QUASI-HADAMARD PRODUCT OF ANALYTIC P-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

(COMMUNICATED BY R.K RAINA)

M. K. AOUF, R. M. EL-ASHWAH, D. BREAZ

Abstract

The authors establish certain results concerning the quasi-Hadamard product of analytic and p-valent functions with negative coefficients analogous to the results due to Vinod Kumar (J. Math. Anal. Appl. 113(1986), 230-234 and 126(1987), 70-77).

1. Introduction

Let $T(p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}-\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad\left(a_{p+n} \geq 0 ; p \in N=\{1,2, \ldots .\}\right) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the open unit disc $U=\{z:|z|<1\}$.
A functions $f(z)$ belonging to the class $T(p)$ is said to be in the class $F_{p}(\lambda, \alpha)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda) \frac{f(z)}{z^{p}}+\lambda \frac{f^{\prime}(z)}{p z^{p-1}}\right\}>\frac{\alpha}{p} \tag{1.2}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<p), \lambda(\lambda \geq 0)$ and for all $z \in U$. The class $F_{p}(\lambda, \alpha)$ was studied by Lee et al. [7] and Aouf and Darwish [3].

Throughout the paper, let the functions of the form

$$
\begin{gather*}
f(z)=a_{p} z^{p}-\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad\left(a_{p}>0 ; a_{p+n} \geq 0 ; p \in N\right), \tag{1.3}\\
f_{i}(z)=a_{p, i} z^{p}-\sum_{n=1}^{\infty} a_{p+n, i} z^{p+n} \quad\left(a_{p, i}>0 ; a_{p+n} \geq 0 ; p \in N\right), \tag{1.4}\\
g(z)=b_{p} z^{p}-\sum_{n=1}^{\infty} b_{p+n} z^{p+n} \quad\left(b_{p}>0 ; b_{p+n} \geq 0 ; p \in N\right) \tag{1.5}
\end{gather*}
$$

[^0]and
\[

$$
\begin{equation*}
g_{j}(z)=b_{p, j} z^{p}-\sum_{n=1}^{\infty} b_{p+n, j} z^{p+n} \quad\left(b_{p, j}>0 ; b_{p+n, j} \geq 0 ; p \in N\right) \tag{1.6}
\end{equation*}
$$

\]

be analytic and p-valent in U.
Let $F_{p}^{*}(\lambda, \alpha)$ denote the class of functions $f(z)$ of the form (1.3) and satisfying (1.2) for some λ, α and for all $z \in U$. Also let $G_{p}^{*}(\lambda, \alpha)$ denote the class of functions of the form (1.3) such that $\frac{z f^{\prime}(z)}{p} \in F_{p}^{*}(\lambda, \alpha)$.

We note that when $a_{p}=1$, the class $G_{p}^{*}(\lambda, \alpha)=G_{p}(\lambda, \alpha)$ was studied by Aouf [2].

Using similar arguments as given by Lee et al. [7] and Aouf and Darwish [3] we can easily prove the following analogous results for functions in the classes $F_{p}^{*}(\lambda, \alpha)$ and $G_{p}^{*}(\lambda, \alpha)$.

A function $f(z)$ defined by (1.3) belongs to the class $F_{p}^{*}(\lambda, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}(p+\lambda n) a_{p+n} \leq(p-\alpha) a_{p} \tag{1.7}
\end{equation*}
$$

and $f(z)$ defined by (1.3) belongs to the class $G_{p}^{*}(\lambda, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{p+n}{p}\right)(p+\lambda n) a_{p+n} \leq(p-\alpha) a_{p} \tag{1.8}
\end{equation*}
$$

We now introduce the following class of analytic and p-valent functions which plays an important role in the discussion that follows:

A function $f(z)$ defined by (1.3) belongs to the class $F_{p, k}^{*}(\lambda, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{p+n}{p}\right)^{k}(p+\lambda n) a_{p+n} \leq(p-\alpha) a_{p} \tag{1.9}
\end{equation*}
$$

where $0 \leq \alpha<p, \lambda \geq 0$ and k is any fixed nonnegative real number.
We note that, for every nonnegative real number k, the class $F_{p, k}^{*}(\lambda, \alpha)$ is nonempty as the functions of the form

$$
\begin{equation*}
f(z)=a_{p} z^{p}-\sum_{n=1}^{\infty} \frac{(p-\alpha) a_{p}}{\left(\frac{p+n}{p}\right)^{k}(p+\lambda n)} \mu_{p+n} z^{p+n} \tag{1.10}
\end{equation*}
$$

where $a_{p}>0, \mu_{p+n} \geq 0$ and $\sum_{n=1}^{\infty} \mu_{p+n} \leq 1$, satisfy the inequality (1.9). It is evident that $F_{p, 1}^{*}(\lambda, \alpha) \equiv G_{p}^{*}(\lambda, \alpha)$ and, for $k=0, F_{p, 0}^{*}(\lambda, \alpha)$ is identical to $F_{p}^{*}(\lambda, \alpha)$. Further, $F_{p, k}^{*}(\lambda, \alpha) \subset F_{p, h}^{*}(\lambda, \alpha)$ if $k>h \geq 0$, the containment being proper. Whence, for any positive integer k, we have the inclusion relation

$$
F_{p, k}^{*}(\lambda, \alpha) \subset F_{p, k-1}^{*}(\lambda, \alpha) \subset \ldots \subset F_{p, 2}^{*}(\lambda, \alpha) \subset G_{p}^{*}(\lambda, \alpha) \subset F_{p}^{*}(\lambda, \alpha)
$$

