INEQUALITIES CONCERNING POLYNOMIALS HAVING ZEROS IN CLOSED INTERIOR OF A CIRCLE

(COMMUNICATED BY R.K. RAINA)

GULSHAN SINGH

Abstract

In this paper, we have obtained certain inequalities for polynomials having zeros in closed interior of a circle. Our result gives the generalization of the known result.

1. Introduction and Statement of Results

Let $P(z)$ be a polynomial of degree n and let $M(P, R)=\operatorname{Max}_{|z|=R}|P(z)|, m(P, k)=$ $\operatorname{Min}_{|z|=k}|P(z)|$, then by maximum modulus principle [4, p. 158 problem III 267 and 269], we have

$$
\begin{equation*}
M(P, r) \geq r^{n} M(P, 1), \text { for } r<1 \tag{1.1}
\end{equation*}
$$

with equality only for $P(z)=\alpha z^{n},|\alpha|=1$.
Rivlin [5] obtained stronger inequality and proved that if $P(z)$ is a polynomial of degree n having all its zeros in the disk $|z| \geq 1$, then

$$
\begin{equation*}
M(P, r) \geq\left(\frac{1+r}{2}\right)^{n} M(P, 1) \text { for } r<1 \tag{1.2}
\end{equation*}
$$

Here equality holds for $P(z)=(\alpha+\beta z)^{n},|\alpha|=|\beta|$.
For the polynomials of degree n not vanishing in $|z|<k, k>0$, Aziz [1] obtained the following generalization of (1.2).

Theorem 1.1 Let $P(z)$ be a polynomial of degree n, having no zeros in the disk $|z|<k, k>0$, then

$$
\begin{equation*}
M(P, r) \geq\left(\frac{r+k}{1+k}\right)^{n} M(P, 1), \text { for } k \geq 1 \text { and } r<1 \text { or } k<1 \text { and } r \leq k^{2} \tag{1.3}
\end{equation*}
$$

Here equality holds for $P(z)=(z+k)^{n}$.
By using Theorem 1.1 to the polynomial $z^{n} P\left(\frac{1}{z}\right)$, Aziz [1] obtained the following :

[^0]Theorem 1.2 Let $P(z)$ be a polynomial of degree n, having all its zeros in the disk $|z| \leq k, k>0$, then

$$
\begin{equation*}
M(P, R) \geq\left(\frac{R+k}{1+k}\right)^{n} M(P, 1), \text { for } k \leq 1 \text { and } R>1 \text { or } k>1 \text { and } R \geq k^{2} \tag{1.4}
\end{equation*}
$$

Here equality holds for the polynomial $P(z)=(z+k)^{n}$.
For the polynomials having all their zeros in $|z| \leq k, k>1$, Jain [3] proved the following:

Theorem 1.3 Let $P(z)$ be a polynomial of degree n, having all its zeros in the disk $|z| \leq k, k>1$, then for $k<R<k^{2}$,

$$
\begin{equation*}
M(P, R) \geq R^{s}\left(\frac{R+k}{1+k}\right) M(P, 1), \text { for } s<n \tag{1.5}
\end{equation*}
$$

where s is the order of a possible zero of $P(z)$ at $z=0$.
In this paper, we have obtained the following generalization of Theorem 1.3 by involving the coefficients of the polynomial $P(z):=\sum_{j=0}^{n} a_{j} z^{j}$ of degree n having all its zeros in the disk $|z| \leq k, k>1$ with s-fold zeros at the origin. In fact we prove:

Theorem 1.4 Let $P(z):=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n having all its zeros in $|z| \leq k, k>1$, then for $k<R<k^{2}$,

$$
\begin{aligned}
M(P, R) \geq \frac{R^{n}\left[(n-s)\left(k^{2}+R^{2}\right)\left|a_{n}\right|+2 R\left|a_{n-1}\right|\right]}{(n-s)\left(R^{n-s} k^{2}+R^{2}\right)\left|a_{n}\right|+R\left(R^{n-s}+1\right)\left|a_{n-1}\right|} & \operatorname{Max}_{|z|=1}|P(z)| \\
& \quad+\frac{R^{s+1}\left(R^{n-s}-1\right)\left[(n-s) R\left|a_{n}\right|+\left|a_{n-1}\right|\right]}{k^{s}\left[(n-s)\left(R^{n-s} k^{2}+R^{2}\right)\left|a_{n}\right|+R\left(R^{n-s}+1\right)\left|a_{n-1}\right|\right]} m(P, k)
\end{aligned}
$$

where s is the order of a possible zeros of $P(z)$ at $z=0$.

