BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 4 Issue 1 (2012), Pages 104-116.

RANGE OF $\mathcal{D}(\mathbb{R})$ BY INTEGRAL TRANSFORMS ASSOCIATED TO THE BESSEL-STRUVE OPERATOR

(COMMUNICATED BY SALAH MECHERI)

LOTFI KAMOUN, SELMA NEGZAOUI

ABSTRACT. In this paper, we establish an inversion theorem of the Weyl integral transform associated with the Bessel-Struve operator l_{α} , $\alpha > \frac{-1}{2}$. In the case of half integers, we give a characterization of the range of $\mathcal{D}(\mathbb{R})$ by Bessel-Struve transform and we prove a Schwartz-Paley-Wiener theorem on $\mathcal{E}'(\mathbb{R})$.

1. INTRODUCTION

In [8], Watson developed the discrete harmonic analysis associated with Bessel-Struve kernel

$$S^{\alpha}_{\lambda}(x) = j_{\alpha}(i\lambda x) - ih_{\alpha}(i\lambda x)$$

where j_{α} and h_{α} are respectively the normalized Bessel and Struve functions of index α . Those functions are given as follows :

$$j_{\alpha}(z) = 2^{\alpha} \Gamma(\alpha + 1) z^{-\alpha} J_{\alpha}(z) = \Gamma(\alpha + 1) \sum_{n=0}^{+\infty} \frac{(-1)^n (z/2)^{2n}}{n! \Gamma(n + \alpha + 1)}$$

and

$$h_{\alpha}(z) = 2^{\alpha} \Gamma(\alpha+1) z^{-\alpha} \mathbf{H}_{\alpha}(z) = \Gamma(\alpha+1) \sum_{n=0}^{+\infty} \frac{(-1)^n (z/2)^{2n+1}}{\Gamma(n+\frac{3}{2}) \Gamma(n+\alpha+\frac{3}{2})}$$

Watson considered "generalised Schlömilch series" which is a kind of Fourier series

$$\sum_{n=-\infty}^{+\infty} c_n(f) S^{\alpha}_{-in}(x)$$

where f is a suitable function and $c_n(f) \in \mathbb{C}$.

In this paper, we are interested with a kind of Fourier transform which was considered and studied by K. Trimèche in [4], called the Bessel-Struve transform, given

©2011 Universiteti i Prishtinës, Prishtinë, Kosovë.

²⁰⁰⁰ Mathematics Subject Classification. 42A38, 44A05, 44A20, 46F12.

Key words and phrases. Bessel-Struve operator, Bessel-Struve transform, Intertwining operator, Weyl integral transform, Paley-Wiener theorem, Schwartz-Paley-Wiener theorem.

The authors are supported by the DGRST research project 04/UR/15-02. Submitted May 24, 2011. Published December 7, 2011.

by

$$\mathcal{F}^{\alpha}_{BS}(f)(\lambda) = \int_{\mathbb{R}} f(x) S^{\alpha}_{-i\lambda}(x) |x|^{2\alpha+1} dx$$

K. Trimèche proved that this transform is related to the classical Fourier transform ${\mathcal F}$ by the relation

$$\forall f \in \mathcal{D}(\mathbb{R}), \qquad \mathcal{F}^{\alpha}_{BS}(f) = \mathcal{F} \circ W_{\alpha}(f)$$

where W_{α} is the Weyl integral transform given by

$$W_{\alpha}f(y) = \frac{2\Gamma(\alpha+1)}{\sqrt{\pi}\,\Gamma(\alpha+\frac{1}{2})} \int_{|y|}^{+\infty} (x^2 - y^2)^{\alpha-\frac{1}{2}} x \, f(sgn(y)x) \, dx \, , \ y \in \mathbb{R}^*$$

Furthermore, K.Trimèche [4], L. Kamoun and M. Sifi [1], looked to the Bessel-Struve operator

$$l_{\alpha}u(x) = \frac{d^2u}{dx^2}(x) + \frac{2\alpha + 1}{x} \left[\frac{du}{dx}(x) - \frac{du}{dx}(0)\right]$$

which has Bessel-Struve kernel as eigenfunction. They considered the Intertwining operator χ_{α} associated with Bessel-Struve operator on \mathbb{R} , given by

$$\chi_{\alpha}(f)(x) = \frac{2\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})} \int_{0}^{1} (1-t^{2})^{\alpha-\frac{1}{2}} f(xt) dt , \quad f \in \mathcal{E}(\mathbb{R}).$$

It verifies the intertwining relation

$$l_{\alpha}\chi_{\alpha} = \chi_{\alpha}\frac{d^2}{dx^2}$$

and the duality relation with Weyl transform

$$\int_{\mathbb{R}} \chi_{\alpha} f(x) g(x) A(x) dx = \int_{\mathbb{R}} f(x) W_{\alpha} g(x) dx$$

The outline of the content of this paper is as follows

In section 2: we give some properties of Bessel-Struve kernel and Bessel-Struve transform.

In section 3: we deal with the Weyl integral transform associated to Bessel-Struve operator. In the beginning, we consider the dual operator χ^*_{α} of the intertwining operator χ_{α} . This operator is related with Weyl integral associated to Bessel-Struve operator that we denote W_{α} by

$$\forall f \in \mathcal{D}(\mathbb{R}), \qquad \chi^*_{\alpha} T_{Af} = T_{W_{\alpha}(f)}$$

where T_f designates the distribution defined by the function f.

Next, we note that, unlike the classical case, Weyl integral transform associated to Bessel-Struve operator doesn't save the space $\mathcal{D}(\mathbb{R})$ and we characterize the range of $\mathcal{D}(\mathbb{R})$ by W_{α} . For this purpose, we introduce the space \mathcal{K}_0 of infinitely differentiable functions on \mathbb{R}^* having bounded support and verifying a limit condition on the right and left of zero. The range of $\mathcal{D}(\mathbb{R})$ by W_{α} appears as the subspace of \mathcal{K}_0 which we denote $\Delta_{\alpha}(\mathbb{R})$. Furthermore we give the expression of the inverse of W_{α} denoted $V_{\alpha|\Delta_{\alpha}(\mathbb{R})}$.

