ON SOLUTIONS OF A SYSTEM OF HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

(COMMUNICATED BY DOUGLAS R. ANDERSON)

ZHENYU GUO, MIN LIU

Abstract

A system of higher-order nonlinear fractional differential equations is studied in this article, and some sufficient conditions for existence and uniqueness of a solution for the system is established by the nonlinear alternative of Leray-Schauder and Banach contraction principle.

1. Introduction and preliminaries

This article is concerned with the initial value problem for the following system of fractional order differential equations:

$$
\begin{array}{ll}
{ }^{c} D^{\rho} u(t)=f\left(t, v^{(n)}(t),{ }^{c} D^{\beta} v(t)\right), & u^{(k)}(0)=\eta_{k},
\end{array} \quad 0<t \leq T, ~=\xi^{c} D^{\sigma} v(t)=g\left(t, u^{(n)}(t),{ }^{c} D^{\alpha} u(t)\right), \quad v^{(k)}(0)=\xi_{k}, \quad 0<t \leq T, ~ l
$$

where ${ }^{c} D$ denotes the Caputo fractional derivative, $f, g:[0, T] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ are given functions, $\rho, \sigma \in(m-1, m), \alpha, \beta \in(n-1, n), m, n \in \mathbb{N}, \rho>\beta, \sigma>\alpha$, $k=0,1,2, \cdots, m-1, T>0$, and η_{k}, ξ_{k} are suitable real constants. In this article, we consider the case that all of ρ, σ, β and α are non-integer valued.

Recently, fractional order differential equations and systems have been of great interest. For example, in 2010, Li[9] discussed the existence and uniqueness of mild solution for

$$
\begin{gather*}
\frac{d^{q} x(t)}{d t^{q}}=-A x(t)+f(t, x(t), G x(t)), \quad t \in[0, T] \tag{1.3}\\
x(0)+g(x)=x_{0}
\end{gather*}
$$

Li and Guérékata[10] studied mild solutions of the fractional integrodifferential equations as follows

$$
\begin{equation*}
\frac{d^{q} x(t)}{d t^{q}}+A x(t)=f(t, x(t))+\int_{0}^{t} a(t-s) g(s, x(s)) d s, \quad t \in[0, T], \quad x(0)=x_{0} \tag{1.4}
\end{equation*}
$$

[^0]In 2011, Anguraj, Karthikeyan and Trujillo[1] investigated the existence and the uniqueness of the solution for the following fractional integrodifferential equation

$$
\begin{align*}
& \frac{d^{q} x(t)}{d t^{q}}=f\left(t, x(t), \int_{0}^{t} k(t, s, x(s)) d s, \int_{0}^{1} h(t, s, x(s)) d s\right), \quad t \in[0,1] \tag{1.5}\\
& x(0)=\int_{0}^{1} g(s) x(s) d s
\end{align*}
$$

Guo and Liu[4] studied the existence of unique solutions of initial value problems of the following system of fractional order differential equations with infinite delay

$$
\begin{align*}
D^{\alpha} y_{1}(t) & =f_{1}\left[t, y_{1 t}, y_{2 t}\right], \quad t \in[0, b], \\
y_{1}(t) & =\phi_{1}(t), \quad t \in(-\infty, 0], \\
D^{\alpha} y_{2}(t) & =f_{2}\left[t, y_{1 t}, y_{2 t}\right], \quad t \in[0, b], \tag{1.6}\\
y_{2}(t) & =\phi_{2}(t), \quad t \in(-\infty, 0] .
\end{align*}
$$

For detailed discussion on this topic, refer to the monographs of Kilbas et al.[5], and the papers by Ahmad and Alsaedi [2], Guo and Liu [3], Kosmatov [6], Lakshmikantham and Vatsala [7], Li and Deng [8], Su [11], Goodrich [12,13], Bonilla et al. [14], Bai and Fang [15], Kobayashi [16], Wang et al. [17] and the references therein.

Applying the nonlinear alternative of Leray-Schauder, we obtain a result of existence of a solution for system (1.1)-(1.2). The uniqueness of a solution for the system is established by Banach contraction principle.

The following notations, definitions, and preliminary facts will be used throughout this paper.

Let $X=\{u: u \in C([0, T])\}$ and $Y=\{v: v \in C([0, T])\}$ be normed spaces with the sup-norm $\|u\|_{X}$ and $\|v\|_{Y}$, respectively, where $C([0, T])$ denotes the space of all continuous functions defined on $[0, T]$. Then, $\left(X \times Y,\|\cdots\|_{X \times Y}\right)$ is a normed space endowed with the sup-norm given by $\|(u, v)\|_{X \times Y}:=\max \left\{\|u\|_{X},\|v\|_{Y}\right\}$.