2. LEMMAS

The following lemma is due to Dewan, Singh and Yadav [2].
Lemma 2.1 If $P(z):=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having no zeros in the disk $|z|<k, k \geq 1$, then
$\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leq n \frac{n\left|a_{0}\right|+k^{2}\left|a_{1}\right|}{n\left(1+k^{2}\right)\left|a_{0}\right|+2 k^{2}\left|a_{1}\right|} \operatorname{Max}_{|z|=1}|P(z)|-\left\{1-\frac{n\left|a_{0}\right|+k^{2}\left|a_{1}\right|}{n\left(1+k^{2}\right)\left|a_{0}\right|+2 k^{2}\left|a_{1}\right|}\right\} \frac{m(P, k) n}{k^{n}}$,
where $m(P, k)=\operatorname{Min}_{|z|=k}|P(z)|$.
Lemma 2.2 If $P(z):=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having all its zeros in the disk $|z| \geq k, k>0$, then for $r \leq k \leq R$,

$$
\begin{aligned}
& \quad M(P, r) \geq \\
& \frac{n r^{n-1}\left(r^{2}+k^{2}\right)\left|a_{0}\right|+2 k^{2} r^{n}\left|a_{1}\right|}{n\left(r R^{n}+r^{n-1} k^{2}\right)\left|a_{0}\right|+k^{2}\left(R^{n}+r^{n}\right)\left|a_{1}\right|} M(P, R)
\end{aligned}
$$

$$
+\frac{r^{n-1}\left(R^{n}-r^{n}\right)\left(n\left|a_{0}\right|+r\left|a_{1}\right|\right)}{k^{n-2}\left[n\left(r R^{n}+r^{n-1} k^{2}\right)\left|a_{0}\right|+k^{2}\left(R^{n}+r^{n}\right)\left|a_{1}\right|\right]} m(P, k),
$$

where $m=\operatorname{Min}_{|z|=k}|P(z)|$.
Proof of lemma 2.2 Let $r \leq k \leq R$, then the polynomial $G(z)=P(r z)$ has no zeros in $|z|<\frac{k}{r}$. As $\frac{k}{r} \geq 1$, we have by lemma 2.1,

$$
\begin{aligned}
& M\left(G^{\prime}, 1\right) \leq n \frac{n\left|a_{0}\right|+\frac{k^{2}}{r^{2}} r\left|a_{1}\right|}{n\left(1+\frac{k^{2}}{r^{2}}\right)\left|a_{0}\right|+2 \frac{k^{2}}{r^{2}} r\left|a_{1}\right|} M(G, 1) \\
& \\
& \quad-\left\{1-\frac{n\left|a_{0}\right|+\frac{k^{2}}{r^{2}} r\left|a_{1}\right|}{n\left(1+\frac{k^{2}}{r^{2}}\right)\left|a_{0}\right|+2 \frac{k^{2}}{r^{2}} r\left|a_{1}\right|}\right\} M i n_{|z|=\frac{k}{r}}|G(z)| \frac{n}{\frac{k^{n}}{r^{n}}}
\end{aligned}
$$

or

$$
\begin{align*}
M\left(P^{\prime}, r\right) \leq n \frac{n r\left|a_{0}\right|+k^{2}\left|a_{1}\right|}{n\left(r^{2}+k^{2}\right)\left|a_{0}\right|+2 k^{2} r\left|a_{1}\right|} & M(P, r) \\
& \quad-\left\{1-\frac{n r^{2}\left|a_{0}\right|+k^{2} r\left|a_{1}\right|}{n\left(r^{2}+k^{2}\right)\left|a_{0}\right|+2 k^{2} r\left|a_{1}\right|}\right\} \frac{m(P, k) n r^{n-1}}{k^{n}} \tag{2.1}
\end{align*}
$$

Since $P^{\prime}(z)$ is a polynomial of degree (n-1), we have by maximum modulus principle [4],

$$
\begin{equation*}
\frac{M\left(P^{\prime}, t\right)}{t^{n-1}} \leq \frac{M\left(P^{\prime}, r\right)}{r^{n-1}}, t \geq r \tag{2.2}
\end{equation*}
$$

