RANGE OF $\mathcal{D}(\mathbb{R})$ BY INTEGRAL TRANSFORMS ASSOCIATED TO THE BESSEL-STRUVE OPERATOR

(COMMUNICATED BY SALAH MECHERI)

LOTFI KAMOUN, SELMA NEGZAOUI

Abstract

In this paper, we establish an inversion theorem of the Weyl integral transform associated with the Bessel-Struve operator $l_{\alpha}, \alpha>\frac{-1}{2}$. In the case of half integers, we give a characterization of the range of $\mathcal{D}(\mathbb{R})$ by Bessel-Struve transform and we prove a Schwartz-Paley-Wiener theorem on $\mathcal{E}^{\prime}(\mathbb{R})$.

1. Introduction

In [8], Watson developed the discrete harmonic analysis associated with BesselStruve kernel

$$
S_{\lambda}^{\alpha}(x)=j_{\alpha}(i \lambda x)-i h_{\alpha}(i \lambda x)
$$

where j_{α} and h_{α} are respectively the normalized Bessel and Struve functions of index α. Those functions are given as follows :

$$
j_{\alpha}(z)=2^{\alpha} \Gamma(\alpha+1) z^{-\alpha} J_{\alpha}(z)=\Gamma(\alpha+1) \sum_{n=0}^{+\infty} \frac{(-1)^{n}(z / 2)^{2 n}}{n!\Gamma(n+\alpha+1)}
$$

and

$$
h_{\alpha}(z)=2^{\alpha} \Gamma(\alpha+1) z^{-\alpha} \mathbf{H}_{\alpha}(z)=\Gamma(\alpha+1) \sum_{n=0}^{+\infty} \frac{(-1)^{n}(z / 2)^{2 n+1}}{\Gamma\left(n+\frac{3}{2}\right) \Gamma\left(n+\alpha+\frac{3}{2}\right)}
$$

Watson considered "generalised Schlömilch series" which is a kind of Fourier series

$$
\sum_{n=-\infty}^{+\infty} c_{n}(f) S_{-i n}^{\alpha}(x)
$$

where f is a suitable function and $c_{n}(f) \in \mathbb{C}$.
In this paper, we are interested with a kind of Fourier transform which was considered and studied by K. Trimèche in [4], called the Bessel-Struve transform, given

[^0]by
$$
\mathcal{F}_{B S}^{\alpha}(f)(\lambda)=\int_{\mathbb{R}} f(x) S_{-i \lambda}^{\alpha}(x)|x|^{2 \alpha+1} d x
$$
K. Trimèche proved that this transform is related to the classical Fourier transform \mathcal{F} by the relation
$$
\forall f \in \mathcal{D}(\mathbb{R}), \quad \mathcal{F}_{B S}^{\alpha}(f)=\mathcal{F} \circ W_{\alpha}(f)
$$
where W_{α} is the Weyl integral transform given by
$$
W_{\alpha} f(y)=\frac{2 \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)} \int_{|y|}^{+\infty}\left(x^{2}-y^{2}\right)^{\alpha-\frac{1}{2}} x f(\operatorname{sgn}(y) x) d x, y \in \mathbb{R}^{\star}
$$

Furthermore, K.Trimèche [4], L. Kamoun and M. Sifi [1], looked to the Bessel-Struve operator

$$
l_{\alpha} u(x)=\frac{d^{2} u}{d x^{2}}(x)+\frac{2 \alpha+1}{x}\left[\frac{d u}{d x}(x)-\frac{d u}{d x}(0)\right]
$$

which has Bessel-Struve kernel as eigenfunction. They considered the Intertwining operator χ_{α} associated with Bessel-Struve operator on \mathbb{R}, given by

$$
\chi_{\alpha}(f)(x)=\frac{2 \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)} \int_{0}^{1}\left(1-t^{2}\right)^{\alpha-\frac{1}{2}} f(x t) d t, \quad f \in \mathcal{E}(\mathbb{R}) .
$$

It verifies the intertwining relation

$$
l_{\alpha} \chi_{\alpha}=\chi_{\alpha} \frac{d^{2}}{d x^{2}}
$$

and the duality relation with Weyl transform

$$
\int_{\mathbb{R}} \chi_{\alpha} f(x) g(x) A(x) d x=\int_{\mathbb{R}} f(x) W_{\alpha} g(x) d x .
$$

The outline of the content of this paper is as follows
In section 2: we give some properties of Bessel-Struve kernel and Bessel-Struve transform.

In section 3: we deal with the Weyl integral transform associated to Bessel-Struve operator. In the beginning, we consider the dual operator χ_{α}^{*} of the intertwining operator χ_{α}. This operator is related with Weyl integral associated to Bessel-Struve operator that we denote W_{α} by

$$
\forall f \in \mathcal{D}(\mathbb{R}), \quad \chi_{\alpha}^{*} T_{A f}=T_{W_{\alpha}(f)}
$$

where T_{f} designates the distribution defined by the function f.
Next, we note that, unlike the classical case, Weyl integral transform associated to Bessel-Struve operator doesn't save the space $\mathcal{D}(\mathbb{R})$ and we characterize the range of $\mathcal{D}(\mathbb{R})$ by W_{α}. For this purpose, we introduce the space \mathcal{K}_{0} of infinitely differentiable functions on \mathbb{R}^{*} having bounded support and verifying a limit condition on the right and left of zero. The range of $\mathcal{D}(\mathbb{R})$ by W_{α} appears as the subspace of \mathcal{K}_{0} which we denote $\Delta_{\alpha}(\mathbb{R})$. Furthermore we give the expression of the inverse of W_{α} denoted $V_{\alpha \mid \Delta_{\alpha}(\mathbb{R})}$.

In section 4 : We prove a Paley-Wiener type theorem of Bessel-Struve transform in the case $\alpha=\frac{1}{2}$. Finally, we prove an analogous of Schawartz-Paley-Wiener theorem associated to Bessel-Struve transform.

Throughout the paper, we denote :

- $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$
- $\mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$
- $\frac{d}{d x^{2}}=\frac{1}{2 x} \frac{d}{d x}$

2. Bessel-Struve transform

We consider the operator $l_{\alpha}, \alpha>-\frac{1}{2}$, defined on \mathbb{R} by

$$
\begin{equation*}
l_{\alpha} u(x)=\frac{d^{2} u}{d x^{2}}(x)+\frac{2 \alpha+1}{x}\left[\frac{d u}{d x}(x)-\frac{d u}{d x}(0)\right], \quad x \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

with u is an infinitely differentiable function on \mathbb{R}. This operator is called BesselStruve operator.