In section 4 : We prove a Paley-Wiener type theorem of Bessel-Struve transform in the case $\alpha = \frac{1}{2}$. Finally, we prove an analogous of Schawartz-Paley-Wiener theorem associated to Bessel-Struve transform.

Throughout the paper, we denote :

• $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ • $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ • $\frac{d}{dx^2} = \frac{1}{2x} \frac{d}{dx}$

2. Bessel-Struve transform

We consider the operator l_{α} , $\alpha > -\frac{1}{2}$, defined on \mathbb{R} by

$$l_{\alpha}u(x) = \frac{d^2u}{dx^2}(x) + \frac{2\alpha + 1}{x} \left[\frac{du}{dx}(x) - \frac{du}{dx}(0)\right], \quad x \in \mathbb{R},$$
(2.1)

with u is an infinitely differentiable function on \mathbb{R} . This operator is called Bessel-Struve operator.

For $\lambda \in \mathbb{C}$, the differential equation :

$$\begin{cases} l_{\alpha}u(x) = \lambda^{2}u(x)\\ u(0) = 1, u'(0) = \frac{\lambda\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+3/2)} \end{cases}$$

possesses a unique solution denoted S^{α}_{λ} . This eigenfunction, called the Bessel-Struve kernel, is given by :

$$S^{\alpha}_{\lambda}(x) = j_{\alpha}(i\lambda x) - ih_{\alpha}(i\lambda x) \tag{2.2}$$

The kernel S^{α}_{λ} possesses the following integral representation :

$$\forall x \in \mathbb{R}, \ \forall \lambda \in \mathbb{C}, \quad S_{\lambda}^{\alpha}(x) = \frac{2\Gamma(\alpha+1)}{\sqrt{\pi} \ \Gamma(\alpha+\frac{1}{2})} \int_{0}^{1} (1-t^{2})^{\alpha-\frac{1}{2}} e^{\lambda x t} dt$$
(2.3)

We denote by $L^1_\alpha(\mathbb{R})\,,$ the space of measurable functions f on $\mathbb{R},$ such that

$$|f||_{1,\alpha} = \int_{\mathbb{R}} |f(x)| \, d\mu_{\alpha}(x) < +\infty \,,$$

where

$$d\mu_{\alpha}(x) = A(x) dx$$
 and $A(x) = |x|^{2\alpha+1}$.

Definition 2.1. The Bessel-Struve transform is defined on $L^1_{\alpha}(\mathbb{R})$ by

$$\forall \lambda \in \mathbb{R}, \qquad \mathcal{F}^{\alpha}_{B,S}(f)(\lambda) = \int_{\mathbb{R}} f(x) S^{\alpha}_{-i\lambda}(x) d\mu_{\alpha}(x)$$
(2.4)

Proposition 2.1. The kernel S^{α}_{λ} has a unique analytic extension to $\mathbb{C} \times \mathbb{C}$. It satisfies the following properties :

(i):
$$\forall \lambda \in \mathbb{C}, \quad \forall z \in \mathbb{C}, \qquad S^{\alpha}_{-i\lambda}(z) = S^{\alpha}_{-iz}(\lambda)$$

(ii): $\forall \lambda \in \mathbb{C}, \quad \forall z \in \mathbb{C}, \qquad S^{\alpha}_{-\lambda}(z) = S^{\alpha}_{\lambda}(-z)$
(iii): $\forall n \in \mathbb{N}, \quad \forall \lambda \in \mathbb{R}, \quad \forall x \in \mathbb{R}, \quad \left| \frac{d^n}{dx^n} S^{\alpha}_{i\lambda}(x) \right| \leq |\lambda|^n$
(iv): $\forall x \in \mathbb{R}^*, \quad \lim_{\lambda \to +\infty} S^{\alpha}_{-i\lambda}(x) = 0$

Proof. The relation (2.2) implies directly (i) and (ii).

Applying the derivative theorem to the relation (2.3), we obtain (iii). From the summation of L and **H** (cas [8, p 100 p 222]).

From the asymptotic expansion of J_{α} and \mathbf{H}_{α} (see [8, p.199, p.333]), and using relation (2.2), we get (iv).

Proposition 2.2. (K. Trimèche [4]) Let f be a function in $L^1_{\alpha}(\mathbb{R})$ then $\mathcal{F}^{\alpha}_{B,S}(f)$ belongs to $C_0(\mathbb{R})$,

where $C_0(\mathbb{R})$ is the space of continuous functions having 0 as limit in the infinity. Furthermore,

$$\|\mathcal{F}^{\alpha}_{B,S}(f)\|_{\infty} \le \|f\|_{1,\alpha}$$
(2.5)

3. Weyl integral transform

One can find an overview on the Weyl integral transform associated to Hankel transform in K. Trimèche's book [6]. Also, K. Trimèche investigates the Weyl integral transform in the framework of Chébli-Trimèche operator in [5] and Dunkl operator in [7]. In this section, we deal with Weyl integral transform associated with Bessel-Struve operator introduced by K. Trimèche in [4]. In particular, we build the range of $\mathcal{D}(\mathbb{R})$ by this integral transform and we give the expression of its inverse.

3.1. Bessel-Struve intertwining operator and its dual. $\mathcal{E}(\mathbb{R})$ designates the space of infinitely differentiable functions on \mathbb{R} .