Definition 1.1. For a function $f \in C^{m}([0, T])$, $m \in \mathbb{N}$, where $C^{m}([0, T])$ denotes the space of all continuous functions with m th order derivative, the Caputo derivative of fractional order $\alpha \in(m-1, m)$ is defined by

$$
\begin{equation*}
{ }^{c} D^{\alpha} f(t)=\frac{1}{\Gamma(m-\alpha)} \int_{0}^{t}(t-s)^{m-\alpha-1} f^{(m)}(s) d s \tag{1.7}
\end{equation*}
$$

Definition 1.2. The Riemann-Liouville fractional integral of order α, inversion of D^{α}, is defined by

$$
\begin{equation*}
I^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f(s) d s \tag{1.8}
\end{equation*}
$$

Lemma 1.3. [8] If $\alpha \in(m-1, m), m \in \mathbb{N}, f \in C^{m}([0, T])$ and $g \in C^{1}([0, T])$, then

$$
\text { (1) }{ }^{c} D^{\alpha} I^{\alpha} g(t)=g(t) \text {; }
$$

(2) $I^{\alpha}\left({ }^{c} D^{\alpha}\right) f(t)=f(t)-\sum_{k=0}^{m-1} \frac{t^{k}}{k!} f^{(k)}(0)$.

Lemma 1.4. [6] If $m-1<\alpha<\beta<m$ and $f \in C^{m}([0, T])$, then for all $k \in$ $\{1,2, \cdots, m-1\}$ and for all $t \in[0, T]$, the following relations hold:

$$
\begin{equation*}
{ }^{c} D^{\beta-m+k} f^{m-k}(t)={ }^{c} D^{\beta} f(t) \tag{1.9}
\end{equation*}
$$

$$
\begin{equation*}
{ }^{c} D^{\beta-\alpha}{ }^{c} D^{\alpha} f(t)={ }^{c} D^{\beta} f(t) \tag{1.10}
\end{equation*}
$$

Theorem 1.5. (the nonlinear alternative of Leray-Schauder) Let X be a normed linear space, $S \subset X$ be a convex set, U be open in S with $0 \in U$, and $F: \bar{U} \rightarrow S$ be a continuous and compact mapping. Then either the mapping F has a fixed point in \bar{U} or there exist $n \in \partial U$ and $\lambda \in(0,1)$ with $n=\lambda F n$.

Now list the following hypotheses for convenience:
(H1) $f:[0, T] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ are continuously differentiable function with $f(0,0,0)=$ 0 and $f(t, 0,0) \neq 0$ on a compact subinterval of $(0, T]$;
(H2) $g:[0, T] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ are continuously differentiable function with $g(0,0,0)=$ 0 and $g(t, 0,0) \neq 0$ on a compact subinterval of $(0, T]$;
(H3) there exist nonnegative functions $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in C([0, T])$ such that

$$
\begin{align*}
& |f(t, x, y)| \leq a_{1}(t)+a_{2}(t)|x|+a_{3}(t)|y|, \quad t \in[0, T] \\
& |g(t, x, y)| \leq b_{1}(t)+b_{2}(t)|x|+b_{3}(t)|y|, \quad t \in[0, T] \tag{1.11}
\end{align*}
$$

(H4) there exist nonnegative functions $l_{1}, l_{2}, l_{3}, l_{4} \in C([0, T])$ such that

$$
\begin{align*}
& \left|f\left(t, x_{1}, y_{1}\right)-f\left(t, x_{2}, y_{2}\right)\right| \leq l_{1}(t)\left|x_{1}-x_{2}\right|+l_{2}(t)\left|y_{1}-y_{2}\right|, \quad t \in[0, T] \\
& \left|g\left(t, x_{1}, y_{1}\right)-g\left(t, x_{2}, y_{2}\right)\right| \leq l_{3}(t)\left|x_{1}-x_{2}\right|+l_{4}(t)\left|y_{1}-y_{2}\right|, \quad t \in[0, T] \tag{1.12}
\end{align*}
$$

2. Existence and uniqueness of a solution

In this section, the theorems of existence and uniqueness of a solution for system (1.1)-(1.2) will be given.

Lemma 2.1. Let (H1)-(H2) hold and $n-1<\alpha, \beta<n \leq m-1<\rho, \sigma<m$. Then, a function $u \in C^{m}([0, T])$ is a solution of the initial value problem (1.1) if and only if

$$
\begin{equation*}
u(t)=\sum_{k=0}^{n-1} \frac{t^{k}}{k!} \eta_{k}+\int_{0}^{t} \frac{(t-s)^{n-1}}{\Gamma(n)} w_{1}(s) d s, 0<t \leq 1 \tag{2.1}
\end{equation*}
$$

where $w_{1}(t)=u^{(n)}(t) \in C^{m-n}([0, T])$ with $u^{(n+i)}(t)=w_{1}^{(i)}(t), 0 \leq i \leq m-n-1$ is a solution of the integral equation
$w_{1}(t)=\sum_{i=0}^{m-n-1} \frac{t^{i}}{i!} \eta_{n+i}+\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)} f\left(s, w_{2}(s), \int_{0}^{s} \frac{(s-\tau)^{n-\beta-1}}{\Gamma(n-\beta)} w_{2}(\tau) d \tau\right) d s$,
and a function $v \in C^{m}([0, T])$ is a solution of the initial value problem (1.2) if and only if

