
Bulletin of Mathematical Analysis and Applications

ISSN: 1821-1291, URL: http://www.bmathaa.org

Volume 4 Issue 1 (2012.), Pages 197-207

TRIPLE FIXED POINTS IN ORDERED METRIC SPACES

(COMMUNICATED BY SIMEON REICH)

HASSEN AYDI, ERDAL KARAPINAR

Abstract. In this paper, we prove triple fixed point theorems in partially
ordered metric spaces depended on another function. The presented results

generalize the theorem of Berinde and Borcut [Tripled fixed point theorems for

contractive type mappings in partially ordered metric spaces, Nonlinear Anal.
74(15) (2011) 4889–4897]. Also, we state some examples showing that our

results are effective.

1. Introduction

Banach fixed point theorem and its applications are well known. Many authors
have extended this theorem, introducing more general contractive conditions, which
imply the existence of a fixed point. Existence of fixed points in ordered metric
spaces was investigated in 2004 by Ran and Reurings [29], and then by Nieto and
López [28]. For some other results in ordered metric spaces, see e.g. [3, 4, 5, 23,
24, 25, 26, 27].

Bhashkar and Lakshmikantham in [11] introduced the concept of a coupled fixed
point of a mapping F : X × X → X and investigated some coupled fixed point
theorems in partially ordered complete metric spaces. Later, various results on
coupled fixed point have been obtained, see e.g. [1, 6, 7, 8, 12, 17, 18, 19, 20, 30].

On the other hand, Berinde and Borcut [10] introduced the concept of triple
fixed point (see also the papers [2, 9, 31]). The following two definitions are from
[10].

Definition 1.1. Let (X,≤) be a partially ordered set and F : X × X × X → X.
The mapping F is said to has the mixed monotone property if for any x, y, z ∈ X

x1, x2 ∈ X, x1 ≤ x2 =⇒ F (x1, y, z) ≤ F (x2, y, z),

y1, y2 ∈ X, y1 ≤ y2 =⇒ F (x, y1, z) ≥ F (x, y2, z),

z1, z2 ∈ X, z1 ≤ z2 =⇒ F (x, y, z1) ≤ F (x, y, z2),
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Definition 1.2. Let F : X ×X ×X → X. An element (x, y, z) is called a triple
fixed point of F if

F (x, y, z) = x, F (y, x, y) = y and F (z, y, x) = z.

Also, Berinde and Borcut [10] proved the following result.

Theorem 1.1. Let (X,≤, d) be a partially ordered set and suppose there is a metric
d on X such that (X, d) is a complete metric space. Suppose F : X × X × X →
X such that F has the mixed monotone property and there exist j, r, l ≥ 0 with
j + r + l < 1 such that

d(F (x, y, z), F (u, v, w)) ≤ jd(x, u) + rd(y, v) + ld(z, w), (1)

for any x, y, z ∈ X for which x ≤ u, v ≤ y and z ≤ w. Suppose either F is
continuous or X has the following property:

(1) if a non-decreasing sequence xn → x, then xn ≤ x for all n,
(2) if a non-increasing sequence yn → y, then y ≤ yn for all n.

If there exist x0, y0, z0 ∈ X such that x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, z0) and
z0 ≤ F (z0, y0, x0), then there exist x, y, z ∈ X such that

F (x, y, z) = x, F (y, x, y) = y and F (z, y, x) = z,

that is, F has a triple fixed point.

In this paper we give some triple fixed point theorems for mappings having the
mixed monotone property in partially ordered metric spaces depended on another
function which are generalization of the main results of Berinde and Borcut [10].

2. MAIN RESULTS

We start with the following definition (see e.g. [13, 14, 22, 21]).

Definition 2.1. Let (X, d) be a metric space. A mapping T : X → X is said to be
ICS if T is injective, continuous and has the property: for every sequence {xn} in
X, if {Txn} is convergent then {xn} is also convergent.