The Bessel-Struve intertwining operator on \mathbb{R} denoted χ_{α} , introduced by K. Trimèche in [4] is defined by:

$$\chi_{\alpha}(f)(x) = \frac{2\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})} \int_{0}^{1} (1-t^{2})^{\alpha-\frac{1}{2}} f(xt) dt , \quad f \in \mathcal{E}(\mathbb{R})$$
(3.1)

L. Kamoun and M. Sifi proved an inversion theorem of χ_{α} on $\mathcal{E}(\mathbb{R})$, [1, Theorem 1] **Remark 3.1.** We have

$$\forall x \in \mathbb{R}, \ \forall \lambda \in \mathbb{C}, \qquad S_{\lambda}^{\alpha}(x) = \chi_{\alpha}(e^{\lambda})(x)$$
(3.2)

Definition 3.1. The operator χ^*_{α} is defined on $\mathcal{E}'(\mathbb{R})$ by

$$<\chi_{\alpha}^{*}(T), f> = < T, \chi_{\alpha}f> , f \in \mathcal{E}(\mathbb{R})$$

$$(3.3)$$

Proposition 3.1. χ^*_{α} is an isomorphism from $\mathcal{E}'(\mathbb{R})$ into itself.

Proof. Since χ_{α} is an isomorphism from $\mathcal{E}(\mathbb{R})$ into itself, we deduce the result by duality.

Proposition 3.2. (K. Trimèche [4]) For $f \in \mathcal{D}(\mathbb{R})$, the distribution $\chi^*_{\alpha}T_{Af}$ is defined by the function $W_{\alpha}f$ having the following expression

$$W_{\alpha}f(y) = \frac{2\Gamma(\alpha+1)}{\sqrt{\pi}\,\Gamma(\alpha+\frac{1}{2})} \int_{|y|}^{+\infty} (x^2 - y^2)^{\alpha-\frac{1}{2}} x \, f(sgn(y)x) \, dx \, , \ y \in \mathbb{R}^{\star}$$
(3.4)

called Weyl integral associated to Bessel-Struve operator.

Remark 3.2. Let $f \in \mathcal{E}(\mathbb{R})$ and $g \in \mathcal{D}(\mathbb{R})$. The operator χ_{α} and W_{α} are related by the following relation

$$\int_{\mathbb{R}} \chi_{\alpha} f(x) g(x) A(x) dx = \int_{\mathbb{R}} f(x) W_{\alpha} g(x) dx$$
(3.5)

Proposition 3.3. (K. Trimèche [4]) We have

$$\forall f \in \mathcal{D}(\mathbb{R}), \qquad \mathcal{F}_{B,S}^{\alpha}(f) = \mathcal{F} \circ W_{\alpha}(f) \qquad (3.6)$$

where \mathcal{F} is the classical Fourier transform defined on $L^1(\mathbb{R})$ by

$$\mathcal{F}(g)(\lambda) = \int_{\mathbb{R}} g(x) e^{-i\lambda x} dx$$

3.2. The range of $\mathcal{D}(\mathbb{R})$ by Weyl integral transform. The Weyl Integral transform associated with Bessel-Struve operator doesn't save the space $\mathcal{D}(\mathbb{R})$. In fact for the function given by

$$f(x) = \begin{cases} x e^{\frac{-1}{1-x^2}} & if \ |x| < 1\\ 0 & else \end{cases}, \quad x \in \mathbb{R},$$

we remark that $W_{\alpha}f$ is not continuous on 0.

In sequel, for a > 0, we denote by $\mathcal{D}_a(\mathbb{R})$ the subspace of $\mathcal{D}(\mathbb{R})$ of functions with support included in [-a, a].

Lemma 3.1. Let a > 0 and $f \in \mathcal{D}_a(\mathbb{R})$. Then $W_{\alpha}f$ is infinitely differentiable on \mathbb{R}^{\star} and supp $(W_{\alpha}f)$ is included in [-a, a]. Furthermore, for all $x \in \mathbb{R}^{\star}$ and $n \in \mathbb{N}$,

$$(W_{\alpha}f)^{(n)}(x) = \sum_{k=0}^{n} \frac{c_{\alpha} \left(sgn(x)\right)^{k}}{x^{n}} \int_{|x|}^{+\infty} (y^{2} - x^{2})^{\alpha - \frac{1}{2}} y^{k+1} f^{(k)}(y \, sgn(x)) \, dy \quad (3.7)$$

where

$$c_{\alpha} = \frac{2\Gamma(\alpha+1) C_n^k \Gamma(2\alpha+2)}{\sqrt{\pi} \Gamma(\alpha+\frac{1}{2}) \Gamma(2\alpha+2-n+k)}.$$

Proof. Let $f \in \mathcal{D}_a(\mathbb{R})$. By change of variable $W_{\alpha}f$ can be written

$$W_{\alpha}f(x) = \frac{2\Gamma(\alpha+1)}{\sqrt{\pi}\,\Gamma(\alpha+\frac{1}{2})}|x|^{2\alpha+1}\,\int_{1}^{+\infty}(t^2-1)^{\alpha-\frac{1}{2}}\,t\,f(tx)\,dt \quad , \quad x \in \mathbb{R}^{\star}$$
(3.8)

We denote

$$\psi(x) = \frac{2\Gamma(\alpha+1)}{\sqrt{\pi}\,\Gamma(\alpha+\frac{1}{2})} \int_{1}^{\frac{\alpha}{|x|}} (t^2-1)^{\alpha-\frac{1}{2}} t\,f(tx)\,dt \ , \quad x \in \mathbb{R}^*.$$

Then,

$$W_{\alpha}f(x) = A(x)\,\psi(x)$$

It's clear that $supp(\psi) \subseteq [-a, a]$. From derivative theorem and a change of variable, one obtains

$$\psi^{(k)}(x) = |x|^{-2\alpha - k - 1} \frac{2\Gamma(\alpha + 1)}{\sqrt{\pi}\Gamma(\alpha + \frac{1}{2})} \int_{|x|}^{a} (y^2 - x^2)^{\alpha - \frac{1}{2}} y^{k+1} f^{(k)}(sgn(x)y) \, dy, \quad x \in \mathbb{R}^*.$$