$$
\begin{equation*}
v(t)=\sum_{k=0}^{n-1} \frac{t^{k}}{k!} \xi_{k}+\int_{0}^{t} \frac{(t-s)^{n-1}}{\Gamma(n)} w_{2}(s) d s, 0<t \leq 1 \tag{2.3}
\end{equation*}
$$

where $w_{2}(t)=v^{(n)}(t) \in C^{m-n}([0, T])$ with $v^{(n+i)}(t)=w_{2}^{(i)}(t)$ is a solution of the integral equation

$$
\begin{equation*}
w_{2}(t)=\sum_{i=0}^{m-n-1} \frac{t^{i}}{i!} \xi_{n+i}+\int_{0}^{t} \frac{(t-s)^{\sigma-n-1}}{\Gamma(\sigma-n)} g\left(s, w_{1}(s), \int_{0}^{s} \frac{(s-\tau)^{n-\alpha-1}}{\Gamma(n-\alpha)} w_{1}(\tau) d \tau\right) d s \tag{2.4}
\end{equation*}
$$

Proof. Since the two parts of the Lemma is similar, we only give the proof of the first part briefly. Lemma 1.4 ensures that

$$
\begin{equation*}
{ }^{c} D^{\rho-n} u^{(n)}(t)={ }^{c} D^{\rho} u(t)=f\left(t, v^{(n)}(t),{ }^{c} D^{\beta} v(t)\right) . \tag{2.5}
\end{equation*}
$$

By Definition 1.1, we obtain

$$
\begin{equation*}
{ }^{c} D^{\rho-n} u^{(n)}(t)=f\left(t, v^{(n)}(t), \int_{0}^{t} \frac{(t-s)^{n-\beta-1}}{\Gamma(n-\beta)} v^{(n)}(s) d s\right) \tag{2.6}
\end{equation*}
$$

It follows from Definition 1.2, Lemma 1.3 (2) and the substitutions $u^{(n)}(t)=$ $w_{1}(t), v^{(n)}(t)=w_{2}(t)$ that

$$
\begin{align*}
w_{1}(t)= & u^{(n)}(t)=\sum_{i=0}^{m-n-1} \frac{t^{i}}{i!} u^{(n+i)}(0)+I^{\rho-n}\left({ }^{c} D^{\rho-n} u^{(n)}(t)\right) \\
= & \sum_{i=0}^{m-n-1} \frac{t^{i}}{i!} w_{1}^{(i)}(0) \\
& +\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)} f\left(s, v^{(n)}(s), \int_{0}^{s} \frac{(s-\tau)^{n-\beta-1}}{\Gamma(n-\beta)} v^{(n)}(\tau) d \tau\right) d s \tag{2.7}\\
= & \sum_{i=0}^{m-n-1} \frac{t^{i}}{i!} \eta_{n+i} \\
& +\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)} f\left(s, w_{2}(s), \int_{0}^{s} \frac{(s-\tau)^{n-\beta-1}}{\Gamma(n-\beta)} w_{2}(\tau) d \tau\right) d s
\end{align*}
$$

Conversely, suppose that $w_{1} \in C^{m-n}([0, T])$ is a solution of (2.2). Then,

$$
\begin{align*}
u^{(n)}(t)= & w_{1}(t)=\sum_{i=0}^{m-n-1} \frac{t^{i}}{i!} \eta_{n+i} \\
& +\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)} f\left(s, w_{2}(s), \int_{0}^{s} \frac{(s-\tau)^{n-\beta-1}}{\Gamma(n-\beta)} w_{2}(\tau) d \tau\right) d s \tag{2.8}\\
= & \sum_{i=0}^{m-n-1} \frac{t^{i}}{i!} \eta_{n+i}+I^{\rho-n} f\left(t, v^{(n)}(t),{ }^{c} D^{\beta} v(t)\right)
\end{align*}
$$

Since $\rho-n \in(m-n-1, m-n)$, by Lemma 1.3 (1) and Lemma 1.4, we have

$$
\begin{align*}
{ }^{c} D^{\rho} u(t) & ={ }^{c} D^{\rho-n} u^{(n)}(t) \\
& ={ }^{c} D^{\rho-n}\left(\sum_{i=0}^{m-n-1} \frac{t^{i}}{i!} \eta_{n+i}\right)+{ }^{c} D^{\rho-n} I^{\rho-n} f\left(t, v^{(n)}(t){ }^{c} D^{\beta} v(t)\right) \tag{2.9}\\
& =f\left(t, v^{(n)}(t){ }^{c} D^{\beta} v(t)\right), 0<t \leq 1 .
\end{align*}
$$