Let Φ be the set of all functions φ : [0,∞)→ [0,∞) such that

(1) φ is non-decreasing,
(2) φ(t) < t for all t > 0,
(3) lim

r→t+
φ(r) < t for all t > 0.

From now on, we denote X3 = X×X×X. Our first result is given by the following:

Theorem 2.1. Let (X,≤) be a partially ordered set and suppose there is a metric
d on X such that (X, d) is a complete metric space. Suppose T : X → X is an
ICS mapping and F : X3 → X is such that F has the mixed monotone property.
Assume that there exists φ ∈ Φ such that

d(TF (x, y, z), TF (u, v, w)) ≤ φ

(
max{d(Tx, Tu), d(Ty, Tv), d(Tz, Tw)}

)
(2)

for any x, y, z ∈ X for which x ≤ u, v ≤ y and z ≤ w. Suppose either

(a) F is continuous, or
(b) X has the following property:
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(i) if non-decreasing sequence xn → x (respectively, zn → z), then xn ≤ x
(respectively, zn ≤ z) for all n,

(ii) if non-increasing sequence yn → y, then yn ≥ y for all n.

If there exist x0, y0, z0 ∈ X such that x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0) and
z0 ≤ F (z0, y0, x0), then there exist x, y, z ∈ X such that

F (x, y, z) = x, F (y, x, y) = y and F (z, y, x) = z,

that is, F has a triple fixed point.

Proof. Let x0, y0, z0 ∈ X such that x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0) and
z0 ≤ F (z0, y0, x0). Set

x1 = F (x0, y0, z0), y1 = F (y0, x0, y0) and z1 = F (z0, y0, x0). (3)

Continuing this process, we can construct sequences {xn}, {yn} and {zn} in X such
that

xn+1 = F (xn, yn, zn), yn+1 = F (yn, xn, yn) and zn+1 = F (zn, yn, xn). (4)

Since F has the mixed monotone property, then using a mathematical induction it
is easy that

xn ≤ xn+1, yn+1 ≤ yn, zn ≤ zn+1, for n = 0, 1, 2, ... (5)

Assume for some n ∈ N,

xn = xn+1, yn = yn+1 and zn = zn+1,

then, by (4), (xn, yn, zn) is a triple fixed point of F . From now on, assume for any
n ∈ N that at least

xn 6= xn+1 or yn 6= yn+1 or zn 6= zn+1. (6)

Since T is injective, then by (6), for any n ∈ N

0 < max{d(Txn, Txn+1), d(Tyn, T yn+1, d(Tzn, T zn+1)}.

Due to (2) and (4), we have

d(Txn, Txn+1) = d(TF (xn−1, yn−1, zn−1), TF (xn, yn, zn))

≤ φ

(
max{d(Txn−1, Txn), d(Tyn−1, Tyn), d(Tzn−1, T zn)}

)
(7)

d(Tyn+1, T yn) = d(TF (yn, xn, yn), TF (yn−1, xn−1, yn−1))
≤ φ({d(Tyn−1, Tyn), d(Txn−1, Txn), d(Tyn−1, T yn)})
= φ(max{d(Tyn−1, T yn), d(Txn−1, Txn)})
≤ φ(max{d(Tzn−1, T zn), d(Tyn−1, T yn), d(Txn−1, Txn)}),

(8)

and

d(Tzn, T zn+1) = d(TF (zn−1, yn−1, xn−1), TF (zn, yn, xn))
≤ φ(max{d(Tzn−1, T zn), d(Tyn−1, T yn), d(Txn−1, Txn)}). (9)

Having in mind that φ(t) < t for all t > 0, so from (7)-(9) we obtain that

0 <max{d(Txn, Txn+1), d(Tyn, Tyn+1), d(Tzn, T zn+1)}
≤φ(max{d(Tzn−1, T zn), d(Tyn−1, Tyn), d(Txn−1, Txn)})
<max{d(Tzn−1, T zn), d(Tyn−1, Tyn), d(Txn−1, Txn)}.

