ON SUBORDINATION RESULTS FOR CERTAIN NEW CLASSES OF ANALYTIC FUNCTIONS DEFINED BY USING SALAGEAN OPERATOR

(COMMUNICATED BY R. K. RAINA)

M. K. AOUF ${ }^{1}$, R. M. EL-ASHWAH ${ }^{2}$, A. A. M. HASSAN ${ }^{3}$ AND A. H. HASSAN ${ }^{4}$

Abstract

In this paper we derive several subordination results for certain new classes of analytic functions defined by using Salagean operator.

1. Introduction

Let A denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+{ }_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

that are analytic and univalent in the open unit disc $U=\{z \in \mathbb{C}:|z|<1\}$. Let $f(z) \in A$ be given by (1.1) and $g(z) \in A$ be given by

$$
\begin{equation*}
g(z)=z+{ }_{k=2}^{\infty} b_{k} z^{k} \tag{1.2}
\end{equation*}
$$

Definition 1 (Hadamard Product or Convolution). Given two functions f and g in the class A, where $f(z)$ is given by (1.1) and $g(z)$ is given by (1.2) the Hadamard product (or convolution) of f and g is defined (as usual) by

$$
\begin{equation*}
(f * g)(z)=z+{ }_{k=2}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) \tag{1.3}
\end{equation*}
$$

We also denote by K the class of functions $f(z) \in A$ that are convex in U. For $f(z) \in A$, Salagean [11] introduced the following differential operator:

$$
D^{0} f(z)=f(z), D^{1} f(z)=z f^{\prime}(z), \ldots, D^{n} f(z)=D\left(D^{n-1} f(z)\right)(n \in \mathbb{N}=\{1,2, \ldots\})
$$

We note that

$$
D^{n} f(z)=z+{ }_{k=2}^{\infty} k^{n} a_{k} z^{k}\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)
$$

Definition 2 (Subordination Principle). For two functions f and g, analytic in U, we say that the function $f(z)$ is subordinate to $g(z)$ in U, and write $f(z) \prec g(z)$, if there exists a Schwarz function $w(z)$, which (by definition) is analytic in U with

[^0]$w(0)=0$ and $|w(z)|<1$, such that $f(z)=g(w(z))(z \in U)$. Indeed it is known that
$$
f(z) \prec g(z) \Longrightarrow f(0)=g(0) \text { and } f(U) \subset g(U)
$$

Furthermore, if the function g is univalent in U, then we have the following equivalence [8, p. 4]:

$$
f(z) \prec g(z) \Longleftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U)
$$

Definition 3 [7]. Let $U_{m, n}(\beta, A, B)$ denote the subclass of A consisting of functions $f(z)$ of the form (1.1) and satisfy the following subordination,

$$
\begin{equation*}
\frac{D^{m} f(z)}{D^{n} f(z)}-\beta\left|\frac{D^{m} f(z)}{D^{n} f(z)}-1\right| \prec \frac{1+A z}{1+B z} \tag{1.4}
\end{equation*}
$$

$$
\left(-1 \leq B<A \leq 1 ; \beta \geq 0 ; m \in \mathbb{N} ; n \in \mathbb{N}_{0}, m>n ; z \in U\right)
$$

Specializing the parameters A, B, β, m and n, we obtain the following subclasses studied by various authors:
(i) $U_{m, n}(\beta, 1-2 \alpha,-1)=N_{m, n}(\alpha, \beta)$

$$
\begin{aligned}
= & \left\{f \in A: \operatorname{Re}\left\{\frac{D^{m} f(z)}{D^{n} f(z)}-\alpha\right\}>\beta\left|\frac{D^{m} f(z)}{D^{n} f(z)}-1\right|\right. \\
& \left.\left(0 \leq \alpha<1 ; \beta \geq 0 ; m \in \mathbb{N} ; n \in \mathbb{N}_{0} ; m>n ; z \in U\right)\right\}
\end{aligned}
$$

(see Eker and Owa [4]);
(ii) $U_{n+1, n}(\beta, 1-2 \alpha,-1)=S(n, \alpha, \beta)$

$$
=\left\{f \in A: \operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}-\alpha\right\}>\beta\left|\frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right|\right.
$$

$$
\left.\left(0 \leq \alpha<1 ; \beta \geq 0 ; n \in \mathbb{N}_{0} ; z \in U\right)\right\}
$$