Let us define the quasi-Hadamard product of the functions $f(z)$ defined by (1.3) and $g(z)$ defined by (1.5) by

$$
\begin{equation*}
f * g(z)=a_{p} b_{p} z^{p}-\sum_{n=1}^{\infty} a_{p+n} b_{p+n} z^{p+n} \tag{1.11}
\end{equation*}
$$

Similarly, we can define the quasi-Hadamard product of more than two functions.

In this paper, we establish certain results concerning the quasi-Hadamard product of functions in the classes $F_{p, k}^{*}(\lambda, \alpha), F_{p}^{*}(\lambda, \alpha)$ and $G_{p}^{*}(\lambda, \alpha)$ analogous to the results due to Kumar ([8] and [9]), Aouf et al. [4], Aouf [1], Darwish [5] and Hossen [6].

2. The main theorems

Unless otherwise mentioned we shall assume throughout the following resultes that $\lambda \geq 1,0 \leq \alpha<p$ and $p \in N$.
Theorem 1. Let the functions $f_{i}(z)$ defined by (1.4) be in the class $G_{p}^{*}(\lambda, \alpha)$ for every $i=1,2, \ldots, m$; and let the functions $g_{j}(z)$ defined by (1.6) be in the class $F_{p}^{*}(\lambda, \alpha)$ for every $j=1,2, \ldots, q$. Then, the quasi-Hadamard product $f_{1} * f_{2} * \ldots *$ $f_{m} * g_{1} * g_{2} * \ldots * g_{q}(z)$ belongs to the class $F_{p, 2 m+q-1}^{*}(\lambda, \alpha)$.

Proof. We denote quasi-Hadamard product $f_{1} * f_{2} * \ldots * f_{m} * g_{1} * g_{2} * \ldots * g_{q}(z)$ by the function $h(z)$, for the sake of convenience.

Clearly,

$$
\begin{equation*}
h(z)=\left\{\prod_{i=1}^{m} a_{p, i} \prod_{j=1}^{q} b_{p, j}\right\} z^{p}-\sum_{n=1}^{\infty}\left\{\prod_{i=1}^{m} a_{p+n, i} \prod_{j=1}^{q} b_{p+n, j}\right\} z^{p+n} . \tag{2.1}
\end{equation*}
$$

To prove the theorem, we need to show that

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left(\frac{p+n}{p}\right)^{2 m+q-1}(p+\lambda n)\left\{\prod_{i=1}^{m} a_{p+n, i} \prod_{j=1}^{q} b_{p+n, j}\right\} \\
& \leq(p-\alpha)\left\{\prod_{i=1}^{m} a_{p, i} \prod_{j=1}^{q} b_{p, j}\right\} \tag{2.2}
\end{align*}
$$

Since $f_{i}(z) \in G_{p}^{*}(\lambda, \alpha)$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{p+n}{p}\right)(p+\lambda n) a_{p+n, i} \leq(p-\alpha) a_{p, i} \tag{2.3}
\end{equation*}
$$

for every $i=1,2, \ldots, m$. Therefore

$$
\left(\frac{p+n}{p}\right)(p+\lambda n) a_{p+n, i} \leq(p-\alpha) a_{p, i}
$$

or

$$
a_{p+n, i} \leq \frac{(p-\alpha)}{\left(\frac{p+n}{p}\right)(p+\lambda n)} a_{p, i}
$$

for every $i=1,2, \ldots, m$. The right-hand expression of this last inequality is not greater than $\frac{a_{p, i}}{\left(\frac{p+n}{p}\right)^{2}}$. Hence

$$
\begin{equation*}
a_{p+n, i} \leq \frac{a_{p, i}}{\left(\frac{p+n}{p}\right)^{2}} \tag{2.4}
\end{equation*}
$$

for every $i=1,2, \ldots, q$. Similarly, for $g_{j}(z) \in F_{p}^{*}(\lambda, \alpha)$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}(p+\lambda n) b_{p+n, j} \leq(p-\alpha) b_{p, j} \tag{2.5}
\end{equation*}
$$

for every $j=1,2, \ldots, q$. Whence we obtain

$$
\begin{equation*}
b_{p+n, j} \leq \frac{b_{p, j}}{\left(\frac{p+n}{p}\right)} \tag{2.6}
\end{equation*}
$$

for every $j=1,2, \ldots, q$.
Using (2.4) for for every $i=1,2, \ldots, m,(2.6)$ for $j=1,2, \ldots, q-1$, and (2.5) for $j=q$, we get