(10)
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It follows that

max{d(Txn, Txn+1), d(Tyn, T yn+1, d(Tzn, T zn+1)}
<max{d(Tzn−1, T zn), d(Tyn−1, T yn), d(Txn−1, Txn)}.

Thus, {max{d(Txn, Txn+1), d(Tyn, T yn+1), d(Tzn, T zn+1)}} is a positive decreas-
ing sequence. Hence, there exists r ≥ 0 such that

lim
n→+∞

max{d(Txn, Txn+1), d(Tyn, T yn+1), d(Tzn, T zn+1)} = r.

Suppose that r > 0. Letting n→ +∞ in (10), we obtain that

0 < r ≤ lim
n→+∞

φ(max{d(Tzn−1, T zn), d(Tyn−1, Tyn), d(Txn−1, Txn)}) = lim
t→r+

φ(t) < r,

(11)
it is a contradiction. We deduce that

lim
n→+∞

max{d(Txn, Txn+1), d(Tyn, T yn+1), d(Tzn, T zn+1)} = 0. (12)

We shall show that {Txn}, {Tyn} and {Tzn} are Cauchy sequences. Assume the
contrary, that is, {Txn}, {Tyn} or {Tzn} is not a Cauchy sequence, that is,

lim
n,m→+∞

d(Txm, Txn) 6= 0, or lim
n,m→+∞

d(Tym, Tyn) 6= 0,

or lim
n,m→+∞

d(Tzm, T zn) 6= 0. This means that there exists ε > 0 for which we can

find subsequences of integers (mk) and (nk) with nk > mk > k such that

max{d(Txmk
, Txnk

), d(Tymk
, Tynk

), d(Tzmk
, T znk

)} ≥ ε. (13)

Further, corresponding to mk we can choose nk in such a way that it is the smallest
integer with nk > mk and satisfying (13). Then

max{d(Txmk
, Txnk−1), d(Tymk

, Tynk−1), d(Tzmk
, T znk−1)} < ε. (14)

By triangular inequality and (14), we have

d(Txmk
, Txnk

) ≤ d(Txmk
, Txnk−1) + d(Txnk−1, Txnk

)

< ε+ d(Txnk−1, Txnk
).

Thus, by (12) we obtain

lim
k→+∞

d(Txmk
, Txnk

) ≤ lim
k→+∞

d(Txmk
, Txnk−1) ≤ ε. (15)

Similarly, we have

lim
k→+∞

d(Tymk
, Tynk

) ≤ lim
k→+∞

d(Tymk
, T ynk−1) ≤ ε. (16)

lim
k→+∞

d(Tzmk
, T znk

) ≤ lim
k→+∞

d(Tzmk
, T znk−1) ≤ ε. (17)

Again by (14), we have

d(Txmk
, Txnk

) ≤ d(Txmk
, Txmk−1) + d(Txmk−1, Txnk−1) + d(Txnk−1, Txnk

)

≤ d(Txmk
, Txmk−1) + d(Txmk−1, Txmk

)

+d(Txmk
, Txnk−1) + d(Txnk−1, Txnk

)

< d(Txmk
, Txmk−1) + d(Txmk−1, Txmk

) + ε+ d(Txnk−1, Txnk
).

Letting k → +∞ and using (12), we get

lim
k→+∞

d(Txmk
, Txnk

) ≤ lim
k→+∞

d(Txmk−1, Txnk−1) ≤ ε. (18)
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lim
k→+∞

d(Tymk
, Tynk

) ≤ lim
k→+∞

d(Tymk−1, T ynk−1) ≤ ε. (19)

lim
k→+∞

d(Tzmk
, T znk

) ≤ lim
k→+∞

d(Tzmk−1, T znk−1) ≤ ε. (20)

Using (13) and (18)-(20), we have

lim
k→+∞

max{d(Txmk
, Txnk

), d(Tymk
, T ynk

), d(Tzmk
, T znk

)}

= lim
k→+∞

max{d(Txmk−1, Txnk−1), d(Tymk−1, T ynk−1), d(Tzmk−1, T znk−1)}

= ε.