For $\lambda \in \mathbb{C}$, the differential equation :

$$
\left\{\begin{array}{l}
l_{\alpha} u(x)=\lambda^{2} u(x) \\
u(0)=1, u^{\prime}(0)=\frac{\lambda \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha+3 / 2)}
\end{array}\right.
$$

possesses a unique solution denoted S_{λ}^{α}. This eigenfunction, called the Bessel-Struve kernel, is given by :

$$
\begin{equation*}
S_{\lambda}^{\alpha}(x)=j_{\alpha}(i \lambda x)-i h_{\alpha}(i \lambda x) \tag{2.2}
\end{equation*}
$$

The kernel S_{λ}^{α} possesses the following integral representation :

$$
\begin{equation*}
\forall x \in \mathbb{R}, \forall \lambda \in \mathbb{C}, \quad S_{\lambda}^{\alpha}(x)=\frac{2 \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)} \int_{0}^{1}\left(1-t^{2}\right)^{\alpha-\frac{1}{2}} e^{\lambda x t} d t \tag{2.3}
\end{equation*}
$$

We denote by $L_{\alpha}^{1}(\mathbb{R})$, the space of measurable functions f on \mathbb{R}, such that

$$
\|f\|_{1, \alpha}=\int_{\mathbb{R}}|f(x)| d \mu_{\alpha}(x)<+\infty,
$$

where

$$
d \mu_{\alpha}(x)=A(x) d x \quad \text { and } \quad A(x)=|x|^{2 \alpha+1}
$$

Definition 2.1. The Bessel-Struve transform is defined on $L_{\alpha}^{1}(\mathbb{R})$ by

$$
\begin{equation*}
\forall \lambda \in \mathbb{R}, \quad \mathcal{F}_{B, S}^{\alpha}(f)(\lambda)=\int_{\mathbb{R}} f(x) S_{-i \lambda}^{\alpha}(x) d \mu_{\alpha}(x) \tag{2.4}
\end{equation*}
$$

Proposition 2.1. The kernel S_{λ}^{α} has a unique analytic extension to $\mathbb{C} \times \mathbb{C}$. It satisfies the following properties :
(i): $\forall \lambda \in \mathbb{C}, \quad \forall z \in \mathbb{C}, \quad S_{-i \lambda}^{\alpha}(z)=S_{-i z}^{\alpha}(\lambda)$
(ii): $\forall \lambda \in \mathbb{C}, \quad \forall z \in \mathbb{C}, \quad S_{-\lambda}^{\alpha}(z)=S_{\lambda}^{\alpha}(-z)$
(iii): $\forall n \in \mathbb{N}, \forall \lambda \in \mathbb{R}, \forall x \in \mathbb{R}, \quad\left|\frac{d^{n}}{d x^{n}} S_{i \lambda}^{\alpha}(x)\right| \leq|\lambda|^{n}$
(iv): $\forall x \in \mathbb{R}^{*}, \lim _{\lambda \rightarrow+\infty} S_{-i \lambda}^{\alpha}(x)=0$

Proof. The relation (2.2) implies directly (i) and (ii).
Applying the derivative theorem to the relation (2.3), we obtain (iii).
From the asymptotic expansion of J_{α} and \mathbf{H}_{α} (see [8, p.199, p.333]), and using relation (2.2), we get (iv).

Proposition 2.2. (K. Trimèche [4]) Let f be a function in $L_{\alpha}^{1}(\mathbb{R})$ then $\mathcal{F}_{B, S}^{\alpha}(f)$ belongs to $C_{0}(\mathbb{R})$,
where $C_{0}(\mathbb{R})$ is the space of continuous functions having 0 as limit in the infinity.
Furthermore,

$$
\begin{equation*}
\left\|\mathcal{F}_{B, S}^{\alpha}(f)\right\|_{\infty} \leq\|f\|_{1, \alpha} \tag{2.5}
\end{equation*}
$$

3. Weyl integral transform

One can find an overview on the Weyl integral transform associated to Hankel transform in K. Trimèche's book [6]. Also, K. Trimèche investigates the Weyl integral transform in the framework of Chébli-Trimèche operator in [5] and Dunkl operator in [7]. In this section, we deal with Weyl integral transform associated with Bessel-Struve operator introduced by K. Trimèche in [4]. In particular, we build the range of $\mathcal{D}(\mathbb{R})$ by this integral transform and we give the expression of its inverse.
3.1. Bessel-Struve intertwining operator and its dual. $\mathcal{E}(\mathbb{R})$ designates the space of infinitely differentiable functions on \mathbb{R}.
The Bessel-Struve intertwining operator on \mathbb{R} denoted χ_{α}, introduced by K. Trimèche in [4] is defined by:

$$
\begin{equation*}
\chi_{\alpha}(f)(x)=\frac{2 \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)} \int_{0}^{1}\left(1-t^{2}\right)^{\alpha-\frac{1}{2}} f(x t) d t, \quad f \in \mathcal{E}(\mathbb{R}) \tag{3.1}
\end{equation*}
$$

L. Kamoun and M. Sifi proved an inversion theorem of χ_{α} on $\mathcal{E}(\mathbb{R})$, [1, Theorem 1]

Remark 3.1. We have

$$
\begin{equation*}
\forall x \in \mathbb{R}, \forall \lambda \in \mathbb{C}, \quad S_{\lambda}^{\alpha}(x)=\chi_{\alpha}\left(e^{\lambda \cdot}\right)(x) \tag{3.2}
\end{equation*}
$$

Definition 3.1. The operator χ_{α}^{*} is defined on $\mathcal{E}^{\prime}(\mathbb{R})$ by

$$
\begin{equation*}
<\chi_{\alpha}^{*}(T), f>=<T, \chi_{\alpha} f>\quad, \quad f \in \mathcal{E}(\mathbb{R}) \tag{3.3}
\end{equation*}
$$