Therefore, using Leibniz formula, we get

$$W_{\alpha}f)^{(n)}(x) = \frac{a_{\alpha}}{x^{n}} \sum_{k=0}^{n} \frac{C_{n}^{k}(sgn(x))^{k}\Gamma(2\alpha+2)}{\Gamma(2\alpha+2-n+k)} \int_{|x|}^{a} (y^{2}-x^{2})^{\alpha-\frac{1}{2}}y^{k+1}f^{(k)}(y\,sgn(x))\,dy$$

where

$$a_{\alpha} = \frac{2\Gamma(\alpha+1)}{\sqrt{\pi}\,\Gamma(\alpha+\frac{1}{2})}.$$

We designate by \mathcal{K}_0 the space of functions f infinitely differentiable on \mathbb{R}^* with bounded support and verifying for all $n \in \mathbb{N}$,

$$\lim_{\substack{y \to 0 \\ y > 0}} y^n f^{(n)}(y) \text{ and } \lim_{\substack{y \to 0 \\ y < 0}} y^n f^{(n)}(y)$$

exist.

Corollary 3.1. Let f be a function in $\mathcal{D}(\mathbb{R})$, we have $W_{\alpha}f$ belongs to \mathcal{K}_0 .

Proof. The result is a consequence from lemma 3.1.

109

Lemma 3.2. Let $g \in \mathcal{E}(\mathbb{R}^*)$, m and p are two integers nonnegative, we have

$$\forall x \in \mathbb{R}^*, \qquad \left(\frac{d}{dx^2}\right)^p (x^m g(x)) = \sum_{i=0}^p \beta_i^p x^{m-2p+i} g^{(i)}(x) \tag{3.9}$$

where β_i^p are constants depending on *i*, *p* and *m*.

Proof. We will proceed by induction. The relation (3.9) is true for p = 0. Suppose that (3.9) is true at the order $p \ge 0$ then

$$(\frac{d}{dx^2})^{p+1}(x^m g(x)) = \frac{d}{dx^2} (\sum_{i=0}^p \beta_i^p x^{m-2p+i} g^{(i)}(x))$$
$$= \sum_{i=0}^{p+1} \beta_i^{p+1} x^{m+i-2(p+1)} g^{(i)}(x)$$

where

$$\beta_{p+1}^{p+1} = \frac{1}{2}\beta_p^p, \ \beta_0^{p+1} = \frac{1}{2}\beta_0^p(m-2p)$$

and

$$\forall 1 \le i \le p, \ \beta_i^{p+1} = \frac{1}{2}(m+i-2p)\beta_i^p + \frac{1}{2}\beta_{i-1}^p$$

We need the following proposition to provide the main results, of this section, which are theorem 3.1 and theorem 3.2.

Proposition 3.4. Let f be a function in \mathcal{K}_0 . Then the distribution $(\chi_{\alpha}^*)^{-1}T_f$ is defined by the function denoted $AV_{\alpha}f$, where $V_{\alpha}f$ has the following expression

(i): If $\alpha = k + \frac{1}{2}, k \in \mathbb{N}$

$$V_{\alpha}f(x) = (-1)^{k+1} \frac{2^{2k+1}k!}{(2k+1)!} \left(\frac{d}{dx^2}\right)^{k+1} (f(x)), \quad x \in \mathbb{R}^*$$

(ii): If $\alpha = k+r, \ k \in \mathbb{N}, \ -\frac{1}{2} < r < \frac{1}{2},$

$$V_{\alpha}f(x) = c_1 \int_{|x|}^{+\infty} (y^2 - x^2)^{-r - \frac{1}{2}} \left(\frac{d}{dy^2}\right)^{k+1} (f)(sgn(x)y) y \, dy \,, \ x \in \mathbb{R}^*$$

where $c_1 = \frac{(-1)^{k+1} 2\sqrt{\pi}}{\Gamma(\alpha+1)\Gamma(\frac{1}{2} - r)}$

Proof. Let $g \in \mathcal{E}(\mathbb{R})$ then we have $< (\chi_{\alpha}^{\star})^{-1} T_f, g > = < (\chi_{\alpha}^{-1})^{\star} T_f, g > = < T_f, \chi_{\alpha}^{-1}g >$ **First case** $\alpha = k + \frac{1}{2}, k \in \mathbb{N}$:

Invoking (ii) of [1, Theorem 1], we can write

$$< (\chi_{\alpha}^{\star})^{-1} T_f, g > = \frac{2^{2k+1} k!}{(2k+1)!} (I_1 + I_2)$$

where

$$I_1 = \int_0^\infty f(x) \, x \, \left(\frac{d}{dx^2}\right)^{k+1} \left(x^{2k+1} \, g(x)\right) dx$$

and

$$I_2 = \int_{-\infty}^0 f(x) x \left(\frac{d}{dx^2}\right)^{k+1} (x^{2k+1} g(x)) dx$$

By integration by parts we have, according to relation (3.9) for p = k and m = 2k+1

$$I_1 = -\int_0^{+\infty} \left(\frac{d}{dx^2}\right) f(x) \left(\frac{d}{dx^2}\right)^k \left(x^{2k+1} g(x)\right) x \, dx$$

After k integrations by parts, using relation (3.9) and the fact that $f \in \mathcal{K}_0$, we find that

$$I_1 = (-1)^{k+1} \int_0^{+\infty} \left(\frac{d}{dx^2}\right)^{k+1} f(x) g(x) x^{2k+2} dx$$

As the same we establish that

$$I_2 = (-1)^{k+1} \int_{-\infty}^0 \left(\frac{d}{dx^2}\right)^{k+1} f(x) g(x) x^{2k+2} dx$$

Consequently,

$$<(\chi_{\alpha}^{\star})^{-1}T_{f},g> = \frac{2^{2k+1}k!}{(2k+1)!}(-1)^{k+1}\int_{\mathbb{R}}\left(\frac{d}{dx^{2}}\right)^{k+1}f(x)g(x)x^{2k+2}dx$$