Differentiating (2.2), we get

$$
\begin{align*}
& w_{1}^{(k)}=\sum_{i=0}^{m-n-k-1} \frac{t^{i}}{i!} \eta_{n+i+k}+\prod_{j=1}^{k}(\rho-n-j) \int_{0}^{t} \frac{(t-s)^{\rho-n-1-k}}{\Gamma(\rho-n)} \tag{2.10}\\
& f\left(s, w_{2}(s), \int_{0}^{s} \frac{(s-\tau)^{n-\beta-1}}{\Gamma(n-\beta)} w_{2}(\tau) d \tau\right) d s
\end{align*}
$$

for each $k=0,1, \cdots, m-n-1$. As $\rho-n-1-k \in(-1, m-n-1)$, the second term in (2.10) goes to zero as $t \rightarrow 0$. Thus, we have

$$
\begin{equation*}
u^{(n+k)}(0)=w_{1}^{(k)}(0)=\eta_{n+k}, \quad k=0,1, \cdots, m-n-1, \tag{2.11}
\end{equation*}
$$

which means that $u^{(k)}(0)=\eta_{k}, k=0,1, \cdots, m-1$. Clearly, $w_{1}^{(m-n)}=u^{(m)} \in$ $C([0, T])$. Therefore, u is a solution of (1.1).

For the sake of simplicity, Lemma 2.1 can be rewritten as
Lemma 2.2. Let $f, g:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions. Then $(u, v) \in X \times Y$ is a solution of (1.1)-(1.2) if and only if $(u, v) \in X \times Y$ is a solution of (2.1)-(2.4).

Theorem 2.3. Assume (H1)-(H3) hold, and

$$
\begin{align*}
B_{1} & =\sup _{t \in[0, T]} \int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)}\left(a_{2}(s)+\frac{s^{n-\beta}}{\Gamma(n-\beta+1)} a_{3}(s)\right) d s<1, \\
B_{2} & =\sup _{t \in[0, T]} \int_{0}^{t} \frac{(t-s)^{\sigma-n-1}}{\Gamma(\sigma-n)}\left(b_{2}(s)+\frac{s^{n-\alpha}}{\Gamma(n-\alpha+1)} b_{3}(s)\right) d s<1, \\
0<C_{1} & =\sup _{t \in[0, T]}\left(|\eta(t)|+\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)} a_{1}(s) d s\right)<+\infty, \tag{2.12}\\
0<C_{2} & =\sup _{t \in[0, T]}\left(|\xi(t)|+\int_{0}^{t} \frac{(t-s)^{\sigma-n-1}}{\Gamma(\sigma-n)} b_{1}(s) d s\right)<+\infty,
\end{align*}
$$

where

$$
\begin{equation*}
\eta(t)=\sum_{i=0}^{m-n-1} \frac{t^{i}}{i!} \eta_{n+i}, \quad \xi(t)=\sum_{i=0}^{m-n-1} \frac{t^{i}}{i!} \xi_{n+i} \tag{2.13}
\end{equation*}
$$

Then the system of integral equations (2.1)-(2.4) has a solution.
Proof. Define a mapping $F: X \times Y \rightarrow X \times Y$ and a ball U in the normed space $X \times Y$ by

$$
\begin{equation*}
F\left(w_{1}, w_{2}\right)(t)=\left(F_{1} w_{2}(t), F_{2} w_{1}(t)\right), \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
U=\left\{\left(w_{1}(t), w_{2}(t)\right):\left(w_{1}(t), w_{2}(t)\right) \in X \times Y,\left\|\left(w_{1}(t), w_{2}(t)\right)\right\|_{X \times Y}<R, t \in[0, T]\right\} \tag{2.14}
\end{equation*}
$$

where

$$
\begin{align*}
& F_{1} w_{2}(t)=\eta(t)+\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)} f\left(s, w_{2}(s), \int_{0}^{s} \frac{(s-\tau)^{n-\beta-1}}{\Gamma(n-\beta)} w_{2}(\tau) d \tau\right) d s \\
& F_{2} w_{1}(t)=\xi(t)+\int_{0}^{t} \frac{(t-s)^{\sigma-n-1}}{\Gamma(\sigma-n)} g\left(s, w_{1}(s), \int_{0}^{s} \frac{(s-\tau)^{n-\alpha-1}}{\Gamma(n-\alpha)} w_{1}(\tau) d \tau\right) d s \tag{2.15}
\end{align*}
$$

and

$$
\begin{equation*}
R=\frac{C}{1-B}, B=\max \left\{B_{1}, B_{2}\right\}, C=\max \left\{C_{1}, C_{2}\right\} \tag{2.16}
\end{equation*}
$$