Proposition 3.1. χ_{α}^{*} is an isomorphism from $\mathcal{E}^{\prime}(\mathbb{R})$ into itself.
Proof. Since χ_{α} is an isomorphism from $\mathcal{E}(\mathbb{R})$ into itself, we deduce the result by duality.
Proposition 3.2. (K. Trimèche [4]) For $f \in \mathcal{D}(\mathbb{R})$, the distribution $\chi_{\alpha}^{*} T_{A f}$ is defined by the function $W_{\alpha} f$ having the following expression

$$
\begin{equation*}
W_{\alpha} f(y)=\frac{2 \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)} \int_{|y|}^{+\infty}\left(x^{2}-y^{2}\right)^{\alpha-\frac{1}{2}} x f(\operatorname{sgn}(y) x) d x, y \in \mathbb{R}^{\star} \tag{3.4}
\end{equation*}
$$

called Weyl integral associated to Bessel-Struve operator.
Remark 3.2. Let $f \in \mathcal{E}(\mathbb{R})$ and $g \in \mathcal{D}(\mathbb{R})$. The operator χ_{α} and W_{α} are related by the following relation

$$
\begin{equation*}
\int_{\mathbb{R}} \chi_{\alpha} f(x) g(x) A(x) d x=\int_{\mathbb{R}} f(x) W_{\alpha} g(x) d x \tag{3.5}
\end{equation*}
$$

Proposition 3.3. (K. Trimèche [4]) We have

$$
\begin{equation*}
\forall f \in \mathcal{D}(\mathbb{R}), \quad \mathcal{F}_{B, S}^{\alpha}(f)=\mathcal{F} \circ W_{\alpha}(f) \tag{3.6}
\end{equation*}
$$

where \mathcal{F} is the classical Fourier transform defined on $L^{1}(\mathbb{R})$ by

$$
\mathcal{F}(g)(\lambda)=\int_{\mathbb{R}} g(x) e^{-i \lambda x} d x
$$

3.2. The range of $\mathcal{D}(\mathbb{R})$ by Weyl integral transform. The Weyl Integral transform associated with Bessel-Struve operator doesn't save the space $\mathcal{D}(\mathbb{R})$. In fact for the function given by

$$
f(x)= \begin{cases}x e^{\frac{-1}{1-x^{2}}} & \text { if }|x|<1 \quad, \quad x \in \mathbb{R} \\ 0 & \text { else }\end{cases}
$$

we remark that $W_{\alpha} f$ is not continuous on 0 .
In sequel, for $a>0$, we denote by $\mathcal{D}_{a}(\mathbb{R})$ the subspace of $\mathcal{D}(\mathbb{R})$ of functions with support included in $[-a, a]$.
Lemma 3.1. Let $a>0$ and $f \in \mathcal{D}_{a}(\mathbb{R})$. Then $W_{\alpha} f$ is infinitely differentiable on \mathbb{R}^{\star} and supp $\left(W_{\alpha} f\right)$ is included in $[-a, a]$. Furthermore, for all $x \in \mathbb{R}^{\star}$ and $n \in \mathbb{N}$,

$$
\begin{equation*}
\left(W_{\alpha} f\right)^{(n)}(x)=\sum_{k=0}^{n} \frac{c_{\alpha}(\operatorname{sgn}(x))^{k}}{x^{n}} \int_{|x|}^{+\infty}\left(y^{2}-x^{2}\right)^{\alpha-\frac{1}{2}} y^{k+1} f^{(k)}(y \operatorname{sgn}(x)) d y \tag{3.7}
\end{equation*}
$$

where

$$
c_{\alpha}=\frac{2 \Gamma(\alpha+1) C_{n}^{k} \Gamma(2 \alpha+2)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right) \Gamma(2 \alpha+2-n+k)} .
$$

Proof. Let $f \in \mathcal{D}_{a}(\mathbb{R})$. By change of variable $W_{\alpha} f$ can be written

$$
\begin{equation*}
W_{\alpha} f(x)=\frac{2 \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)}|x|^{2 \alpha+1} \int_{1}^{+\infty}\left(t^{2}-1\right)^{\alpha-\frac{1}{2}} t f(t x) d t \quad, \quad x \in \mathbb{R}^{\star} \tag{3.8}
\end{equation*}
$$

We denote

$$
\psi(x)=\frac{2 \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)} \int_{1}^{\frac{a}{|x|}}\left(t^{2}-1\right)^{\alpha-\frac{1}{2}} t f(t x) d t, \quad x \in \mathbb{R}^{*}
$$

Then,

$$
W_{\alpha} f(x)=A(x) \psi(x)
$$

It's clear that $\operatorname{supp}(\psi) \subseteq[-a, a]$. From derivative theorem and a change of variable, one obtains

$$
\psi^{(k)}(x)=|x|^{-2 \alpha-k-1} \frac{2 \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)} \int_{|x|}^{a}\left(y^{2}-x^{2}\right)^{\alpha-\frac{1}{2}} y^{k+1} f^{(k)}(\operatorname{sgn}(x) y) d y, \quad x \in \mathbb{R}^{*} .
$$

Therefore, using Leibniz formula, we get
$\left.W_{\alpha} f\right)^{(n)}(x)=\frac{a_{\alpha}}{x^{n}} \sum_{k=0}^{n} \frac{C_{n}^{k}(\operatorname{sgn}(x))^{k} \Gamma(2 \alpha+2)}{\Gamma(2 \alpha+2-n+k)} \int_{|x|}^{a}\left(y^{2}-x^{2}\right)^{\alpha-\frac{1}{2}} y^{k+1} f^{(k)}(y \operatorname{sgn}(x)) d y$ where

$$
a_{\alpha}=\frac{2 \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)}
$$

We designate by \mathcal{K}_{0} the space of functions f infinitely differentiable on \mathbb{R}^{*} with bounded support and verifying for all $n \in \mathbb{N}$,

$$
\lim _{\substack{y \rightarrow 0 \\ y>0}} y^{n} f^{(n)}(y) \quad \text { and } \quad \lim _{\substack{y \rightarrow 0 \\ y<0}} y^{n} f^{(n)}(y)
$$

exist.