(see Rosy and Murugusudaramoorthy [10] and Aouf [1]);

$$
\begin{align*}
U_{1,0}(\beta, 1-2 \alpha,-1)= & U S(\alpha, \beta) \tag{iii}\\
= & \left\{f \in A: \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\alpha\right\}>\beta\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|\right. \\
& (0 \leq \alpha<1 ; \beta \geq 0 ; z \in U)\} \\
U_{2,1}(\beta, 1-2 \alpha,-1)= & U K(\alpha, \beta) \\
= & \left\{f \in A: \operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\alpha\right\}>\beta\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|\right. \\
& (0 \leq \alpha<1 ; \beta \geq 0 ; z \in U)\}
\end{align*}
$$

(see Shams et al. [13] and Shams and Kulkarni [12]);
(iv) $U_{1,0}(0, A, B)=S^{*}(A, B)$

$$
\begin{aligned}
& =\left\{f \in A: \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z} \quad(-1 \leq B<A \leq 1 ; z \in U)\right\} \\
U_{2,1}(0, A, B) & =K(A, B) \\
& =\left\{f \in A: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{1+A z}{1+B z} \quad(-1 \leq B<A \leq 1 ; z \in U)\right\}
\end{aligned}
$$

(see Janowski [6] and Padmanabhan and Ganesan [9]).
Also we note that:

$$
\begin{aligned}
U_{m, n}(0, A, B)= & U(m, n ; A, B)=\left\{f(z) \in A: \frac{D^{m} f(z)}{D^{n} f(z)} \prec \frac{1+A z}{1+B z}\right. \\
& \left.\left(-1 \leq B<A \leq 1 ; m \in \mathbb{N} ; n \in \mathbb{N}_{0} ; m>n ; z \in U\right)\right\}
\end{aligned}
$$

Definition 4 (Subordination Factor Sequence). A Sequence $\left\{c_{k}\right\}_{k=0}^{\infty}$ of complex numbers is said to be a subordinating factor sequence if, whenever $f(z)$ of the form (1.1) is analytic, univalent and convex in U, we have the subordination given by

$$
\begin{equation*}
{ }_{k=1}^{\infty} a_{k} c_{k} z^{k} \prec f(z)\left(a_{1}=1 ; z \in U\right) \tag{1.5}
\end{equation*}
$$

2. Main Result

Unless otherwise mentioned, we assume in the reminder of this paper that, $-1 \leq$ $B<A \leq 1, \beta \geq 0, m \in \mathbb{N}, n \in \mathbb{N}_{0}, m>n$ and $z \in U$.

To prove our main result we need the following lemmas.
Lemma 1. [16]. The sequence $\left\{c_{k}\right\}_{k=0}^{\infty}$ is a subordinating factor sequence if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+2_{k=1}^{\infty} c_{k} z^{k}\right\}>0 \quad(z \in U) \tag{2.1}
\end{equation*}
$$

Now, we prove the following lemma which gives a sufficient condition for functions belonging to the class $U_{m, n}(\beta, A, B)$.

Lemma 2. A function $f(z)$ of the form (1.1) is in the class $U_{m, n}(\beta, A, B)$ if

$$
\begin{equation*}
\underset{k=2}{\infty}\left[(1+\beta(1+|B|))\left(k^{m}-k^{n}\right)+\left|B k^{m}-A k^{n}\right|\right]\left|a_{k}\right| \leq A-B \tag{2.2}
\end{equation*}
$$

Proof. It suffices to show that

$$
\left|\frac{p(z)-1}{A-B p(z)}\right|<1
$$

where

$$
p(z)=\frac{D^{m} f(z)}{D^{n} f(z)}-\beta\left|\frac{D^{m} f(z)}{D^{n} f(z)}-1\right|
$$

We have

$$
\left.\begin{aligned}
&\left|\frac{p(z)-1}{A-B p(z)}\right|=\left|\frac{D^{m} f(z)-\beta e^{i \theta}\left|D^{m} f(z)-D^{n} f(z)\right|-D^{n} f(z)}{A D^{n} f(z)-B\left[D^{m} f(z)-\beta e^{i \theta}\left|D^{m} f(z)-D^{n} f(z)\right|\right]}\right| \\
& \left.=\left|\frac{\substack{\infty \\
k=2}}{}\left(k^{m}-k^{n}\right) a_{k} z^{k}-\beta e^{i \theta}\right|_{k=2}^{\infty}\left(k^{m}-k^{n}\right) a_{k} z^{k} \right\rvert\, \\
&\left.\left.(A-B) z-\left[\begin{array}{l}
\infty \\
k=2 \\
\hline
\end{array} B k^{m}-A k^{n}\right) a_{k} z^{k}-\left.B \beta e^{i \theta}\right|_{k=2} ^{\infty}\left(k^{m}-k^{n}\right) a_{k} z^{k} \right\rvert\,\right]
\end{aligned} \right\rvert\,
$$

This last expression is bounded above by 1 if

$$
\underset{k=2}{\infty}\left[(1+\beta(1+|B|))\left(k^{m}-k^{n}\right)+\left|B k^{m}-A k^{n}\right|\right]\left|a_{k}\right| \leq A-B
$$

and hence the proof is completed.