(21)

Now, using inequality (2) we obtain

d(Txmk
, Txnk

) = d(TF (xmk−1, ymk−1, zmk−1), TF (xnk−1, ynk−1, znk−1))

≤ φ

(
max{d(Txmk−1, Txnk−1), d(Tymk−1, Tynk−1), d(Tzmk−1, T znk−1)}

)
(22)

d(Tymk
, Tynk

) = d(TF (ymk−1, xmk−1, ymk−1), TF (ynk−1, xnk−1, ynk−1))

≤ φ

(
max{d(Tymk−1, T ynk−1), d(Txmk−1, Txnk−1)}

)
(23)

and

d(Tzmk
, T znk

) = d(TF (zmk−1, ymk−1, xmk−1), TF (znk−1, ynk−1, xnk−1))

≤ φ

(
max{d(Txmk−1, Txnk−1), d(Tymk−1, T ynk−1), d(Tzmk−1, T znk−1)}

)
.

(24)
We deduce from (22)-(24) that

max{d(Txmk
, Txnk

), d(Tymk
, T ynk

), d(Tzmk
, T znk

)}
≤ φ(max{d(Txmk−1, Txnk−1), d(Tymk−1, Tynk−1), d(Tzmk−1, T znk−1)}).

(25)

Letting k → +∞ in (25) and having in mind (21), we get that

0 < ε ≤ lim
t→ε+

φ(t) < ε,

it is a contradiction. Thus, {Txn}, {Tyn} and {Tzn} are Cauchy sequences in
(X, d). Since X is a complete metric space, {Txn}, {Tyn} and {Tzn} are convergent
sequences.

Since T is an ICS mapping, there exist x, y, z ∈ X such that

lim
n→+∞

xn = x, lim
n→+∞

yn = y, and lim
n→+∞

zn = z. (26)

Since T is continuous, we have

lim
n→+∞

Txn = Tx, lim
n→+∞

Tyn = Ty, and lim
n→+∞

Tzn = Tz. (27)

Suppose now the assumption (a) holds, that is, F is continuous. By (4), (26)
and (27) we obtain

x = lim
n→+∞

xn+1 = lim
n→+∞

F (xn, yn, zn) = F ( lim
n→+∞

xn, lim
n→+∞

yn, lim
n→+∞

zn) = F (x, y, z),

y = lim
n→+∞

yn+1 = lim
n→+∞

F (yn, xn, yn) = F ( lim
n→+∞

yn, lim
n→+∞

xn, lim
n→+∞

yn) = F (y, x, y),
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and

z = lim
n→+∞

zn+1 = lim
n→+∞

F (zn, yn, xn) = F ( lim
n→+∞

zn, lim
n→+∞

yn, lim
n→+∞

xn) = F (z, y, x).

We have proved that F has a triple fixed point.
Suppose now the assumption (b) holds. Since {xn}, {zn} are non-decreasing with

xn → x, zn → z and also {yn} is non-increasing with yn → y, then by assumption
(b) we have

xn ≤ x, yn ≥ y and zn ≤ z,
for all n. Consider now

d(Tx, TF (x, y, z)) ≤ d(Tx, Txn+1) + d(Txn+1, TF (x, y, z)
= d(Tx, Txn+1) + d(TF (xn, yn, zn), TF (x, y, z))
≤ d(Tx, Txn+1) + φ(max{d(Txn, Tx), d(Tyn, T y), d(Tzn, T z)}).

(28)
Taking n → ∞ and using (27), the right-hand side of (28) tends to 0, so we get
that d(Tx, TF (x, y, z)) = 0. Thus, Tx = TF (x, y, z) and since T is injective, we
get that x = F (x, y, z). Analogously, we find that

F (y, x, y) = y and F (z, y, x) = z.

Thus, we proved that F has a triple fixed point. This completes the proof of
Theorem 2.1.