Which proves the wanted result for $\alpha = k + \frac{1}{2}$. Second case $\alpha = k + r$, $k \in \mathbb{N}$, $\frac{-1}{2} < r < \frac{1}{2}$ By virtue of (i) of [1, Theorem 1] and a change of variable, we can write

$$\chi_{\alpha}^{-1}g(x) = \frac{2\sqrt{\pi}x}{\Gamma(\alpha+1)\Gamma(\frac{1}{2}-r)} \left(\frac{d}{dx^2}\right)^{k+1} (x^{2k+1}h(x))$$

where

$$h(x) = \int_0^1 (1 - u^2)^{-r - \frac{1}{2}} g(xu) \, u^{2\alpha + 1} \, du$$

It's clear that $h \in \mathcal{E}(\mathbb{R})$, we proceed in a similar way as in the first case, we just replace the function g by the function h and we obtain

$$<(\chi_{\alpha}^{\star})^{-1}T_{f},g> = c_{1}\int_{\mathbb{R}}\left(\frac{d}{dx^{2}}\right)^{k+1}f(x)h(x)x^{2k+2}dx$$

Next, by a change of variable, we have

$$<(\chi_{\alpha}^{\star})^{-1}T_{f},g>=\frac{2\sqrt{\pi}(-1)^{k+1}}{\Gamma(\alpha+1)\Gamma(\frac{1}{2}-r)}(J_{1}+J_{2})$$

where

$$J_1 = \int_0^{+\infty} x \left(\frac{d}{dx^2}\right)^{k+1} f(x) \left(\int_0^x (x^2 - t^2)^{-r - \frac{1}{2}} g(t) |t|^{2\alpha + 1} dt\right) dx$$

and

$$J_2 = \int_{-\infty}^0 x (\frac{d}{dx^2})^{k+1} f(x) \left(\int_0^x (x^2 - t^2)^{-r - \frac{1}{2}} g(t) |t|^{2\alpha + 1} dt \right) dx$$

Applying Fubini's theorem in J_1 and J_2 , we obtain

$$J_1 = \int_0^{+\infty} \left(\int_t^{+\infty} (x^2 - t^2)^{-r - \frac{1}{2}} x (\frac{d}{dx^2})^{k+1} f(x) \, dx \right) \, g(t) \, |t|^{2\alpha + 1} \, dt$$

and

$$J_2 = -\int_{-\infty}^0 \left(\int_{-\infty}^t (x^2 - t^2)^{-r - \frac{1}{2}} x (\frac{d}{dx^2})^{k+1} f(x) \, dx \right) \, g(t) \, |t|^{2\alpha + 1} \, dt$$

making a change of variable in J_2 and using Chasles relation , we get $<(\chi^\star_\alpha)^{-1}\,T_f,g>=$

$$c_1 \int_{\mathbb{R}} \left(\int_{|t|}^{+\infty} (x^2 - t^2)^{-r - \frac{1}{2}} x (\frac{d}{dx^2})^{k+1} f(sgn(t)x) \, dx \right) \, g(t) \, |t|^{2\alpha + 1} \, dt$$

Which proves the wanted result.

Remark 3.3. From proposition 3.4 we deduce that the operators V_{α} and χ_{α}^{-1} are related by the following relation

$$\int_{\mathbb{R}} V_{\alpha} f(x) g(x) A(x) dx = \int_{\mathbb{R}} f(x) \chi_{\alpha}^{-1} g(x) dx$$
(3.10)

for all $f \in \mathcal{K}_0$ and $g \in \mathcal{E}(\mathbb{R})$.

Lemma 3.3. Let f be in $\mathcal{D}(\mathbb{R})$. We have $W_{\alpha}(f) \in \mathcal{K}_0$ and $V_{\alpha}(W_{\alpha}(f)) = f$

Proof. Using lemma 3.1, relations (3.10) and (3.5), we obtain for all $g \in \mathcal{E}(\mathbb{R})$, $f \in \mathcal{D}(\mathbb{R})$

$$\int_{\mathbb{R}} V_{\alpha}(W_{\alpha}f)(x) g(x)A(x) dx = \int_{\mathbb{R}} f(x) g(x)A(x) dx$$

Thus

$$V_{\alpha}(W_{\alpha}(f))(x) A(x) = f(x) A(x)$$
 $a.e \ x \in \mathbb{R}$

Since f A and $V_{\alpha} \circ W_{\alpha}(f) A$ are both continuous functions on \mathbb{R}^{\star} we have $V_{\alpha} \circ W_{\alpha}(f)(x) = f(x)$ for all x in \mathbb{R}^{\star} therefore $V_{\alpha} \circ W_{\alpha}(f)(x) = f(x)$ for all x in \mathbb{R} . \Box

For $\alpha = k + \frac{1}{2}$, $k \in \mathbb{N}$, we denote by $\Delta_{a,k+\frac{1}{2}}(\mathbb{R})$ the subspace of \mathcal{K}_0 of functions f infinitely differentiable on \mathbb{R}^* with support included in [-a, a] verifying the following condition :

$$(\frac{d}{dx^2})^{k+1}f$$
 can be extended to a function belonging to $\mathcal{D}(\mathbb{R})$.

This space is provided with the topology defined by the semi norms ρ_n where

$$\rho_n(f) = \sup_{\substack{0 \le p \le n \\ x \in [-a,a]}} \left| \left(\left(\frac{d}{dx^2} \right)^{k+1} f \right)^{(p)}(x) \right| \qquad , \ n \in \mathbb{N}$$

We consider , for $k \in \mathbb{N}$, the space

$$\Delta_{k+\frac{1}{2}}(\mathbb{R}) = \bigcup_{a \ge 0} \Delta_{a,k+\frac{1}{2}}(\mathbb{R})$$

endowed with the inductive limit topology.