Remark 1.

(i) The result obtained by Lemma 2 correct the result obtained by Li and Tang [7, Theorem 1];
(ii) Putting $A=1-2 \alpha(0 \leq \alpha<1)$, and $B=-1$ in Lemma 2, we correct the result obtained by Eker and Owa [4, Theorem 2.1];
(iii) Putting $A=1-2 \alpha(0 \leq \alpha<1), B=-1$ and $m=n+1\left(n \in \mathbb{N}_{0}\right)$, we obtain the result obtained by Rosy and Murugusudaramoorthy [10, Theorem 2].

Let $U_{m, n}^{*}(\beta, A, B)$ denote the class of $f(z) \in A$ whose coefficients satisfy the condition (2.2). We note that $U_{m, n}^{*}(\beta, A, B) \subseteq U_{m, n}(\beta, A, B)$.

Employing the technique used earlier by Attiya [3] and Srivastava and Attiya [14], we prove:

Theorem 3. Let $f(z) \in U_{m, n}^{*}(\beta, A, B)$. Then

$$
\begin{equation*}
\frac{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}{2\left[(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)\right]}(f * h)(z) \prec h(z)(z \in U), \tag{2.3}
\end{equation*}
$$

for every function h in K, and

$$
\begin{equation*}
\operatorname{Re}\{f(z)\}>-\frac{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)}{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}(z \in U) \tag{2.4}
\end{equation*}
$$

The constant factor $\frac{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}{2\left[(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)\right]}$ in the subordination result (2.3) cannot be replaced by a larger one.

Proof. Let $f(z) \in U_{m, n}^{*}(\beta, A, B)$ and let $h(z)=z+{ }_{k=2}^{\infty} c_{k} z^{k} \in K$. Then we have

$$
\begin{gather*}
\frac{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}{2\left[(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)\right]}(f * h)(z) \\
=\frac{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}{2\left[(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)\right]}\left(z+_{k=2}^{\infty} a_{k} c_{k} z^{k}\right) . \tag{2.5}
\end{gather*}
$$

Thus, by Definition 4, the subordination result (2.3) will hold true if the sequence

$$
\left\{\frac{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}{2\left[(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)\right]} a_{k}\right\}_{k=1}^{\infty}
$$

is a subordinating factor sequence, with $a_{1}=1$. In view of Lemma 1 , this is equivalent to the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{1+{ }_{k=1}^{\infty} \frac{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)} a_{k} z^{k}\right\}>0(z \in U) \tag{2.6}
\end{equation*}
$$

Now, since

$$
\Psi(k)=(1+\beta(1+|B|))\left(k^{m}-k^{n}\right)+\left|B k^{m}-A k^{n}\right|
$$

is an increasing function of $k(k \geq 2)$, we have

$$
\begin{aligned}
& \operatorname{Re}\left\{1+{ }_{k=1}^{\infty} \frac{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)} a_{k} z^{k}\right\} \\
= & \operatorname{Re}\left\{1+\frac{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)} z+\right. \\
& \left.\frac{1}{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)}{ }_{k=2}^{\infty}\left[(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|\right] a_{k} z^{k}\right\} \\
\geq & 1-\frac{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)} r- \\
& \frac{1}{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)}{ }_{k=2}^{\infty}\left[(1+\beta(1+|B|))\left(k^{m}-k^{n}\right)+\left|B k^{m}-A k^{n}\right|\right]\left|a_{k}\right| r^{k} \\
> & 1-\frac{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)} r-\frac{A-B}{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)} r \\
= & 1-r>0(|z|=r<1),
\end{aligned}
$$

where we have also made use of assertion (2.2) of Lemma 2. Thus (2.6) holds true in U, this proves the inequality (2.3). The inequality (2.4) follows from (2.3) by taking the convex function $h(z)=\frac{z}{1-z}=z+_{k=2}^{\infty} z^{k}$. To prove the sharpness of the constant $\frac{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}{2\left[(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)\right]}$, we consider the function $f_{0}(z) \in U_{m, n}^{*}(\beta, A, B)$ given by

$$
\begin{equation*}
f_{0}(z)=z-\frac{A-B}{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|} z^{2} . \tag{2.7}
\end{equation*}
$$