Combining (2.1) and (2.2), we get

$$
\begin{align*}
M\left(P^{\prime}, t\right) \leq & \frac{t^{n-1}}{r^{n-1}}\left[n \frac{n r\left|a_{0}\right|+k^{2}\left|a_{1}\right|}{n\left(r^{2}+k^{2}\right)\left|a_{0}\right|+2 k^{2} r\left|a_{1}\right|} M(P, r)\right. \\
& \left.\quad-\left\{1-\frac{n r^{2}\left|a_{0}\right|+k^{2} r\left|a_{1}\right|}{n\left(r^{2}+k^{2}\right)\left|a_{0}\right|+2 k^{2} r\left|a_{1}\right|}\right\} \frac{m(P, k) n r^{n-1}}{k^{n}}\right], t \geq r . \tag{2.3}
\end{align*}
$$

Now we have, for $0 \leq \theta<2 \pi$

$$
\begin{aligned}
& \left|P\left(R e^{i \theta}\right)-P\left(r e^{i \theta}\right)\right| \leq \int_{r}^{R}\left|P^{\prime}\left(t e^{i \theta}\right)\right| d t \\
& \leq n \frac{n r\left|a_{0}\right|+k^{2}\left|a_{1}\right|}{n r^{n-1}\left(r^{2}+k^{2}\right)\left|a_{0}\right|+2 k^{2} r^{n}\left|a_{1}\right|} M(P, r) \int_{r}^{R} t^{n-1} d t \\
& \quad-\frac{n}{k^{n}}\left\{1-\frac{n r^{2}\left|a_{0}\right|+k^{2} r\left|a_{1}\right|}{n\left(r^{2}+k^{2}\right)\left|a_{0}\right|+2 k^{2} r\left|a_{1}\right|}\right\} m(P, k) \int_{r}^{R} t^{n-1} d t \\
& =\left(R^{n}-r^{n}\right) \frac{n r\left|a_{0}\right|+k^{2}\left|a_{1}\right|}{n r^{n-1}\left(r^{2}+k^{2}\right)\left|a_{0}\right|+2 k^{2} r^{n}\left|a_{1}\right|} M(P, r) \\
& \quad-\frac{\left(R^{n}-r^{n}\right)}{k^{n}}\left\{1-\frac{n r^{2}\left|a_{0}\right|+k^{2} r\left|a_{1}\right|}{n\left(r^{2}+k^{2}\right)\left|a_{0}\right|+2 k^{2} r\left|a_{1}\right|}\right\} m(P, k),
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
M(P, R) \leq & \left(R^{n}-r^{n}\right) \frac{n r\left|a_{0}\right|+k^{2}\left|a_{1}\right|}{n r^{n-1}\left(r^{2}+k^{2}\right)\left|a_{0}\right|+2 k^{2} r^{n}\left|a_{1}\right|} M(P, r) \\
& \quad-\frac{\left(R^{n}-r^{n}\right)}{k^{n}}\left\{1-\frac{n r^{2}\left|a_{0}\right|+k^{2} r\left|a_{1}\right|}{n\left(r^{2}+k^{2}\right)\left|a_{0}\right|+2 k^{2} r\left|a_{1}\right|}\right\} m(P, k)+M(P, r) .
\end{aligned}
$$

After by simple calculation, we get

$$
\begin{aligned}
& M(P, r) \geq \frac{n r^{n-1}\left(r^{2}+k^{2}\right)\left|a_{0}\right|+2 k^{2} r^{n}\left|a_{1}\right|}{n\left(r R^{n}+r^{n-1} k^{2}\right)\left|a_{0}\right|+k^{2}\left(R^{n}+r^{n}\right)\left|a_{1}\right|} M(P, R) \\
& \quad+\frac{r^{n-1}\left(R^{n}-r^{n}\right)\left(n\left|a_{0}\right|+r\left|a_{1}\right|\right)}{k^{n-2}\left[n\left(r R^{n}+r^{n-1} k^{2}\right)\left|a_{0}\right|+k^{2}\left(R^{n}+r^{n}\right)\left|a_{1}\right|\right]} m(P, k)
\end{aligned}
$$

This completes the proof of Lemma 2.2.