Clearly, by (H1) and (H2), F is well defined and continuous. Let $\left(w_{1}, w_{2}\right) \in \bar{U}$. Then $\left\|\left(w_{1}, w_{2}\right)\right\|_{X \times Y} \leq R$, and

$$
\begin{align*}
\| & F_{1} w_{2} \|_{X} \\
= & \sup _{t \in[0, T]}\left|\eta(t)+\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)} f\left(s, w_{2}(s), \int_{0}^{s} \frac{(s-\tau)^{n-\beta-1}}{\Gamma(n-\beta)} w_{2}(\tau) d \tau\right) d s\right| \\
\leq & \sup _{t \in[0, T]}\left(|\eta(t)|+\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)}\left|f\left(s, w_{2}(s), \int_{0}^{s} \frac{(s-\tau)^{n-\beta-1}}{\Gamma(n-\beta)} w_{2}(\tau) d \tau\right)\right| d s\right) \\
\leq & \sup _{t \in[0, T]}\left(|\eta(t)|+\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)}\left(a_{1}(s)+a_{2}(s)\left|w_{2}(s)\right|\right.\right. \\
& \left.\left.\quad+a_{3}(s) \int_{0}^{s} \frac{(s-\tau)^{n-\beta-1}}{\Gamma(n-\beta)}\left|w_{2}(\tau)\right| d \tau\right) d s\right) \\
\leq & \sup _{t \in[0, T]}\left(|\eta(t)|+\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)} a_{1}(s) d s\right) \\
& +\sup _{t \in[0, T]}\left(\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)}\left(a_{2}(s)+a_{3}(s) \int_{0}^{s} \frac{(s-\tau)^{n-\beta-1}}{\Gamma(n-\beta)} d \tau\right) d s\right)\left\|w_{2}\right\|_{Y} \\
\leq & \sup _{t \in[0, T]}\left(|\eta(t)|+\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)} a_{1}(s) d s\right) \\
& +\sup _{t \in[0, T]} \int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)}\left(a_{2}(s)+\frac{s^{n-\beta}}{\Gamma(n-\beta+1)} a_{3}(s)\right) d s\left\|w_{2}\right\|_{Y} \\
= & C_{1}+B_{1}\left\|w_{2}\right\|_{Y} \leq C+B R=R . \tag{2.17}
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
\left\|F_{2} w_{1}\right\|_{Y} \leq C_{2}+B_{2}\left\|w_{1}\right\|_{X} \leq C+B R=R \tag{2.18}
\end{equation*}
$$

Therefore, $\left\|F\left(w_{1}, w_{2}\right)\right\|_{X \times Y} \leq R$, which implies that $F\left(w_{1}, w_{2}\right) \in \bar{U}$. In order to show that F is completely continuous (continuous and compact), put

$$
\begin{align*}
& M_{f}=\max _{t \in[0, T]}\left|f\left(t, w_{2}(t), \int_{0}^{t} \frac{(t-\tau)^{n-\beta-1}}{\Gamma(n-\beta)} w_{2}(\tau) d \tau\right)\right| \tag{2.19}\\
& M_{g}=\max _{t \in[0, T]}\left|g\left(t, w_{1}(t), \int_{0}^{t} \frac{(t-\tau)^{n-\alpha-1}}{\Gamma(n-\alpha)} w_{1}(\tau) d \tau\right)\right|
\end{align*}
$$

For $\left(w_{1}, w_{2}\right) \in U$ and $t_{1}, t_{2} \in[0, T]$ with $t_{1}<t_{2}$, we obtain

$$
\begin{align*}
& \left|F_{1} w_{2}\left(t_{2}\right)-F_{1} w_{2}\left(t_{1}\right)\right| \\
& \quad=\left\lvert\, \eta\left(t_{2}\right)-\eta\left(t_{1}\right)+\int_{0}^{t_{2}} \frac{\left(t_{2}-s\right)^{\rho-n-1}}{\Gamma(\rho-n)} f\left(s, w_{2}(s), \int_{0}^{s} \frac{(s-\tau)^{n-\beta-1}}{\Gamma(n-\beta)} w_{2}(\tau) d \tau\right)\right. \\
& \left.\quad-\int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{\rho-n-1}}{\Gamma(\rho-n)} f\left(s, w_{2}(s), \int_{0}^{s} \frac{(s-\tau)^{n-\beta-1}}{\Gamma(n-\beta)} w_{2}(\tau) d \tau\right) d s \right\rvert\, \\
& \quad \leq\left|\eta\left(t_{2}\right)-\eta\left(t_{1}\right)\right|+M_{f}\left|\int_{0}^{t_{2}} \frac{\left(t_{2}-s\right)^{\rho-n-1}}{\Gamma(\rho-n)} d s-\int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{\rho-n-1}}{\Gamma(\rho-n)} d s\right| \\
& \quad \leq\left|\eta\left(t_{2}\right)-\eta\left(t_{1}\right)\right|+\frac{M_{f}}{\Gamma(\rho-n+1)}\left|t_{2}^{\rho-n}-t_{1}^{\rho-n}\right| \tag{2.20}
\end{align*}
$$

and, in a similar manner,

$$
\begin{equation*}
\left|F_{2} w_{1}\left(t_{2}\right)-F_{2} w_{1}\left(t_{1}\right)\right| \leq\left|\xi\left(t_{2}\right)-\xi\left(t_{1}\right)\right|+\frac{M_{g}}{\Gamma(\sigma-n+1)}\left|t_{2}^{\sigma-n}-t_{1}^{\sigma-n}\right| . \tag{2.21}
\end{equation*}
$$

It follows from the uniform continuity of functions $t^{k}, t^{\rho-n}$ and $t^{\sigma-n}$ on $[0, T]$ that $F U$ is an equicontinuous set. Moreover, it is uniformly bounded as $F U \subset U$. Hence, F is a completely continuous mapping.