Corollary 3.1. Let f be a function in $\mathcal{D}(\mathbb{R})$, we have $W_{\alpha} f$ belongs to \mathcal{K}_{0}.
Proof. The result is a consequence from lemma 3.1.
Lemma 3.2. Let $g \in \mathcal{E}\left(\mathbb{R}^{*}\right), m$ and p are two integers nonnegative, we have

$$
\begin{equation*}
\forall x \in \mathbb{R}^{*}, \quad\left(\frac{d}{d x^{2}}\right)^{p}\left(x^{m} g(x)\right)=\sum_{i=0}^{p} \beta_{i}^{p} x^{m-2 p+i} g^{(i)}(x) \tag{3.9}
\end{equation*}
$$

where β_{i}^{p} are constants depending on i, p and m.
Proof. We will proceed by induction. The relation (3.9) is true for $p=0$. Suppose that (3.9) is true at the order $p \geq 0$ then

$$
\begin{aligned}
\left(\frac{d}{d x^{2}}\right)^{p+1}\left(x^{m} g(x)\right) & =\frac{d}{d x^{2}}\left(\sum_{i=0}^{p} \beta_{i}^{p} x^{m-2 p+i} g^{(i)}(x)\right) \\
& =\sum_{i=0}^{p+1} \beta_{i}^{p+1} x^{m+i-2(p+1)} g^{(i)}(x)
\end{aligned}
$$

where

$$
\beta_{p+1}^{p+1}=\frac{1}{2} \beta_{p}^{p}, \beta_{0}^{p+1}=\frac{1}{2} \beta_{0}^{p}(m-2 p)
$$

and

$$
\forall 1 \leq i \leq p, \beta_{i}^{p+1}=\frac{1}{2}(m+i-2 p) \beta_{i}^{p}+\frac{1}{2} \beta_{i-1}^{p}
$$

We need the following proposition to provide the main results, of this section, which are theorem 3.1 and theorem 3.2.

Proposition 3.4. Let f be a function in \mathcal{K}_{0}. Then the distribution $\left(\chi_{\alpha}^{*}\right)^{-1} T_{f}$ is defined by the function denoted $A V_{\alpha} f$, where $V_{\alpha} f$ has the following expression
(i): If $\alpha=k+\frac{1}{2}, k \in \mathbb{N}$

$$
V_{\alpha} f(x)=(-1)^{k+1} \frac{2^{2 k+1} k!}{(2 k+1)!}\left(\frac{d}{d x^{2}}\right)^{k+1}(f(x)), \quad x \in \mathbb{R}^{\star}
$$

(ii): If $\alpha=k+r, k \in \mathbb{N},-\frac{1}{2}<r<\frac{1}{2}$,

$$
\begin{aligned}
V_{\alpha} f(x) & =c_{1} \int_{|x|}^{+\infty}\left(y^{2}-x^{2}\right)^{-r-\frac{1}{2}}\left(\frac{d}{d y^{2}}\right)^{k+1}(f)(\operatorname{sgn}(x) y) y d y, x \in \mathbb{R}^{\star} \\
\text { where } \quad c_{1} & =\frac{(-1)^{k+1} 2 \sqrt{\pi}}{\Gamma(\alpha+1) \Gamma\left(\frac{1}{2}-r\right)}
\end{aligned}
$$

Proof. Let $g \in \mathcal{E}(\mathbb{R})$ then we have
$<\left(\chi_{\alpha}^{\star}\right)^{-1} T_{f}, g>=<\left(\chi_{\alpha}^{-1}\right)^{\star} T_{f}, g>=<T_{f}, \chi_{\alpha}^{-1} g>$
First case $\alpha=k+\frac{1}{2}, k \in \mathbb{N}$:
Invoking (ii) of [1, Theorem 1], we can write

$$
<\left(\chi_{\alpha}^{\star}\right)^{-1} T_{f}, g>=\frac{2^{2 k+1} k!}{(2 k+1)!}\left(I_{1}+I_{2}\right)
$$

where

$$
I_{1}=\int_{0}^{\infty} f(x) x\left(\frac{d}{d x^{2}}\right)^{k+1}\left(x^{2 k+1} g(x)\right) d x
$$

and

$$
I_{2}=\int_{-\infty}^{0} f(x) x\left(\frac{d}{d x^{2}}\right)^{k+1}\left(x^{2 k+1} g(x)\right) d x
$$

By integration by parts we have, according to relation (3.9) for $p=k$ and $m=2 k+1$

$$
I_{1}=-\int_{0}^{+\infty}\left(\frac{d}{d x^{2}}\right) f(x)\left(\frac{d}{d x^{2}}\right)^{k}\left(x^{2 k+1} g(x)\right) x d x
$$

After k integrations by parts, using relation (3.9) and the fact that $f \in \mathcal{K}_{0}$, we find that

$$
I_{1}=(-1)^{k+1} \int_{0}^{+\infty}\left(\frac{d}{d x^{2}}\right)^{k+1} f(x) g(x) x^{2 k+2} d x
$$

As the same we establish that

$$
I_{2}=(-1)^{k+1} \int_{-\infty}^{0}\left(\frac{d}{d x^{2}}\right)^{k+1} f(x) g(x) x^{2 k+2} d x
$$

Consequently,

$$
<\left(\chi_{\alpha}^{\star}\right)^{-1} T_{f}, g>=\frac{2^{2 k+1} k!}{(2 k+1)!}(-1)^{k+1} \int_{\mathbb{R}}\left(\frac{d}{d x^{2}}\right)^{k+1} f(x) g(x) x^{2 k+2} d x
$$

Which proves the wanted result for $\alpha=k+\frac{1}{2}$.
Second case $\alpha=k+r, k \in \mathbb{N}, \frac{-1}{2}<r<\frac{1}{2}$
By virtue of (i) of [1, Theorem 1] and a change of variable, we can write

$$
\chi_{\alpha}^{-1} g(x)=\frac{2 \sqrt{\pi} x}{\Gamma(\alpha+1) \Gamma\left(\frac{1}{2}-r\right)}\left(\frac{d}{d x^{2}}\right)^{k+1}\left(x^{2 k+1} h(x)\right)
$$

where

$$
h(x)=\int_{0}^{1}\left(1-u^{2}\right)^{-r-\frac{1}{2}} g(x u) u^{2 \alpha+1} d u
$$

It's clear that $h \in \mathcal{E}(\mathbb{R})$, we proceed in a similar way as in the first case, we just replace the function g by the function h and we obtain

$$
<\left(\chi_{\alpha}^{\star}\right)^{-1} T_{f}, g>=c_{1} \int_{\mathbb{R}}\left(\frac{d}{d x^{2}}\right)^{k+1} f(x) h(x) x^{2 k+2} d x
$$