Corollary 2.1. Let (X,≤) be a partially ordered set and suppose there is a metric
d on X such that (X, d) is a complete metric space. Suppose T : X → X is an
ICS mapping and F : X3 → X is such that F has the mixed monotone property.
Assume that there exists φ ∈ Φ such that

d(TF (x, y, z), TF (u, v, w)) ≤ φ

(
d(Tx, Tu) + d(Ty, Tv) + d(Tz, Tw)

3

)
for any x, y, z ∈ X for which x ≤ u, v ≤ y and z ≤ w. Suppose either

(a) F is continuous, or
(b) X has the following property:

(i) if non-decreasing sequence xn → x (respectively, zn → z), then xn ≤ x
(respectively, zn ≤ z) for all n,

(ii) if non-increasing sequence yn → y, then yn ≥ y for all n.

If there exist x0, y0, z0 ∈ X such that x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0) and
z0 ≤ F (z0, y0, x0), then there exist x, y, z ∈ X such that

F (x, y, z) = x, F (y, x, y) = y and F (z, y, x) = z,

that is, F has a triple fixed point.

Proof. It suffices to remark that

d(Tx, Tu) + d(Ty, Tv) + d(Tz, Tw)

3
≤ max{d(Tx, Tu), d(Ty, Tv), d(Tz, Tw)}.

Then, we apply Theorem 2.1 because that φ is non-decreasing.

Corollary 2.2. Let (X,≤) be a partially ordered set and suppose there is a metric
d on X such that (X, d) is a complete metric space. Suppose T : X → X is an
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ICS mapping and F : X3 → X is such that F has the mixed monotone property.
Assume that there exists k ∈ [0, 1) such that

d(TF (x, y, z), TF (u, v, w)) ≤ kmax{d(Tx, Tu), d(Ty, Tv), d(Tz, Tw)}

for any x, y, z ∈ X for which x ≤ u, v ≤ y and z ≤ w. Suppose either

(a) F is continuous, or
(b) X has the following property:

(i) if non-decreasing sequence xn → x (respectively, zn → z), then xn ≤ x
(respectively, zn ≤ z) for all n,

(ii) if non-increasing sequence yn → y, then yn ≥ y for all n.

If there exist x0, y0, z0 ∈ X such that x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0) and
z0 ≤ F (z0, y0, x0), then there exist x, y, z ∈ X such that

F (x, y, z) = x, F (y, x, y) = y and F (z, y, x) = z,

that is, F has a triple fixed point.

Proof. It follows by taking φ(t) = kt in Theorem 2.1.

Corollary 2.3. Let (X,≤) be a partially ordered set and suppose there is a metric
d on X such that (X, d) is a complete metric space. Suppose T : X → X is an
ICS mapping and F : X3 → X is such that F has the mixed monotone property.
Assume that there exists k ∈ [0, 1) such that

d(TF (x, y, z), TF (u, v, w)) ≤ k

3
(d(Tx, Tu) + d(Ty, Tv) + d(Tz, Tw)) (29)

for any x, y, z, u, v, w ∈ X for which x ≤ u, v ≤ y and z ≤ w. Suppose either

(a) F is continuous, or
(b) X has the following property:

(i) if non-decreasing sequence xn → x (respectively, zn → z), then xn ≤ x
(respectively, zn ≤ z) for all n,

(ii) if non-increasing sequence yn → y, then yn ≥ y for all n.

If there exist x0, y0, z0 ∈ X such that x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0) and
z0 ≤ F (z0, y0, x0), then there exist x, y, z ∈ X such that

F (x, y, z) = x, F (y, x, y) = y and F (z, y, x) = z,

that is, F has a triple fixed point.

Proof. It suffices to take φ(t) = kt in Corollary 2.1.

Remark 1. Taking T = IdX , the identity on X, in Corollary 2.3, we get Theorem
1.1 of Berinde and Borcut (with j = l = r = k

3 ).

Now, we shall prove the existence and uniqueness of a triple fixed point. For a
product X3 of a partially ordered set (X,≤), we define a partial ordering in the
following way: For all (x, y, z), (u, v, r) ∈ X3

(x, y, z) ≤ (u, v, r)⇔ x ≤ u, y ≥ v and z ≤ r. (30)

We say that (x, y, z) and (u, v, w) are comparable if

(x, y, z) ≤ (u, v, r) or (u, v, r) ≤ (x, y, z).