Now to consider the following eigenvalue problem

$$
\begin{equation*}
\left(w_{1}, w_{2}\right)=\lambda F\left(w_{1}, w_{2}\right)=\left(\lambda F_{1} w_{2}, \lambda F_{2} w_{1}\right), \lambda \in(0,1) . \tag{2.22}
\end{equation*}
$$

Assume that $\left(w_{1}, w_{2}\right)$ is a solution of (2.22) for $\lambda \in(0,1)$. Then,

$$
\begin{align*}
& \left\|w_{1}\right\|_{X} \\
& =\sup _{t \in[0, T]}\left|\lambda F_{1} w_{2}(t)\right| \\
& =\lambda \sup _{t \in[0, T]}\left|\eta(t)+\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)} f\left(s, w_{2}(s), \int_{0}^{s} \frac{(s-\tau)^{n-\beta-1}}{\Gamma(n-\beta)} w_{2}(\tau) d \tau\right) d s\right| \\
& \leq \lambda \sup _{t \in[0, T]}\left(|\eta(t)|+\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)}\left|f\left(s, w_{2}(s), \int_{0}^{s} \frac{(s-\tau)^{n-\beta-1}}{\Gamma(n-\beta)} w_{2}(\tau) d \tau\right)\right| d s\right) \\
& \leq \lambda\left(C+B\left\|w_{2}\right\|_{Y}\right) \tag{2.23}
\end{align*}
$$

and, similarly,

$$
\begin{equation*}
\left\|w_{2}\right\|_{Y}=\sup _{t \in[0, T]}\left|\lambda F_{2} w_{1}(t)\right| \leq \lambda\left(C+B\left\|w_{1}\right\|_{X}\right) . \tag{2.24}
\end{equation*}
$$

(2.23) and (2.24) guarantee that $\left(w_{1}, w_{2}\right) \notin \partial U$. Therefore, by Theorem 1.5, there exists a fixed point $\left(w_{10}, w_{20}\right)$ in \bar{U} such that $\left\|\left(w_{10}, w_{20}\right)\right\|_{X \times Y} \leq R$, which completes the proof.

It follows from Lemma 2.1 and Theorem 2.3 that the solution $\left(u_{0}, v_{0}\right)$ of (1.1)(1.2) is given by

$$
\begin{align*}
& u_{0}(t)=\sum_{k=0}^{n-1} \frac{t^{k}}{k!} \eta_{k}+\int_{0}^{t} \frac{(t-s)^{n-1}}{\Gamma(n)} w_{10}(s) d s, \tag{2.25}\\
& v_{0}(t)=\sum_{k=0}^{n-1} \frac{t^{k}}{k!} \xi_{k}+\int_{0}^{t} \frac{(t-s)^{n-1}}{\Gamma(n)} w_{20}(s) d s,
\end{align*}
$$

where

$$
\begin{align*}
w_{10}(t)= & \sum_{i=0}^{m-n-1} \frac{t^{i}}{i!} \eta_{n+i} \\
& +\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)} f\left(s, w_{20}(s), \int_{0}^{s} \frac{(s-\tau)^{n-\beta-1}}{\Gamma(n-\beta)} w_{20}(\tau) d \tau\right) d s, \tag{2.26}\\
w_{20}(t)= & \sum_{i=0}^{m-n-1} \frac{t^{i}}{i!} \xi_{n+i} \\
& +\int_{0}^{t} \frac{(t-s)^{\sigma-n-1}}{\Gamma(\sigma-n)} g\left(s, w_{10}(s), \int_{0}^{s} \frac{(s-\tau)^{n-\alpha-1}}{\Gamma(n-\alpha)} w_{10}(\tau) d \tau\right) d s .
\end{align*}
$$

Theorem 2.4. Assume (H1), (H2) and (H4) hold, and

$$
\begin{align*}
D_{1} & =\sup _{t \in[0, T]} \int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)}\left(l_{1}(s)+\frac{s^{n-\beta}}{\Gamma(n-\beta+1)} l_{2}(s)\right) d s<1 \\
D_{2} & =\sup _{t \in[0, T]} \int_{0}^{t} \frac{(t-s)^{\sigma-n-1}}{\Gamma(\sigma-n)}\left(l_{3}(s)+\frac{s^{n-\alpha}}{\Gamma(n-\alpha+1)} l_{4}(s)\right) d s<1 \\
0 & <\sup _{t \in[0, T]}\left(\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)}|f(s, 0,0)| d s\right)<+\infty \tag{2.27}\\
0 & <\sup _{t \in[0, T]}\left(\int_{0}^{t} \frac{(t-s)^{\sigma-n-1}}{\Gamma(\sigma-n)}|g(s, 0,0)| d s\right)<+\infty
\end{align*}
$$