Thus from (2.3), we have

$$
\begin{equation*}
\frac{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}{2\left[(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)\right]} f_{0}(z) \prec \frac{z}{1-z}(z \in U) \tag{2.8}
\end{equation*}
$$

Moreover, it can easily be verified for the function $f_{0}(z)$ given by (2.7) that

$$
\begin{equation*}
\min _{|z| \leq r}\left\{\operatorname{Re} \frac{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}{2\left[(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)\right]} f_{0}(z)\right\}=-\frac{1}{2} . \tag{2.9}
\end{equation*}
$$

This shows that the constant $\frac{(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}{2\left[(1+\beta(1+|B|))\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)\right]}$ is the best possible. This completes the proof of Theorem 1.

Remark 2.

(i) Taking $A=1-2 \alpha(0 \leq \alpha<1)$, and $B=-1$ in Theorem 1 , we correct the result obtained by Srivastava and Eker [15, Theorem 1];
(ii) Taking $A=1-2 \alpha(0 \leq \alpha<1), B=-1$ and $m=n+1\left(n \in \mathbb{N}_{0}\right)$, in Theorem 1, we obtain the result obtained by Aouf et al. [2, Corollary 4];
(iii) Taking $A=1-2 \alpha(0 \leq \alpha<1), B=-1, m=1$ and $n=0$ in Theorem 1, we obtain the result obtained by Frasin [5, Corollary 2.2];
(iv) Taking $A=1-2 \alpha(0 \leq \alpha<1), B=-1, m=2$ and $n=1$ in Theorem 1 , we obtain the result obtained by Frasin [5, Corollary 2.5];
(v) Taking $A=1-2 \alpha(0 \leq \alpha<1), B=-1, \beta=0, m=1$ and $n=0$ in Theorem 1, we obtain the result obtained by Frasin [5, Corollary 2.3];
(vi) Taking $A=1-2 \alpha(0 \leq \alpha<1), B=-1, \beta=0, m=2$ and $n=1$ in Theorem 1, we obtain the result obtained by Frasin [5, Corollary 2.6];
(vii) Taking $A=1, B=-1, \beta=0, m=1$ and $n=0$ in Theorem 1, we obtain the result obtained by Frasin [5, Corollary 2.4];
(viii) Taking $A=1, B=-1, \beta=0, m=2$ and $n=1$ in Theorem 1, we obtain the result obtained by Frasin [5, Corollary 2.7];
(ix) Taking $A=1-2 \alpha(0 \leq \alpha<1), B=-1, \beta=1, m=1$ and $n=0$ in Theorem 1, we obtain the result obtained by Aouf et al. [2, Corollary 1];
(x) Taking $A=1-2 \alpha(0 \leq \alpha<1), B=-1, \beta=1, m=2$ and $n=1$ in Theorem 1, we obtain the result obtained by Aouf et al. [2, Corollary 2];
(xi) Taking $A=1, B=-1, m=2$ and $n=1$ in Theorem 1, we obtain the result obtained by Aouf et al. [2, Corollary 3];

Also, we establish subordination results for the associated subclasses $S^{* *}(A, B)$, $K^{*}(A, B)$ and $U^{*}(m, n ; A, B)$, whose coefficients satisfy the inequality (2.2) in the special cases as mentioned.

Putting $\beta=0, m=1$ and $n=0$ in Theorem 1, we have
Corollary 4. Let the function $f(z)$ defined by (1.1) be in the class $S^{* *}(A, B)$ and suppose that $h(z) \in K$. Then

$$
\begin{equation*}
\frac{1+|2 B-A|}{2[1+|2 B-A|+(A-B)]}(f * h)(z) \prec h(z) \quad(z \in U) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\{f(z)\}>-\frac{1+|2 B-A|+(A-B)}{1+|2 B-A|} \quad(z \in U) \tag{2.11}
\end{equation*}
$$

The constant factor $\frac{1+|2 B-A|}{2[1+|2 B-A|+(A-B)]}$ in the subordination result (2.10) cannot be replaced by a larger one.