Next, by a change of variable, we have

$$
<\left(\chi_{\alpha}^{\star}\right)^{-1} T_{f}, g>=\frac{2 \sqrt{\pi}(-1)^{k+1}}{\Gamma(\alpha+1) \Gamma\left(\frac{1}{2}-r\right)}\left(J_{1}+J_{2}\right)
$$

where

$$
J_{1}=\int_{0}^{+\infty} x\left(\frac{d}{d x^{2}}\right)^{k+1} f(x)\left(\int_{0}^{x}\left(x^{2}-t^{2}\right)^{-r-\frac{1}{2}} g(t)|t|^{2 \alpha+1} d t\right) d x
$$

and

$$
J_{2}=\int_{-\infty}^{0} x\left(\frac{d}{d x^{2}}\right)^{k+1} f(x)\left(\int_{0}^{x}\left(x^{2}-t^{2}\right)^{-r-\frac{1}{2}} g(t)|t|^{2 \alpha+1} d t\right) d x
$$

Applying Fubini's theorem in J_{1} and J_{2}, we obtain

$$
J_{1}=\int_{0}^{+\infty}\left(\int_{t}^{+\infty}\left(x^{2}-t^{2}\right)^{-r-\frac{1}{2}} x\left(\frac{d}{d x^{2}}\right)^{k+1} f(x) d x\right) g(t)|t|^{2 \alpha+1} d t
$$

and

$$
J_{2}=-\int_{-\infty}^{0}\left(\int_{-\infty}^{t}\left(x^{2}-t^{2}\right)^{-r-\frac{1}{2}} x\left(\frac{d}{d x^{2}}\right)^{k+1} f(x) d x\right) g(t)|t|^{2 \alpha+1} d t
$$

making a change of variable in J_{2} and using Chasles relation, we get $<\left(\chi_{\alpha}^{\star}\right)^{-1} T_{f}, g>=$

$$
c_{1} \int_{\mathbb{R}}\left(\int_{|t|}^{+\infty}\left(x^{2}-t^{2}\right)^{-r-\frac{1}{2}} x\left(\frac{d}{d x^{2}}\right)^{k+1} f(\operatorname{sgn}(t) x) d x\right) g(t)|t|^{2 \alpha+1} d t
$$

Which proves the wanted result.
Remark 3.3. From proposition 3.4 we deduce that the operators V_{α} and χ_{α}^{-1} are related by the following relation

$$
\begin{equation*}
\int_{\mathbb{R}} V_{\alpha} f(x) g(x) A(x) d x=\int_{\mathbb{R}} f(x) \chi_{\alpha}^{-1} g(x) d x \tag{3.10}
\end{equation*}
$$

for all $f \in \mathcal{K}_{0}$ and $g \in \mathcal{E}(\mathbb{R})$.
Lemma 3.3. Let f be in $\mathcal{D}(\mathbb{R})$. We have $W_{\alpha}(f) \in \mathcal{K}_{0}$ and $\quad V_{\alpha}\left(W_{\alpha}(f)\right)=f$
Proof. Using lemma 3.1, relations (3.10) and (3.5), we obtain for all $g \in \mathcal{E}(\mathbb{R})$, $f \in \mathcal{D}(\mathbb{R})$

$$
\int_{\mathbb{R}} V_{\alpha}\left(W_{\alpha} f\right)(x) g(x) A(x) d x=\int_{\mathbb{R}} f(x) g(x) A(x) d x
$$

Thus

$$
V_{\alpha}\left(W_{\alpha}(f)\right)(x) A(x)=f(x) A(x) \quad \text { a.e } x \in \mathbb{R}
$$

Since $f A$ and $V_{\alpha} \circ W_{\alpha}(f) A$ are both continuous functions on \mathbb{R}^{\star} we have $V_{\alpha} \circ W_{\alpha}(f)(x)=f(x)$ for all x in \mathbb{R}^{\star} therefore $V_{\alpha} \circ W_{\alpha}(f)(x)=f(x)$ for all x in \mathbb{R}.

For $\alpha=k+\frac{1}{2}, \quad k \in \mathbb{N}$, we denote by $\Delta_{a, k+\frac{1}{2}}(\mathbb{R})$ the subspace of \mathcal{K}_{0} of functions f infinitely differentiable on \mathbb{R}^{*} with support included in $[-a, a]$ verifying the following condition :

$$
\left(\frac{d}{d x^{2}}\right)^{k+1} f \text { can be extended to a function belonging to } \mathcal{D}(\mathbb{R})
$$

This space is provided with the topology defined by the semi norms ρ_{n} where

$$
\rho_{n}(f)=\sup _{\substack{0 \leq p \leq n \\ x \in[-a, a]}}\left|\left(\left(\frac{d}{d x^{2}}\right)^{k+1} f\right)^{(p)}(x)\right| \quad, n \in \mathbb{N}
$$

We consider, for $k \in \mathbb{N}$, the space

$$
\Delta_{k+\frac{1}{2}}(\mathbb{R})=\bigcup_{a \geq 0} \Delta_{a, k+\frac{1}{2}}(\mathbb{R})
$$

endowed with the inductive limit topology.
Lemma 3.4. For all f in $\mathcal{D}_{a}(\mathbb{R})$ we have
(i): $\forall x \in \mathbb{R}^{*}, \quad\left[W_{\frac{1}{2}} f\right]^{\prime}(x)=-x f(x)$
(ii): $\forall \alpha>\frac{1}{2}, \forall x \in \mathbb{R}^{*}, \quad\left[W_{\alpha} f\right]^{\prime}(x)=-2 \alpha x W_{\alpha-1} f(x)$

Proof. We get (i) of lemma 3.4 using relation (3.4) and derivation theorem.
Now, we take $\alpha>\frac{1}{2}$, by lemma $3.1 \operatorname{supp}\left(W_{\alpha} f\right) \subset[-a, a]$.
Let $\varphi \in \mathcal{D}((0,+\infty))$ then we have

$$
\begin{aligned}
<\left[W_{\alpha} f\right]^{\prime}, \varphi>= & -<W_{\alpha} f, \varphi^{\prime}> \\
& =-a_{\alpha} \int_{0}^{a} \int_{y}^{a}\left(x^{2}-y^{2}\right)^{\alpha-\frac{1}{2}} x f(x) d x \varphi^{\prime}(y) d y
\end{aligned}
$$