Lemma 3.4. For all f in $\mathcal{D}_a(\mathbb{R})$ we have

(i): $\forall x \in \mathbb{R}^*$, $[W_{\frac{1}{2}}f]'(x) = -x f(x)$ (ii): $\forall \alpha > \frac{1}{2}$, $\forall x \in \mathbb{R}^*$, $[W_{\alpha}f]'(x) = -2 \alpha x W_{\alpha-1}f(x)$ 111

Proof. We get (i) of lemma 3.4 using relation (3.4) and derivation theorem. Now, we take $\alpha > \frac{1}{2}$, by lemma 3.1 $supp(W_{\alpha}f) \subset [-a, a]$. Let $\varphi \in \mathcal{D}((0, +\infty))$ then we have

$$< [W_{\alpha}f]', \varphi > = - < W_{\alpha}f, \varphi' >$$
$$= -a_{\alpha} \int_{0}^{a} \int_{y}^{a} (x^{2} - y^{2})^{\alpha - \frac{1}{2}} x f(x) dx \varphi'(y) dy$$

Using Fubini's theorem, an integration by parts and relation (3.4), we obtain

$$<[W_{\alpha}f]',\varphi>=-2\alpha\int_{0}^{a}y\,W_{\alpha-1}f(y)\,\varphi(y)\,dy=<-2y\,W_{\alpha-1}f,\varphi>$$

This proves that the derivative of the distribution $W_{\alpha}f$ is the distribution defined by the function $-2\alpha x W_{\alpha-1}$ on $(0, +\infty)$. The theorem III in [3, p.54] allows us to say that the derivative on $(0, +\infty)$ of the function $W_{\alpha}f$ is the function $-2\alpha x W_{\alpha-1}f$. In the same way we obtain that the derivative on $(-\infty, 0)$ of the function $W_{\alpha}f$ is the function $-2\alpha x W_{\alpha-1} f$ and (ii) of lemma 3.4 yields.

Theorem 3.1. The operator $W_{k+\frac{1}{2}}$ is a topological isomorphism from $\mathcal{D}_a(\mathbb{R})$ into $\Delta_{a,k+\frac{1}{2}}(\mathbb{R})$ and its inverse is $V_{k+\frac{1}{2}|\Delta_{a,k+\frac{1}{2}}(\mathbb{R})}$.

Proof. We will proceed by induction.

According to (i) of lemma 3.4 we have $W_{\frac{1}{2}}(\mathcal{D}_a(\mathbb{R})) \subset \Delta_{a,\frac{1}{2}}(\mathbb{R})$. Let f be a function in $\mathcal{D}_a(\mathbb{R})$ then according to (ii) of lemma 3.4, the induction hypothesis and lemma 3.1 we conclude that $W_{k+\frac{1}{2}}f \in \Delta_{a,k+\frac{1}{2}}(\mathbb{R})$.

In the other hand, using proposition 3.4 and the fact that $g \in \Delta_{a,k+\frac{1}{2}}(\mathbb{R})$, we get

$$W_{k+\frac{1}{2}}(V_{k+\frac{1}{2}})(g) = g$$

From proposition 3.4 and lemma 3.3, we have

$$\rho_n(W_{k+\frac{1}{2}}f) = C \sup_{\substack{0 \le p \le n \\ x \in [-a,a]}} |f^{(p)}(x)|$$

which proves that $W_{k+\frac{1}{2}}$ is a topological isomorphism from $\mathcal{D}_a(\mathbb{R})$ into $\mathcal{D}_{a,k+\frac{1}{2}}(\mathbb{R})$ and its inverse is given by $V_{k+\frac{1}{2}|\Delta_{a,k+\frac{1}{2}}(\mathbb{R})}$.

For $k \in \mathbb{N}$ we take $\alpha = k + r$, $r \in]\frac{-1}{2}, \frac{1}{2}[$.

We denote by $\Delta_{a,k+r}(\mathbb{R})$ the subspace of \mathcal{K}_0 of functions f infinitely differen-

tiable on \mathbb{R}^* with support included in [-a, a] verifying the following condition : $(\frac{d}{dx^2})^{k+1} \left(\int_1^{+\infty} (t^2 - 1)^{-r - \frac{1}{2}} f(xt) t^{-2k-1} dt\right)$ can be extended to a function belonging to $|x|^{2r-1} \mathcal{D}(\mathbb{R})$

This space is provided with the topology defined by the semi norms q_n where

$$q_n(f) = \sup_{\substack{0 \le p \le n \\ x \in [-a,a]}} \left| D^p \left(|x|^{-2r+1} \left(\frac{d}{dx^2}\right)^{k+1} \left(\int_1^{+\infty} (t^2 - 1)^{-r - \frac{1}{2}} f(xt) t^{-2k-1} dt \right) \right) \right|$$

We consider, for $k \in \mathbb{N}$, the space

$$\Delta_{k+r}(\mathbb{R}) = \bigcup_{a \ge 0} \Delta_{a,k+r}(\mathbb{R})$$

endowed with the inductive limit topology.

Lemma 3.5. We have for all f in $\Delta_{k+r}(\mathbb{R})$,

$$V_{k+r}(f) \in \mathcal{D}(\mathbb{R})$$
 and $W_{k+r}(V_{k+r}(f)) = f$

Proof. Let $f \in \Delta_{k+r}(\mathbb{R})$, using lemma 3.2 and the linearity of integral sign, we obtain

$$V_{k+r}(f)(y) == |y|^{-2r+1} \left(\frac{d}{dy^2}\right)^{k+1} \left(\int_1^{+\infty} (t^2 - 1)^{-r - \frac{1}{2}} f(yt) t^{-2k-1} dt\right)$$

Then $V_{k+r}(f) \in \mathcal{D}(\mathbb{R})$. From relations (3.5) and (3.10), we have, for all $g \in \mathcal{E}(\mathbb{R})$,

$$\int_{\mathbb{R}} W_{k+r}(V_{k+r}(f))(x) g(x) dx = \int_{\mathbb{R}} f(x) g(x) dx$$

Therefore

$$W_{k+r}(V_{k+r}(f))(x) = f(x)$$
, $a.e. \ x \in \mathbb{R}$

Since $W_{k+r}(V_{k+r}(f))$ and f are both continuous functions on \mathbb{R}^* , we get

$$\forall x \in \mathbb{R}^*$$
, $W_{k+r}(V_{k+r}(f))(x) = f(x)$

Theorem 3.2. W_{k+r} is a topological isomorphism from $\mathcal{D}_a(\mathbb{R})$ into $\Delta_{a,k+r}(\mathbb{R})$ and its inverse is $V_{k+r|\Delta_{a,k+r}(\mathbb{R})}$

Proof. Let $f \in \mathcal{D}_a(\mathbb{R})$, proposition 3.1 and lemma 3.3, allows us to prove that $W_{k+r}(f) \in \Delta_{a,k+r}(\mathbb{R})$.