Then the system of integral equations (2.1)-(2.4) has a unique solution.
Proof. Define the mapping F and the ball U as those in the proof of Theorem 2.3, where

$$
\begin{equation*}
R=\frac{1}{1-D_{1}} \sup _{t \in[0, T]}\left(\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)}|f(s, 0,0)| d s\right) \tag{2.28}
\end{equation*}
$$

Then F is well defined and continuous. For $\left(w_{1}, w_{2}\right) \in \bar{U}$, we obtain

$$
\begin{align*}
\left\|F_{1} w_{2}\right\|_{X} \leq & \left\|F_{1} w_{2}-F_{1} 0\right\|_{X}+\left\|F_{1} 0\right\|_{X} \\
\leq & \sup _{t \in[0, T]} \int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)}\left(l_{1}(s)+\frac{s^{n-\beta}}{\Gamma(n-\beta+1)} l_{2}(s)\right) d s\left\|w_{2}\right\|_{Y} \\
& +\sup _{t \in[0, T]}\left(\int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)}|f(s, 0,0)| d s\right) \tag{2.29}\\
\leq & D_{1} R+\left(1-D_{1}\right) R \leq R
\end{align*}
$$

Similarly, $\left\|F_{2} w_{1}\right\|_{Y} \leq R$. Therefore, $F \bar{U} \subset \bar{U}$.
For $\left(w_{1}, w_{2}\right),\left(w_{1}^{\prime}, w_{2}^{\prime}\right) \in \bar{U}$, we have

$$
\begin{align*}
& \left\|F_{1} w_{2}-F_{1} w_{2}^{\prime}\right\|_{X} \\
& \quad \leq \sup _{t \in[0, T]}\left|F_{1} w_{2}(t)-F_{1} w_{2}^{\prime}(t)\right| \\
& \quad \leq \sup _{t \in[0, T]} \int_{0}^{t} \frac{(t-s)^{\rho-n-1}}{\Gamma(\rho-n)}\left(l_{1}(s)+\frac{s^{n-\beta}}{\Gamma(n-\beta+1)} l_{2}(s)\right) d s\left\|w_{2}-w_{2}^{\prime}\right\|_{Y} \tag{2.30}\\
& \quad=D_{1}\left\|w_{2}-w_{2}^{\prime}\right\|_{Y}
\end{align*}
$$

and, similarly,

$$
\begin{equation*}
\left\|F_{2} w_{1}-F_{2} w_{1}^{\prime}\right\|_{X} \leq D_{2}\left\|w_{1}-w_{1}^{\prime}\right\|_{X} \tag{2.31}
\end{equation*}
$$

Noting that $D_{1}<1, D_{2}<1, F$ is a contractive mapping. It follows from Banach contraction principle that F has a unique fixed point $\left(w_{10}^{\prime}, w_{20}^{\prime}\right) \in \bar{U}$, which is a solution of integral equations (2.1)-(2.4). This completes the proof.

3. Example

Consider the following coupled system of fractional differential equations:

$$
\begin{align*}
{ }^{c} D^{11 / 5} u(t) & =\frac{t}{2}+\frac{t}{3} v^{\prime \prime}(t)+\frac{t^{4 / 5}}{4}{ }^{c} D^{9 / 5} v(t), 0<t \leq 1 \\
u(0) & =0, \quad u^{\prime}(0)=1, \quad u^{\prime \prime}(0)=2 \tag{3.1}\\
{ }^{c} D^{11 / 4} v(t) & =t+\frac{1}{2} u^{\prime \prime}(t)+\frac{t^{-3 / 4}}{3}{ }^{c} D^{5 / 4} u(t), 0<t \leq 1, \\
v(0) & =3, \quad v^{\prime}(0)=4, \quad v^{\prime \prime}(0)=5
\end{align*}
$$