Using Fubini's theorem, an integration by parts and relation (3.4), we obtain

$$
<\left[W_{\alpha} f\right]^{\prime}, \varphi>=-2 \alpha \int_{0}^{a} y W_{\alpha-1} f(y) \varphi(y) d y=<-2 y W_{\alpha-1} f, \varphi>
$$

This proves that the derivative of the distribution $W_{\alpha} f$ is the distribution defined by the function $-2 \alpha x W_{\alpha-1}$ on $(0,+\infty)$. The theorem III in [3, p.54] allows us to say that the derivative on $(0,+\infty)$ of the function $W_{\alpha} f$ is the function $-2 \alpha x W_{\alpha-1} f$. In the same way we obtain that the derivative on $(-\infty, 0)$ of the function $W_{\alpha} f$ is the function $-2 \alpha x W_{\alpha-1} f$ and (ii) of lemma 3.4 yields.

Theorem 3.1. The operator $W_{k+\frac{1}{2}}$ is a topological isomorphism from $\mathcal{D}_{a}(\mathbb{R})$ into $\Delta_{a, k+\frac{1}{2}}(\mathbb{R})$ and its inverse is $V_{k+\frac{1}{2} \left\lvert\, \Delta_{a, k+\frac{1}{2}}\right.}(\mathbb{R})$.

Proof. We will proceed by induction.
According to (i) of lemma 3.4 we have $W_{\frac{1}{2}}\left(\mathcal{D}_{a}(\mathbb{R})\right) \subset \Delta_{a, \frac{1}{2}}(\mathbb{R})$. Let f be a function in $\mathcal{D}_{a}(\mathbb{R})$ then according to (ii) of lemma 3.4, the induction hypothesis and lemma 3.1 we conclude that $W_{k+\frac{1}{2}} f \in \Delta_{a, k+\frac{1}{2}}(\mathbb{R})$.

In the other hand, using proposition 3.4 and the fact that $g \in \Delta_{a, k+\frac{1}{2}}(\mathbb{R})$, we get

$$
W_{k+\frac{1}{2}}\left(V_{k+\frac{1}{2}}\right)(g)=g
$$

From proposition 3.4 and lemma 3.3, we have

$$
\rho_{n}\left(W_{k+\frac{1}{2}} f\right)=C \sup _{\substack{0 \leq p \leq n \\ x \in[-a, a]}}\left|f^{(p)}(x)\right|
$$

which proves that $W_{k+\frac{1}{2}}$ is a topological isomorphism from $\mathcal{D}_{a}(\mathbb{R})$ into $\mathcal{D}_{a, k+\frac{1}{2}}(\mathbb{R})$ and its inverse is given by $V_{k+\frac{1}{2} \left\lvert\, \Delta_{a, k+\frac{1}{2}}(\mathbb{R})\right.}$.

For $k \in \mathbb{N}$ we take $\alpha=k+r, r \in] \frac{-1}{2}, \frac{1}{2}[$.
We denote by $\Delta_{a, k+r}(\mathbb{R})$ the subspace of \mathcal{K}_{0} of functions f infinitely differentiable on \mathbb{R}^{*} with support included in $[-a, a]$ verifying the following condition :
$\left(\frac{d}{d x^{2}}\right)^{k+1}\left(\int_{1}^{+\infty}\left(t^{2}-1\right)^{-r-\frac{1}{2}} f(x t) t^{-2 k-1} d t\right)$ can be extended to a function belonging to $|x|^{2 r-1} \mathcal{D}(\mathbb{R})$

This space is provided with the topology defined by the semi norms q_{n} where

$$
q_{n}(f)=\sup _{\substack{0 \leq p \leq n \\ x \in[-a, a]}}\left|D^{p}\left(|x|^{-2 r+1}\left(\frac{d}{d x^{2}}\right)^{k+1}\left(\int_{1}^{+\infty}\left(t^{2}-1\right)^{-r-\frac{1}{2}} f(x t) t^{-2 k-1} d t\right)\right)\right|
$$

We consider, for $k \in \mathbb{N}$, the space

$$
\Delta_{k+r}(\mathbb{R})=\bigcup_{a \geq 0} \Delta_{a, k+r}(\mathbb{R})
$$

endowed with the inductive limit topology.
Lemma 3.5. We have for all f in $\Delta_{k+r}(\mathbb{R})$,

$$
V_{k+r}(f) \in \mathcal{D}(\mathbb{R}) \quad \text { and } \quad W_{k+r}\left(V_{k+r}(f)\right)=f
$$

Proof. Let $f \in \Delta_{k+r}(\mathbb{R})$, using lemma 3.2 and the linearity of integral sign, we obtain

$$
V_{k+r}(f)(y)==|y|^{-2 r+1}\left(\frac{d}{d y^{2}}\right)^{k+1}\left(\int_{1}^{+\infty}\left(t^{2}-1\right)^{-r-\frac{1}{2}} f(y t) t^{-2 k-1} d t\right)
$$

Then $V_{k+r}(f) \in \mathcal{D}(\mathbb{R})$. From relations (3.5) and (3.10), we have, for all $g \in \mathcal{E}(\mathbb{R})$,

$$
\int_{\mathbb{R}} W_{k+r}\left(V_{k+r}(f)\right)(x) g(x) d x=\int_{\mathbb{R}} f(x) g(x) d x
$$

Therefore

$$
W_{k+r}\left(V_{k+r}(f)\right)(x)=f(x), \quad \text { a.e. } x \in \mathbb{R}
$$

Since $W_{k+r}\left(V_{k+r}(f)\right)$ and f are both continuous functions on \mathbb{R}^{*}, we get

$$
\forall x \in \mathbb{R}^{*}, \quad W_{k+r}\left(V_{k+r}(f)\right)(x)=f(x)
$$

Theorem 3.2. W_{k+r} is a topological isomorphism from $\mathcal{D}_{a}(\mathbb{R})$ into $\Delta_{a, k+r}(\mathbb{R})$ and its inverse is $V_{k+r \mid \Delta_{a, k+r}(\mathbb{R})}$