Furthermore, from lemma 3.5, lemma 3.3 and the fact that

$$q_n(W_{k+r}(f)) = Cp_n(f)$$

one can deduce that W_{k+r} is a topological isomorphism from $\mathcal{D}_a(\mathbb{R})$ into $\Delta_{a,k+r}(\mathbb{R})$ and $V_{k+r|\Delta_{a,k+r}(\mathbb{R})}$ is its inverse.

The following theorem is a consequence from theorem 3.1 and theorem 3.2 .

Theorem 3.3. W_{α} is a topological isomorphism from $\mathcal{D}(\mathbb{R})$ into $\Delta_{\alpha}(\mathbb{R})$ and its inverse is given by $V_{\alpha|\Delta_{\alpha}(\mathbb{R})}$

4. Paley Wiener type theorem associated to Bessel-Struve transform

In this section we shall try to characterize the range of $\mathcal{D}(\mathbb{R})$ by Bessel-Struve transform.

4.1. Range of $\mathcal{D}(\mathbb{R})$ by Bessel-Struve transform for half integers. Let a > 0, \mathcal{H}_a designates the space of entire functions f verifying :

$$\forall n \in \mathbb{N}, \ \exists c_n > 0; \ \forall z \in \mathbb{C}, \qquad (1 + |z|^2)^n |f(z)| e^{-a \ Im(z)} < c_n$$

and

$$\mathcal{H} = \bigcup_{a>0} \mathcal{H}_a$$

We introduce the space $\Lambda_{a,\frac{1}{2}}$ the space of entire functions g verifying

$$\exists h \in \mathcal{H}_a \ \forall z \in \mathbb{C}^* \qquad g(z) = \frac{h'(z) - h'(0)}{z}$$
(4.1)

and we denote $\Lambda_{\frac{1}{2}} = \bigcup_{a>0} \Lambda_{a,\frac{1}{2}}$

Theorem 4.1. We have

$$\mathcal{F}_{BS}^{\frac{1}{2}}(\mathcal{D}(\mathbb{R})) = \Lambda_{\frac{1}{2}}$$

Proof. Let $f \in \mathcal{D}(\mathbb{R})$. From relation (3.6) and by integration by parts, we have

$$-iz \mathcal{F}_{BS}^{\frac{1}{2}}(f)(z) = -c + \mathcal{F}(xf)(z)$$

where

$$c = \lim_{\substack{x \to 0 \\ x > 0}} W_{\frac{1}{2}}f(x) - \lim_{\substack{x \to 0 \\ x < 0}} W_{\frac{1}{2}}f(x)$$

Since $\mathcal{F}(x\,f)(z)=i[\mathcal{F}(f)]'(z),$ we get $c=i[\mathcal{F}(f)]'(0),$ for z=0 . Therefore

$$\mathcal{F}_{BS}^{\frac{1}{2}}(f)(z) = \frac{[\mathcal{F}(-f)]'(z) - [\mathcal{F}(-f)]'(0)}{z}$$

which proves that

$$\mathcal{F}_{BS}^{\frac{1}{2}}(\mathcal{D}(\mathbb{R})) \subset \Lambda_{\frac{1}{2}}$$

Now let g be an entire function verifying relation (4.1). From classical Paley-Wiener theorem and relation (4.1), we have

$$\exists f \in \mathcal{D}_a(\mathbb{R}) \text{ such that } \frac{[\mathcal{F}(f)]'(z) - [\mathcal{F}(f)]'(0)}{z} = g(z)$$

Therefore, for
$$\lambda \neq 0$$

$$g(\lambda) = -\frac{i}{\lambda} (\mathcal{F}(t f)(\lambda) - \mathcal{F}(t f)(0))$$

$$= \int_{\mathbb{R}} f(t) (\frac{-\sin(\lambda t)}{\lambda t} + i \frac{1 - \cos(\lambda t)}{\lambda t}) t^{2} dt$$

$$= -\int_{\mathbb{R}} f(t) S_{\frac{1}{2}}(-i \lambda t) t^{2} dt$$

$$= \mathcal{F}_{BS}^{\frac{1}{2}}(-f)(\lambda)$$

By induction, we can build the range of $\mathcal{D}(\mathbb{R})$ by $\mathcal{F}_{B,S}^{k+\frac{1}{2}}$ from theorem 4.1 and the following proposition.

Proposition 4.1. For
$$\alpha > \frac{1}{2}$$
, the following assertions are equivalent

(i): $g = \mathcal{F}_{BS}^{\alpha}(f)$ where $f \in \mathcal{D}_{a}(\mathbb{R})$ (ii): g is extended to an entire function \tilde{g} verifying

$$\exists h \in \mathcal{F}_{BS}^{\alpha-1}(\mathcal{D}_a(\mathbb{R})) ; \ \forall z \in \mathbb{C} \qquad \tilde{g}(z) = 2\alpha \frac{h'(z) - h'(0)}{z}$$
(4.2)

Proof. Let $f \in \mathcal{D}(\mathbb{R})$ and $z \in \mathbb{C}$. We proceed in a similar way as in theorem 4.1 and we obtain

$$iz\mathcal{F}^{\alpha}_{BS}(f)(z) - c = \mathcal{F}([W_{\alpha}f]')(z)$$

where

$$c = \lim_{\substack{x \to 0 \\ x > 0}} W_{\alpha}f(x) - \lim_{\substack{x \to 0 \\ x < 0}} W_{\alpha}f(x)$$

Furthermore, using (ii) of lemma 3.4 and analysity theorem, we get

$$\mathcal{F}([W_{\alpha}f]')(z) = -2i\,\alpha[\mathcal{F}(W_{\alpha-1}f)]'(z).$$

From relation (3.6) and the fact that $c = [\mathcal{F}_{BS}^{\alpha}(f)]'(0)$, we conclude that $\mathcal{F}_{BS}^{\alpha}(f)$ verifies relation (4.2).

