ− n)

(
l1(s) +

sn−β

Γ(n− β + 1)
l2(s)

)
ds∥w2 − w′

2∥Y

=D1∥w2 − w′
2∥Y ,

(2.30)

and, similarly,

∥F2w1 − F2w
′
1∥X ≤ D2∥w1 − w′

1∥X . (2.31)

Noting that D1 < 1, D2 < 1, F is a contractive mapping. It follows from Banach
contraction principle that F has a unique fixed point (w′

10, w
′
20) ∈ U , which is a

solution of integral equations (2.1)-(2.4). This completes the proof. �



A SYSTEM OF HIGHER-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS 67

3. Example

Consider the following coupled system of fractional differential equations:

cD11/5u(t) =
t

2
+

t

3
v′′(t) +

t4/5

4
cD9/5v(t), 0 < t ≤ 1,

u(0) = 0, u′(0) = 1, u′′(0) = 2,

cD11/4v(t) = t+
1

2
u′′(t) +

t−3/4

3
cD5/4u(t), 0 < t ≤ 1,

v(0) = 3, v′(0) = 4, v′′(0) = 5.

(3.1)

Here T = 1, n = 2,m = 3, ρ = 11/5, σ = 11/4, β = 9/5, α = 5/4, η1 = 0, η2 =
1, η3 = 2, ξ1 = 3, ξ2 = 4, and ξ3 = 5. Obviously, the hypotheses (H1)-(H3) are
satisfied with a1(t) = t/2, a2(t) = t/3, a3(t) = t4/5/4, b1(t) = t, b2(t) = 1/2, b3(t) =
t−3/4/3. In this case

B1 =
1

Γ(1/5)
sup

t∈[0,1]

∫ t

0

(t− s)−4/5
(s
3
+

s

4Γ(6/5)

)
ds

=
1

Γ(1/5)

(1
3
+

1

4Γ(6/5)

)15
4

< 1,

B2 =
1

Γ(3/4)
sup

t∈[0,1]

∫ t

0

(t− s)−1/4
(1
2
+

1

3Γ(7/4)

)
ds

=
1

Γ(3/4)

(1
2
+

1

3Γ(7/4)

)4
3
< 1,

0 < C1 = sup
t∈[0,1]

(
2 +

1

Γ(1/5)

∫ t

0

(t− s)−4/5 · s
2
ds
)

=2 +
1

Γ(1/5)
· 15
8

< +∞,

0 < C2 = sup
t∈[0,1]

(
5 +

1

Γ(3/4)

∫ t

0

(t− s)−1/4 · sds
)

=5 +
1

Γ(3/4)
· −8

3
< +∞.

(3.2)

Thus, all the conditions of Theorem 2.3 are satisfied, and there exists a solution of
system (3.1).
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