Proof. Let $f \in \mathcal{D}_{a}(\mathbb{R})$, proposition 3.1 and lemma 3.3, allows us to prove that $W_{k+r}(f) \in \Delta_{a, k+r}(\mathbb{R})$.
Furthermore, from lemma 3.5, lemma 3.3 and the fact that

$$
q_{n}\left(W_{k+r}(f)\right)=C p_{n}(f)
$$

one can deduce that W_{k+r} is a topological isomorphism from $\mathcal{D}_{a}(\mathbb{R})$ into $\Delta_{a, k+r}(\mathbb{R})$ and $V_{k+r \mid \Delta_{a, k+r}(\mathbb{R})}$ is its inverse.
The following theorem is a consequence from theorem 3.1 and theorem 3.2.
Theorem 3.3. W_{α} is a topological isomorphism from $\mathcal{D}(\mathbb{R})$ into $\Delta_{\alpha}(\mathbb{R})$ and its inverse is given by $V_{\alpha \mid \Delta_{\alpha}(\mathbb{R})}$

4. Paley Wiener type theorem associated to Bessel-Struve TRANSFORM

In this section we shall try to characterize the range of $\mathcal{D}(\mathbb{R})$ by Bessel-Struve transform.
4.1. Range of $\mathcal{D}(\mathbb{R})$ by Bessel-Struve transform for half integers. Let $a>0$, \mathcal{H}_{a} designates the space of entire functions f verifying :

$$
\forall n \in \mathbb{N}, \exists c_{n}>0 ; \forall z \in \mathbb{C}, \quad\left(1+|z|^{2}\right)^{n}|f(z)| e^{-a \operatorname{Im}(z)}<c_{n}
$$

and

$$
\mathcal{H}=\bigcup_{a>0} \mathcal{H}_{a}
$$

We introduce the space $\Lambda_{a, \frac{1}{2}}$ the space of entire functions g verifying

$$
\begin{equation*}
\exists h \in \mathcal{H}_{a} \forall z \in \mathbb{C}^{*} \quad g(z)=\frac{h^{\prime}(z)-h^{\prime}(0)}{z} \tag{4.1}
\end{equation*}
$$

and we denote $\Lambda_{\frac{1}{2}}=\bigcup_{a>0} \Lambda_{a, \frac{1}{2}}$
Theorem 4.1. We have

$$
\mathcal{F}_{B S}^{\frac{1}{2}}(\mathcal{D}(\mathbb{R}))=\Lambda_{\frac{1}{2}}
$$

Proof. Let $f \in \mathcal{D}(\mathbb{R})$. From relation (3.6) and by integration by parts, we have

$$
-i z \mathcal{F}_{B S}^{\frac{1}{2}}(f)(z)=-c+\mathcal{F}(x f)(z)
$$

where

$$
c=\lim _{\substack{x \rightarrow 0 \\ x>0}} W_{\frac{1}{2}} f(x)-\lim _{\substack{x \rightarrow 0 \\ x<0}} W_{\frac{1}{2}} f(x)
$$

Since $\mathcal{F}(x f)(z)=i[\mathcal{F}(f)]^{\prime}(z)$, we get $c=i[\mathcal{F}(f)]^{\prime}(0)$, for $z=0$.
Therefore

$$
\mathcal{F}_{B S}^{\frac{1}{2}}(f)(z)=\frac{[\mathcal{F}(-f)]^{\prime}(z)-[\mathcal{F}(-f)]^{\prime}(0)}{z}
$$

which proves that

$$
\mathcal{F}_{B S}^{\frac{1}{2}}(\mathcal{D}(\mathbb{R})) \subset \Lambda_{\frac{1}{2}}
$$

Now let g be an entire function verifying relation (4.1). From classical Paley-Wiener theorem and relation (4.1), we have

$$
\exists f \in \mathcal{D}_{a}(\mathbb{R}) \text { such that } \frac{[\mathcal{F}(f)]^{\prime}(z)-[\mathcal{F}(f)]^{\prime}(0)}{z}=g(z)
$$

Therefore, for $\lambda \neq 0$

$$
\begin{aligned}
g(\lambda) & =-\frac{i}{\lambda}(\mathcal{F}(t f)(\lambda)-\mathcal{F}(t f)(0)) \\
& =\int_{\mathbb{R}} f(t)\left(\frac{-\sin (\lambda t)}{\lambda t}+i \frac{1-\cos (\lambda t)}{\lambda t}\right) t^{2} d t \\
& =-\int_{\mathbb{R}} f(t) S_{\frac{1}{2}}(-i \lambda t) t^{2} d t \\
& =\mathcal{F}_{B S}^{\frac{1}{2}}(-f)(\lambda)
\end{aligned}
$$

By induction, we can build the range of $\mathcal{D}(\mathbb{R})$ by $\mathcal{F}_{B, S}^{k+\frac{1}{2}}$ from theorem 4.1 and the following proposition.
Proposition 4.1. For $\alpha>\frac{1}{2}$, the following assertions are equivalent
(i): $g=\mathcal{F}_{B S}^{\alpha}(f)$ where $f \in \mathcal{D}_{a}(\mathbb{R})$
(ii): g is extented to an entire function \tilde{g} verifying

$$
\begin{equation*}
\exists h \in \mathcal{F}_{B S}^{\alpha-1}\left(\mathcal{D}_{a}(\mathbb{R})\right) ; \forall z \in \mathbb{C} \quad \tilde{g}(z)=2 \alpha \frac{h^{\prime}(z)-h^{\prime}(0)}{z} \tag{4.2}
\end{equation*}
$$

Proof. Let $f \in \mathcal{D}(\mathbb{R})$ and $z \in \mathbb{C}$. We proceed in a similar way as in theorem 4.1 and we obtain

$$
i z \mathcal{F}_{B S}^{\alpha}(f)(z)-c=\mathcal{F}\left(\left[W_{\alpha} f\right]^{\prime}\right)(z)
$$

where

$$
c=\lim _{\substack{x \rightarrow 0 \\ x>0}} W_{\alpha} f(x)-\lim _{\substack{x \rightarrow 0 \\ x<0}} W_{\alpha} f(x)
$$

Furthermore, using (ii) of lemma 3.4 and analysity theorem, we get

$$
\mathcal{F}\left(\left[W_{\alpha} f\right]^{\prime}\right)(z)=-2 i \alpha\left[\mathcal{F}\left(W_{\alpha-1} f\right)\right]^{\prime}(z)
$$

From relation (3.6) and the fact that $c=\left[\mathcal{F}_{B S}^{\alpha}(f)\right]^{\prime}(0)$, we conclude that $\mathcal{F}_{B S}^{\alpha}(f)$ verifies relation (4.2).
Now let g be an entire function verifying relation (4.2).
Then

$$
\exists f \in \mathcal{D}_{a}(\mathbb{R}) \text { such that } \frac{2 \alpha\left(\left[\mathcal{F}_{B S}^{\alpha-1}(f)\right]^{\prime}(z)-\left[\mathcal{F}_{B S}^{\alpha-1}(f)\right]^{\prime}(0)\right)}{z}=g(z)
$$

Finally, from relation (3.6) and by integration by parts we get

$$
g(z)=i \mathcal{F}_{B S}^{\alpha}(f)(z)
$$

4.2. Schwartz Paley Wiener theorem. In this subsection we will prove a Paley Wiener theorem in distributions space with bounded support.