3. Proof of the Theorem 1.4

The polynomial $Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$ has all its zeros in $|z| \geq \frac{1}{k}, \frac{1}{k}<1$ and is of degree $n-s$. By applying Lemma 2.2 to the polynomial $Q(z)$ with $\mathrm{R}=1$, we have

$$
\begin{aligned}
M(Q, r) & \geq \frac{(n-s) r^{n-s-1}\left(r^{2}+\frac{1}{k^{2}}\right)\left|a_{n}\right|+\frac{2}{k^{2}} r^{n-s}\left|a_{n-1}\right|}{(n-s)\left(r+\frac{r^{n-s-1}}{k^{2}}\right)\left|a_{n}\right|+\frac{1}{k^{2}}\left(1+r^{n-s}\right)\left|a_{n-1}\right|} M(Q, 1) \\
& +k^{n-s-2} \frac{r^{n-s-1}\left(1-r^{n-s}\right)\left((n-s)\left|a_{n}\right|+r\left|a_{n-1}\right|\right)}{(n-s)\left(r+\frac{r^{n-s-1}}{k^{2}}\right)\left|a_{n}\right|+\frac{1}{k^{2}}\left(1+r^{n-s}\right)\left|a_{n-1}\right|} \operatorname{Min}_{|z|=\frac{1}{k}}|Q(z)|, \frac{1}{k^{2}}<r<\frac{1}{k}
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& r^{n} \operatorname{Max}_{|z|=\frac{1}{r}}|P(z)| \geq \frac{(n-s) r^{n-s-1}\left(r^{2}+\frac{1}{k^{2}}\right)\left|a_{n}\right|+\frac{2}{k^{2}} r^{n-s}\left|a_{n-1}\right|}{(n-s)\left(r+\frac{r^{n-s-1}}{k^{2}}\right)\left|a_{n}\right|+\frac{1}{k^{2}}\left(1+r^{n-s}\right)\left|a_{n-1}\right|} \operatorname{Max}_{|z|=1}|P(z)| \\
& +k^{n-s-2} \frac{r^{n-s-1}\left(1-r^{n-s}\right)\left((n-s)\left|a_{n}\right|+r\left|a_{n-1}\right|\right)}{(n-s)\left(r+\frac{r^{n-s-1}}{k^{2}}\right)\left|a_{n}\right|+\frac{1}{k^{2}}\left(1+r^{n-s}\right)\left|a_{n-1}\right|} \frac{1}{k^{n}} \operatorname{Min}_{|z|=k}|P(z)|, \quad \frac{1}{k^{2}}<r<\frac{1}{k},
\end{aligned}
$$

which on simplification and by replacing r by $\frac{1}{R}$, we get

$$
\begin{aligned}
& M(P, R) \geq \frac{R^{n}\left[(n-s)\left(k^{2}+R^{2}\right)\left|a_{n}\right|+2 R\left|a_{n-1}\right|\right]}{(n-s)\left(R^{n-s} k^{2}+R^{2}\right)\left|a_{n}\right|+R\left(R^{n-s}+1\right)\left|a_{n-1}\right|} \operatorname{Max}_{|z|=1}|P(z)| \\
& +\frac{R^{s+1}\left(R^{n-s}-1\right)\left[(n-s) R\left|a_{n}\right|+\left|a_{n-1}\right|\right]}{k^{s}\left[(n-s)\left(R^{n-s} k^{2}+R^{2}\right)\left|a_{n}\right|+R\left(R^{n-s}+1\right)\left|a_{n-1}\right|\right]} \operatorname{Min}_{|z|=k}|P(z)|, k>1 \text { and } k<R<k^{2} .
\end{aligned}
$$

This completes the proof of the Theorem 1.4.

Acknowledgement

The author is extremely grateful to the referee(s) for his valuable suggestions.

References

[1] A. Aziz, Growth of polynomials whose zeros are within or outside a circle, Bull. Austral. Math. Soc., 35 (1987), 247-256.
[2] K.K. Dewan, Harish Singh and R.S. Yadav, Inequalities concerning polynomials having zeros in closed interior of a circle, Indian J. Pure Appl. Math., 32(5) (2001), 759-763.
[3] V.K. Jain, On polynomials having zeros in closed exterior or interior of a circle, Indian J. Pure Appl. Math., 30 (1999), 153-159
[4] G. Polya and G. Szegö, Problems and Theorems in Analysis, Vol. 1, Springler-Verlag, Berlin, 1972.
[5] T.J. Rivlin, On the maximum modulus of polynomials, Amer. Math. Mon., 67 (1960), 251253.

GULSHAN SINGH
Bharathiar University,, Coimbatore-641046, Tamil Nadu, India
E-mail address: gulshansingh1@rediffmail.com

[^0]: 2000 Mathematics Subject Classification. 30A10, 30C10, 30C15.
 Key words and phrases. Polynomial of degree n, Zeros, Derivative, Extremal Problems, Inequalities in the complex Domain.
 © 2012 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted July 26, 2011. Published November 28, 2011.