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left[\left(\frac{p+n}{p}\right)^{2 m+q-1}(p+\lambda n)\left\{\prod_{i=1}^{m} a_{p+n, i} \prod_{j=1}^{q} b_{p+n, j}\right\}\right] \\
\leq & \sum_{n=1}^{\infty}\left[\left(\frac{p+n}{p}\right)^{2 m+q-1}(p+\lambda n)\left(\frac{p+n}{p}\right)^{-2 m}\left(\frac{p+n}{p}\right)^{-(q-1)} \cdot\right. \\
& \left.\cdot\left(\prod_{i=1}^{m} a_{p, i} \prod_{j=1}^{q-1} b_{p, j}\right)\right] b_{p+n, q} \\
= & \sum_{n=1}^{\infty}\left[(p+\lambda n) b_{p+n, q}\right]\left(\prod_{i=1}^{m} a_{p, i} \prod_{j=1}^{q-1} b_{p, j}\right) \\
\leq & (p-\alpha)\left(\prod_{i=1}^{m} a_{p, i} \prod_{j=1}^{q} b_{p, j}\right) .
\end{aligned}
$$

Hence $h(z) \in F_{p, 2 m+q-1}^{*}(\lambda, \alpha)$. This completes the proof of Theorem 1.
We note that the required estimate can be also obtained by using (2.4) for $i=1,2, \ldots, m-1,(2.6)$ for $j=1,2, \ldots, q$ and (2.3) for $i=m$.

Now we discuss the applications of Theorem 1. Taking into account the quasiHadamard product of functions $f_{1}(z), f_{2}(z), \ldots, f_{m}(z)$ only, in the proof of Theorem 1 , and using (2.4) for $i=1,2, \ldots, m-1$, and (2.3) for $i=m$, we are led to

Corollary 1. Let the functions $f_{i}(z)$ defined by (1.4) belongs to the class $G_{p}^{*}(\lambda, \alpha)$ for every $i=1,2, \ldots, m$. Then the quasi-Hadamard product $f_{1} * f_{2} * \ldots * f_{m}(z)$ belongs to the class $F_{p, 2 m-1}^{*}(\lambda, \alpha)$.

Next, taking into account the quasi-Hadamard product of the functions $g_{1}(z), g_{2}(z), \ldots, g_{q}(z)$ only, in the proof of Theorem 1, and using (2.6) for $j=$ $1,2, \ldots, q-1$, and (2.5) for $j=q$, we are led to

Corollary 2. Let the functions $g_{j}(z)$ defined by (1.6) belongs to the class $F_{p}^{*}(\lambda, \alpha)$ for every $j=1,2, \ldots, q$. Then the quasi-Hadamard product $g_{1} * g_{2} * \ldots * g_{q}(z)$ belongs to the class $F_{p, q-1}^{*}(\lambda, \alpha)$.

References

[1] M. K. Aouf, The quasi-Hadamard product of certain analytic functions, Appl. Math. Letters 21(2008), 1184-1187.
[2] M. K. Aouf, A subclass of analytic p-valent functions with negative coefficients. I, Utilitas Math. 46(1994), 219-231.
[3] M. K. Aouf and H. E. Darwish, Basic properties and characterizations of certain class of analytic functions with negative coefficients. II, Utilitas Math. 46(1994), 167-177.
[4] M. K. Aouf, A. Shamandy and M. K. Yassen, Quasi-Hadamard product of p-valent functions, Commun. Fac. Sci. Univ. Ank. Series A, 44(1995), 35-40.
[5] H. E. Darwish, The quasi- Hadamard product of certain starlike and convex functions, Appl. Math. Letters 20(2007), 692-695.
[6] H. M. Hossen, Quasi-Hadamard product of certain p-valent functions, Demonstratio Math. 33(2000), no. 2, 277-281.
[7] S. K. Lee, S. Owa and H. M. Srivastava, Basic properties and characterizations of a certain class of analytic functions with negative coefficients, Utilitas Math. 36(1989), 121-128.
[8] V. Kumar, Hadamard product of certain starlike functions. II, J. Math. Anal. Appl. 113(1986), 230-234.
[9] V. Kumar, Quasi-Hadamard product of certain univalent functions J. Math. Anal. Appl. 126(1987), 70-77.
M. K. Aouf

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

E-mail address: mkaouf127@yahoo.com
R. M. El-Ashwah

Department of Mathematics, Faculty of Science (Damietta Branch), Mansoura University, New Damietta 34517, Egypt

E-mail address: r_elashwah@yahoo.com
D. Breaz
" 1 Decembrie 1918 " University of Alba Iulia, Faculty of Science, Department of MathematicsInformatics, 510009 Alba Iulia, Romania

E-mail address: dbreaz@uab.ro

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Analytic, p-valent, quasi-Hadamard product.
 © 2012 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted September 26, 2011. Published December 6, 2011.