Definition 4.1. The Fourier Bessel-Struve Transformis defined on $\mathcal{E}^{\prime}(\mathbb{R})$ by

$$
\begin{equation*}
\forall T \in \mathcal{E}^{\prime}(\mathbb{R}), \mathcal{F}_{B, S}^{\alpha}(T)(\lambda)=<T, S_{-i \lambda}^{\alpha}> \tag{4.3}
\end{equation*}
$$

Proposition 4.2. For all $T \in \mathcal{E}^{\prime}(\mathbb{R})$,

$$
\begin{equation*}
\mathcal{F}_{B, S}^{\alpha}(T)=\mathcal{F} \circ \chi_{\alpha}^{\star}(T) \tag{4.4}
\end{equation*}
$$

Proof. We get the result using relations (4.3), (3.2) and (3.3).
Lemma 4.1. Let $T \in \mathcal{E}^{\prime}(\mathbb{R})$, then

$$
\operatorname{supp}(T) \subseteq[-b, b] \Longleftrightarrow \operatorname{supp}\left(\chi_{\alpha}^{\star}(T)\right) \subseteq[-b, b]
$$

Proof. Let $T \in \mathcal{E}^{\prime}(\mathbb{R})$ such that $\operatorname{supp}(T)$ included in $[-b, b]$. For $\varphi \in \mathcal{D}(\mathbb{R})$ with support in $[-b, b]^{c}$ we have $\chi_{\alpha} \varphi$ have the support included in $[-b, b]^{c}$ therefore from relation (3.3), we get that $\chi_{\alpha}^{\star}(T)$ have the support in $[-b, b]$
Now we consider a distribution T such that $\operatorname{supp}\left(\chi_{\alpha}^{\star}(T)\right)$ included in $[-b, b]$. For $\varphi \in \mathcal{D}(\mathbb{R})$ with support in $[-b, b]^{c}$ we have

$$
<T, \varphi>=<\left(\chi_{\alpha}^{-1}\right)^{\star} \circ \chi_{\alpha}^{\star}(T), \varphi>=<\chi_{\alpha}^{\star}(T), \chi_{\alpha}^{-1} \varphi>
$$

Using [1, Theorem 1] $\operatorname{supp}\left(\chi_{\alpha}^{-1} \varphi\right)$ included in $[-b, b]$ so $\left.<T, \varphi\right\rangle=0$ which completes the proof.

Theorem 4.2. Let $b>0$ and $f \in \mathcal{E}(\mathbb{R})$.There is an equivalence between the two following assertions
(1) There exists a distribution $T \in \mathcal{E}^{\prime}(\mathbb{R})$ with support included in $[-b, b]$ such that $f=\mathcal{F}_{B, S}(T)$
(2) f is extended to an analytic function \tilde{f} on \mathbb{C} such that

$$
\begin{equation*}
\exists m \in \mathbb{N}, \exists c>0, \forall z \in \mathbb{C}|\tilde{f}(z)| \leq c\left(1+|z|^{2}\right)^{\frac{m}{2}} e^{b(\operatorname{Im}(z))} \tag{4.5}
\end{equation*}
$$

Proof. The theorem is a consequence from Lemma 4.1, proposition 4.2, the classical Paley-Wiener Schwartz (one can see [2]) and proposition 3.1.

References

[1] L. Kamoun and M. Sifi, Bessel-Struve Intertwining Operator and Generalized Taylor Series on the Real Line, Integral Transforms and Spec. Funct., Vol.16, January 2005, 39-55.
[2] V. Kohan, Distributions Analyse de Fourier Opérateurs aux Dérivées Partielles, TomeII, Librairie Vuiebert 1972
[3] L. Schwartz, Théorie des Distributions, Hermann Paris 1966
[4] K. Trimèche, A New Harmonic Analysis Related to The Dunkl Operators Theory, Preprint Faculty of Sciences of Tunis, 2003.
[5] K. Trimèche, Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions, SIGMA Symmetry Integrability Geom. Methods Appl. 4, 2008, 087, 22 p.
[6] K. Trimèche, Generalised Harmonic Analysis and Wavelets Packets, Gordon and Breach Science Publishers, 2001
[7] K. Trimèche, Transformation Intégrale de Weyl et Théorème de Paley Wiener Associés à un Oprateur Différentiel Singulier sur $(0,+\infty)$, J.Math.Pures Appli. 60,(1981), 51-98
[8] G.N. Watson, A Treatise on the Theory of Bessel Functions, Camb. Univ. Press, Cambridge, 1966.

Lotfi Kamoun
Department of Mathematics, Faculty of Sciences of Monastir,
University of Monastir, 5019 Monastir, Tunisia
E-mail address: kamoun.lotfi@planet.tn
Selma Negzaoui
Preparatory Institute of Engineering Studies of Monastir.
University of Monastir, 5000 Monastir, Tunisia
E-mail address: selma.negzaoui@issatgb.rnu.tn

[^0]: 2000 Mathematics Subject Classification. 42A38, 44A05, 44A20, 46 F 12.
 Key words and phrases. Bessel-Struve operator, Bessel-Struve transform, Intertwining operator, Weyl integral transform, Paley-Wiener theorem, Schwartz-Paley-Wiener theorem.
 © 2011 Universiteti i Prishtinës, Prishtinë, Kosovë.
 The authors are supported by the DGRST research project 04/UR/15-02.
 Submitted May 24, 2011. Published December 7, 2011.