Now let g be an entire function verifying relation (4.2). Then

$$\exists f \in \mathcal{D}_a(\mathbb{R}) \text{ such that } \frac{2\alpha([\mathcal{F}_{BS}^{\alpha-1}(f)]'(z) - [\mathcal{F}_{BS}^{\alpha-1}(f)]'(0))}{z} = g(z)$$

Finally, from relation (3.6) and by integration by parts we get

$$g(z) = i \mathcal{F}^{\alpha}_{BS}(f)(z)$$

4.2. Schwartz Paley Wiener theorem. In this subsection we will prove a Paley Wiener theorem in distributions space with bounded support.

Definition 4.1. The Fourier Bessel-Struve Transformis defined on $\mathcal{E}'(\mathbb{R})$ by

$$\forall T \in \mathcal{E}'(\mathbb{R}), \ \mathcal{F}^{\alpha}_{B,S}(T)(\lambda) = \langle T, S^{\alpha}_{-i\lambda} \rangle$$
(4.3)

Proposition 4.2. For all $T \in \mathcal{E}'(\mathbb{R})$,

$$\mathcal{F}^{\alpha}_{B,S}(T) = \mathcal{F} \circ \chi^{\star}_{\alpha}(T) \tag{4.4}$$

Proof. We get the result using relations (4.3), (3.2) and (3.3).

Lemma 4.1. Let $T \in \mathcal{E}'(\mathbb{R})$, then

$$supp(T) \subseteq [-b, b] \iff supp(\chi_{\alpha}^{\star}(T)) \subseteq [-b, b]$$

Proof. Let $T \in \mathcal{E}'(\mathbb{R})$ such that supp(T) included in [-b,b]. For $\varphi \in \mathcal{D}(\mathbb{R})$ with support in $[-b,b]^c$ we have $\chi_{\alpha}\varphi$ have the support included in $[-b,b]^c$ therefore from relation (3.3), we get that $\chi^*_{\alpha}(T)$ have the support in [-b,b].

Now we consider a distribution T such that $supp(\chi_{\alpha}^{\star}(T))$ included in [-b, b]. For $\varphi \in \mathcal{D}(\mathbb{R})$ with support in $[-b, b]^c$ we have

$$\langle T, \varphi \rangle = \langle (\chi_{\alpha}^{-1})^{\star} \circ \chi_{\alpha}^{\star}(T), \varphi \rangle = \langle \chi_{\alpha}^{\star}(T), \chi_{\alpha}^{-1}\varphi \rangle$$

Using [1, Theorem 1] $supp(\chi_{\alpha}^{-1}\varphi)$ included in [-b,b] so $\langle T, \varphi \rangle = 0$ which completes the proof.

Theorem 4.2. Let b > 0 and $f \in \mathcal{E}(\mathbb{R})$. There is an equivalence between the two following assertions

- (1) There exists a distribution $T \in \mathcal{E}'(\mathbb{R})$ with support included in [-b,b] such that $f = \mathcal{F}_{B,S}(T)$
- (2) f is extended to an analytic function \tilde{f} on \mathbb{C} such that

$$\exists m \in \mathbb{N}, \ \exists c > 0, \ \forall z \in \mathbb{C} \ |\tilde{f}(z)| \le c \, (1+|z|^2)^{\frac{m}{2}} e^{b(Im(z))} \tag{4.5}$$

Proof. The theorem is a consequence from Lemma 4.1, proposition 4.2, the classical Paley-Wiener Schwartz (one can see [2]) and proposition 3.1.

L. KAMOUN, S. NEGZAOUI

References

- L. Kamoun and M. Sifi, Bessel-Struve Intertwining Operator and Generalized Taylor Series on the Real Line, Integral Transforms and Spec. Funct., Vol.16, January 2005, 39-55.
- [2] V. Kohan, Distributions Analyse de Fourier Opérateurs aux Dérivées Partielles, TomeII, Librairie Vuiebert 1972
- [3] L. Schwartz, Théorie des Distributions, Hermann Paris 1966
- [4] K. Trimèche, A New Harmonic Analysis Related to The Dunkl Operators Theory, Preprint Faculty of Sciences of Tunis, 2003.
- [5] K. Trimèche, Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions, SIGMA Symmetry Integrability Geom. Methods Appl. 4, 2008, 087, 22 p.
- [6] K. Trimèche, Generalised Harmonic Analysis and Wavelets Packets, Gordon and Breach Science Publishers, 2001
- [7] K. Trimèche, Transformation Intégrale de Weyl et Théorème de Paley Wiener Associés à un Oprateur Différentiel Singulier sur $(0, +\infty)$, J.Math.Pures Appli. 60,(1981), 51-98
- [8] G.N. Watson, A Treatise on the Theory of Bessel Functions, Camb. Univ. Press, Cambridge, 1966.

Lotfi Kamoun

Department of Mathematics, Faculty of Sciences of Monastir, University of Monastir, 5019 Monastir, Tunisia *E-mail address:* kamoun.lotfi@planet.tn

Selma Negzaoui

PREPARATORY INSTITUTE OF ENGINEERING STUDIES OF MONASTIR.

UNIVERSITY OF MONASTIR, 5000 MONASTIR, TUNISIA E-mail address: selma.negzaoui@issatgb.rnu.tn