Also, we say that (x, y, z) is equal to (u, v, r) if and only if x = u, y = v and z = r.
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Theorem 2.2. In addition to hypothesis of Theorem 2.1, suppose that that for all
(x, y, z), (u, v, r) ∈ X3, there exists (a, b, c) ∈ X×X×X such that (F (a, b, c), F (b, a, b), F (c, b, a))
is comparable to (F (x, y, z), F (y, x, y), F (z, y, x)) and (F (u, v, r), F (v, u, v), F (r, v, u)).
Then, F has a unique triple fixed point (x, y, z).

Proof. The set of triple fixed points of F is not empty due to Theorem 2.1.
Assume, now, (x, y, z) and (u, v, r) are two triple fixed points of F , that is,

F (x, y, z) = x, F (u, v, r) = u,
F (y, x, y) = y, F (v, u, v) = v,
F (z, y, x) = z, F (r, v, u) = r.

We shall show that (x, y, z) and (u, v, r) are equal. By assumption, there exists
(a, b, c) ∈ X3 such that (F (a, b, c), F (b, a, b), F (c, b, a)) is comparable to (F (x, y, z), F (y, x, y), F (z, y, x))
and (F (u, v, r), F (v, u, v), F (r, v, u)).

Define sequences {an}, {bn} and {cn} such that

a0 = a, b0 = b, c0 = c, and for any n ≥ 1

an = F (an−1, bn−1, cn−1),
bn = F (bn−1, an−1, bn−1),
cn = F (cn−1, bn−1, an−1),

(31)

for all n. Further, set x0 = x, y0 = y, z0 = z and u0 = u, v0 = v, r0 = r, and on
the same way define the sequences {xn}, {yn}, {zn} and {un}, {vn}, {rn}. Then,
it is easy that

xn = F (x, y, z),
yn = F (y, x, y, ),
zn = F (z, y, x),

un = F (u, v, r),
vn = F (v, u, v),
rn = F (r, v, u),

(32)

for all n ≥ 1. Since (F (x, y, z), F (y, x, y), F (z, y, x)) = (x1, y1, z1) = (x, y, z) is
comparable to (F (a, b, c), F (b, a, b), F (c, b, a)) = (a1, b1, c1), then it is easy to show
(x, y, z) ≥ (a1, b1, c1). Recursively, we get that

(x, y, z) ≥ (an, bn, cn) for all n. (33)

By (33) and (2), we have

d(Tx, Tan+1) = d(TF (x, y, z), TF (an, bn, cn))
≤ φ(max{d(Tx, Tan), d(Ty, T bn), d(Tz, T cn)}) (34)

d(Tbn+1, T y) = d(TF (bn, an, bn), TF (y, x, y))
≤ φ(max{d(Tan, Tx), d(Tbn, T y)})

≤ φ(max{d(Tbn, T y), d(Tan, Tx), d(Tcn, T z)}),
(35)

and
d(Tz, T cn+1) = d(TF (z, y, x), TF (cn, bn, an)

≤ φ(max{d(Tz, T cn), d(Ty, T bn), d(Tx, Tan)}); (36)

It follows from (34)-(36) that

max{d(Tz, T cn+1), d(Ty, T bn+1), d(Tx, Tan+1)} ≤ φ(max{d(Tz, T cn), d(Ty, T bn), d(Tx, Tan)}).

Therefore, for each n ≥ 1,

max{d(Tz, T cn), d(Ty, T bn), d(Tx, Tan)} ≤ φn(max{d(Tz, T c0), d(Ty, T b0), d(Tx, Ta0)}).
(37)
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It is known that φ(t) < t and lim
r→t+

φ(r) < t imply lim
n→∞

φn(t) = 0 for each t > 0.

Thus, from (37),

lim
n→∞

max{d(Tz, T cn), d(Ty, T bn), d(Tx, Tan)} = 0.