Here $T=1, n=2, m=3, \rho=11 / 5, \sigma=11 / 4, \beta=9 / 5, \alpha=5 / 4, \eta_{1}=0, \eta_{2}=$ $1, \eta_{3}=2, \xi_{1}=3, \xi_{2}=4$, and $\xi_{3}=5$. Obviously, the hypotheses (H1)-(H3) are satisfied with $a_{1}(t)=t / 2, a_{2}(t)=t / 3, a_{3}(t)=t^{4 / 5} / 4, b_{1}(t)=t, b_{2}(t)=1 / 2, b_{3}(t)=$ $t^{-3 / 4} / 3$. In this case

$$
\begin{align*}
B_{1} & =\frac{1}{\Gamma(1 / 5)} \sup _{t \in[0,1]} \int_{0}^{t}(t-s)^{-4 / 5}\left(\frac{s}{3}+\frac{s}{4 \Gamma(6 / 5)}\right) d s \\
& =\frac{1}{\Gamma(1 / 5)}\left(\frac{1}{3}+\frac{1}{4 \Gamma(6 / 5)}\right) \frac{15}{4}<1, \\
B_{2} & =\frac{1}{\Gamma(3 / 4)} \sup _{t \in[0,1]} \int_{0}^{t}(t-s)^{-1 / 4}\left(\frac{1}{2}+\frac{1}{3 \Gamma(7 / 4)}\right) d s \\
& =\frac{1}{\Gamma(3 / 4)}\left(\frac{1}{2}+\frac{1}{3 \Gamma(7 / 4)}\right) \frac{4}{3}<1, \\
0<C_{1} & =\sup _{t \in[0,1]}\left(2+\frac{1}{\Gamma(1 / 5)} \int_{0}^{t}(t-s)^{-4 / 5} \cdot \frac{s}{2} d s\right) \tag{3.2}\\
& =2+\frac{1}{\Gamma(1 / 5)} \cdot \frac{15}{8}<+\infty, \\
0<C_{2} & =\sup _{t \in[0,1]}\left(5+\frac{1}{\Gamma(3 / 4)} \int_{0}^{t}(t-s)^{-1 / 4} \cdot s d s\right) \\
& =5+\frac{1}{\Gamma(3 / 4)} \cdot \frac{-8}{3}<+\infty .
\end{align*}
$$

Thus, all the conditions of Theorem 2.3 are satisfied, and there exists a solution of system (3.1).

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

[1] A. Anguraj, P. Karthikeyan and J. J. Trujillo, Existence of Solutions to Fractional Mixed Integrodifferential Equations with Nonlocal Initial Condition, Adv. Difference Equ. 2011, Art. ID $690653,12 \mathrm{pp}$.
[2] B. Ahmad and A. Alsaedi, Existence and Uniqueness of Solutions for Coupled Systems of Higher-Order Nonlinear Fractional Differential Equations, Fixed Point Theory Appl. 2010, Art. ID 364560, 17 pp.
[3] Z. Guo and M. Liu, Existence and uniqueness of solutions for fractional order integrodifferential equations with nonlocal initial conditions, Pan-American Math. J. 21(3) (2011), 51-61.
[4] Z. Guo and M. Liu, Unique solutions for systems of fractional order differential equations with infinite delay, Bull. Math. Anal. Appl. 3(1)(2011), 142-147.
[5] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam, The Netherlands, 2006.
[6] N. Kosmatov, Integral equations and initial value problems for nonlinear differential equations of fractional order, Nonlinear Anal. 70(7) (2009) 2521-2529.
[7] V. Lakshmikanthama and A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. 69 (2008) 2677-2682.
[8] C. Li and W. Deng, Remarks on fractional derivatives, Appl. Math. Comput. 187(2) (2007) 777-784.
[9] F. Li, Mild solutions for fractional differential equations with nonlocal conditions, Adv. Difference Equ. 2010, Art. ID 287861, 9 pp.
[10] F. Li and M. Guérékata, Existence and Uniqueness of Mild Solution for Fractional Integrodifferential Equations, Adv. Difference Equ. 2010, Art. ID 158789, 10 pp.
[11] X. Su, Boundary value problems for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett. 22 (2009), 64-69.
[12] C. S. Goodrich, Existence of a positive solution to systems of differential equations of fractional order, Comput Math. Appl. 62 (2011), 1251-1268.
[13] C. S. Goodrich, Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett. 23 (2010), 1050-1055.
[14] B. Bonilla, M. Rivero, and J. J. Trujillo, On systems of linear fractional differential equations with constant coeffcients, Appl. Math. Comput. 187 (2007), 68-78.
[15] C. Bai and J. Fang, The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations, Appl. Math. Comput. 150 (2004), 611-621.
[16] M. Kobayashi, On an extension of Rolle's theorem to locally convex spaces, J. Math. Anal. Appl. 323 (2006), 1225-1230.
[17] J. Wang, H. Xiang, and Z. Liu, Positive solution to nonzero boundary values problem for a coupled system of nonlinear fractional differential equations, Int. J. Differ. Equ. (2010), Art. ID 186928, 12 pp .

School of Sciences, Liaoning Shihua University, Postal 113001, Fushun, Liaoning, China

E-mail address: guozy@163.com
E-mail address: min_liu@yeah.net

[^0]: 2000 Mathematics Subject Classification. 34K15, 34C10.
 Key words and phrases. System of fractional differential equations; the nonlinear alternative of Leray-Schauder; Banach contraction principle; fixed point.
 © 2011 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted August 25, 2011. Published September 13, 2011.