Putting $\beta=0, m=2$ and $n=1$ in Theorem 1, we have
Corollary 5. Let the function $f(z)$ defined by (1.1) be in the class $K^{*}(A, B)$ and suppose that $h(z) \in K$. Then

$$
\begin{equation*}
\frac{1+|2 B-A|}{2+2|2 B-A|+(A-B)}(f * h)(z) \prec h(z) \quad(z \in U), \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\{f(z)\}>-\frac{2+2|2 B-A|+(A-B)}{2+2|2 B-A|}(z \in U) \tag{2.13}
\end{equation*}
$$

The constant factor $\frac{1+|2 B-A|}{2+2|2 B-A|+(A-B)}$ in the subordination result (2.12) cannot be replaced by a larger one.

Putting $\beta=0$ in Theorem 1, we have
Corollary 6. Let the function $f(z)$ defined by (1.1) be in the class $U^{*}(m, n ; A, B)$ and suppose that $h(z) \in K$. Then

$$
\begin{equation*}
\frac{\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}{2\left[\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)\right]}(f * h)(z) \prec h(z) \quad(z \in U) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\{f(z)\}>-\frac{\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)}{\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}(z \in U) \tag{2.15}
\end{equation*}
$$

The constant factor $\frac{\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|}{2\left[\left(2^{m}-2^{n}\right)+\left|B 2^{m}-A 2^{n}\right|+(A-B)\right]}$ in the subordination result (2.14) cannot be replaced by a larger one.

References

[1] M. K. Aouf, A subclass of uniformly convex functions with negative coefficients, Math.(Cluj), 522 (2010) 99-111.
[2] M. K. Aouf, R. M. El-Ashwah and S. M. El-Deeb, Subordination results for certain subclasses of uniformly starlike and convex functions defined by convolution, European J. Pure Appl. Math., 35 (2010) 903-917.
[3] A. A. Attiya, On some application of a subordination theorems, J. Math. Anal. Appl., 311 (2005) 489-494.
[4] S. S. Eker and S. Owa, Certain classes of analytic functions involving Salagean operator, J. Inequal. Pure Appl. Math., 101 (2009) 12-22.
[5] B. A. Frasin, Subordination results for a class of analytic functions defined by a linear operator, J. Inequal. Pure Appl. Math., 74 (2006) 1-7.
[6] W. Janowski, Some extremal problem for certain families of analytic functions, Ann. Polon. Math., 28 (1973) 648-658.
[7] S. H. Li and H. Tang, Certain new classes of analytic functions defined by using salagean operator, Bull. Math. Anal. Appl., 24 (2010) 62-75.
[8] S. S. Miller and P. T. Mocanu, Differenatial Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math. No. 255 Marcel Dekker, Inc., New York, 2000.
[9] K. S. Padmanabhan and M. S. Ganesan, Convolutions of certain classes of univalent functions with negative coefficients, Indian J. Pure Appl. Math., 199 (1988) 880-889.
[10] T. Rosy and G. Murugusundaramoorthy, Fractional calculus and their applications to certain subclass of uniformly convex functions, Far East J. Math. Sci., 152 (2004) 231-242.
[11] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag), 1013 (1983) 362-372.
[12] S. Shams and S. R. Kulkarni, On a class of univalent functions defined by Ruscheweyh derivatives, Kyungpook Math. J., 43 (2003) 579-585.
[13] S. Shams, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike and convex functions, Internat. J. Math. Math. Sci., 55 (2004) 2959-2961.
[14] H. M. Srivastava and A. A. Attiya, Some subordination results associated with certain subclass of analytic functions, J. Inequal. Pure Appl. Math., 54 (2004) 1-6.
[15] H. M. Srivastava and S. S. Eker, Some applications of a subordination theorem for a class of analytic functions, Applied Math. Letters, 21 (2008) 394-399.
[16] H. S. Wilf, Subordinating factor sequence for convex maps of the unit circle, Proc. Amer. Math. Soc., 12 (1961) 689-693.
M. K. Aouf, ${ }^{1}$ Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura 33516, Egypt.

E-mail address: mkaouf127@yahoo.com
R. M. El-Ashwah, ${ }^{2}$ Department of Mathematics, Faculty of Science at Damietta, University, of Mansoura New Damietta 34517, Egypt.

E-mail address: r_elashwah@yahoo.com
A. A. M. Hassan ${ }^{3}$ and A. H. Hassan ${ }^{4},{ }^{3,4}$ Department of Mathematics, Faculty of Science, University of Zagazig, Zagazig 44519, Egypt.

E-mail address: ${ }^{3}$ E-mail: aam_hassan@yahoo.com, ${ }^{4}$ E-mail: alaahassan1986@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Analytic, univalent, convex, convolution, subordinating factor sequence.
 ©2012 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted Jan 28, 2011. Published December 24, 2011.