This yields that

lim
n→∞

d(Tx, Tan) = 0, lim
n→∞

d(Ty, T bn) = 0,

lim
n→∞

d(Tz, T cn) = 0.
(38)

Analogously, we show that

lim
n→∞

d(Tu, Tan) = 0, lim
n→∞

d(Tv, T bn) = 0,

lim
n→∞

d(Tr, T cn) = 0.
(39)

Combining (38) and (39) yields that (Tx, Ty, Tz) and (Tu, Tv, Tr) are equal. The
fact that T is injective gives us x = u, y = v and z = w.

Now we state some examples showing that our results are effective.

Example 2.1. Let X = [ 12 , 64] with the metric d(x, y) = |x − y|, for all x, y ∈ X
and the usual ordering ≤. Clearly, (X, d) is a complete metric space.

Let T : X → X and F : X3 → X be defined by

Tx = ln(x) + 1 and F (x, y, z) = 8

(√
xz

y

) 1
6

, ∀ x, y, z ∈ X.

It is clear that T is an ICS mapping, F has the mixed monotone property and
continuous.

Set k = 1
2 . Taking x, y, z, u, v, w ∈ X for which x ≤ u, v ≤ y and z ≤ w, we

have

d(TF (x, y, z), TF (u, v, w)) =
1

12
|(lnx+ ln z − 2 ln y)− (lnu+ lnw − 2 ln v)|

≤ 1

12
| lnx− lnu|+ 1

6
| ln y − ln v|+ 1

12
| ln z − lnw|

≤1

6

(
| lnx− lnu|+ | ln y − ln v|+ | ln z − lnw|

)

=
k

3
(d(Tx, Tu) + d(Ty, Tv) + d(Tz, Tw)),

which is the contractive condition (29). Moreover, taking x0 = 1 = z0 and y0 = 64,
we have

x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0) and z0 ≤ F (z0, y0, x0).

Therefore, all the conditions of Corollary 2.3 hold and (8, 8, 8) is the unique triple
fixed point of F , since also the hypotheses of Theorem 2.2 hold.

On the other hand, we can not apply Theorem 1.1 to this example because the
condition (1) does not hold (for j = l = r = k

3 where k is arbitrary in [0, 1)).

Indeed, for x = z = 1
2 , y = v = 64 and u = w = 1, (1) becomes

d(F (x, y, z), F (u, v, w)) =8|(1

2
)

7
6 − 1

2
|

≤k
3

(d(x, u) + d(y, v) + d(z, w)) =
k

3
,
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that is, k ≥ 12(1 − ( 1
2 )

1
6 ) ∼ 1, 309 > 1, which is a contradiction because of k < 1.

We conclude that our results generalize the result of Berinde and Borcut given by
Theorem 1.1.

Example 2.2. Let X = R with d(x, y) = |x − y| and natural ordering. Let T :
X → X and F : X3 → X be defined by Tx = x

12 and F (x, y, z) = 2
9 (x − y + z).

It is obvious that T is an ICS mapping, F has the mixed monotone property and
continuous. Set φ(t) = 2t

3 ∈ Φ. Clearly, all conditions of Theorem 2.1 are satisfied
and (0, 0, 0) is the desired triple fixed point.

Finally, following Example 2.9 in [21], we give a simple example which shows
that if T is not an ICS mapping then the conclusion of Theorem 2.1 fails.

Example 2.3. Let X = R with the usual metric and the usual ordering. Let
F : X3 → X be defined by

F (x, y, z) = 2x− y + 1, for all , x, y, z ∈ X.

then F has the mixed monotone property and F is continuous. Also, there exist
x0 = 1, y0 = 0 and z0 = 1 such that

x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0) and z0 ≤ F (z0, y0, x0).

Let T : X → X be defined by T (x) = 1 for all x ∈ X, then T is not an ICS
mapping. It is obvious that the condition (2) holds for any φ ∈ Φ. However, F has
no triple fixed point.
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