THRIAD GEODESIC COMPOSITIONS IN FOUR DIMENSIONAL SPACE WITH AN AFFINE CONNECTEDNESS WITHOUT A TORSION

(COMMUNICATED BY KRISHNAN LAL DUGAL)

MUSA AJETI

Abstract

Let A_{4} be an affinely connected space without a torsion. Following [7] we introduce the affinors $a_{\alpha}^{\beta}, b_{\alpha}^{\beta}$ and $\tilde{c}_{\alpha}^{\beta}=i c_{\alpha}^{\beta}=-i a_{\sigma}^{\beta} b_{\alpha}^{\sigma}\left(i^{2}=-1\right)$ which define the compositions $X_{2} \times \bar{X}_{2}, Y_{2} \times \bar{Y}_{2}$ and $Z_{2} \times \bar{Z}_{2}$, respectively. The first two compositions are conjugate. The composition $U_{2} \times \bar{U}_{2}$ generated by the affinor $d_{\alpha}^{\beta}=a_{\alpha}^{\beta}+b_{\alpha}^{\beta}+c_{\alpha}^{\beta}$ is considered too. We have found necessary and sufficient condition for any of the above compositions to be of the kind $(g-g)$. Characterisics of the spaces A_{4} that contain such compositions are obtained. Conections between Richis tensor and fundamental density of $E_{q} A_{4}$ are establish when the space is equiaffine and the compositions $X_{2} \times \bar{X}_{2}, Y_{2} \times \bar{Y}_{2}, Z_{2} \times \bar{Z}_{2}$, are simultaneously of the kind $(g-g)$.

1. Introduction

Let A_{N} be a space with a symmetric affine connectedness without a torsion, defined by $\Gamma_{\alpha \beta}^{\gamma}$. Let consider a composition $X_{n} \times X_{m}$ of two differentiable basic manifolds X_{n} and $X_{m}(n+m=N)$ in the space A_{N}. For every point of the space of compositions $A_{N}\left(X_{n} \times X_{m}\right)$ there are two positions of the basic manifolds, which we denotes by $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ [3]. The defining of a composition in the space A_{N} is equivalent to defining of a field of an affinor a_{α}^{β}, that satisfies the condition [2], [3]

$$
\begin{equation*}
a_{\sigma}^{\beta} a_{\alpha}^{\sigma}=\delta_{\alpha}^{\beta} \tag{1}
\end{equation*}
$$

The affinor a_{α}^{β} is called an affinor of the composition [2]. According to [3] and [5] the condition for integrability of the structure is $a_{\beta}^{\sigma} \nabla_{\left[\alpha a_{\sigma}^{\nu}\right]}-a_{\alpha}^{\sigma} \nabla_{\left[\beta a_{\sigma}^{\nu}\right]}=0$ The projective affinors ${ }^{n} a_{\alpha}^{\sigma}$ and ${ }^{m} a_{\alpha}^{\sigma}[3]$, [4], defined by the equalities ${ }^{n} a_{\alpha}^{\sigma}=\frac{1}{2}\left(\delta_{\alpha}^{\beta}+a_{\alpha}^{\beta}\right)$, ${ }^{m} a_{\alpha}^{\sigma}=\frac{1}{2}\left(\delta_{\alpha}^{\beta}-a_{\alpha}^{\beta}\right)$ satisfy the conditions ${ }^{n} a_{\alpha}^{\beta}+{ }^{m} a_{\alpha}^{\beta}=\delta_{\alpha}^{\beta},{ }^{n} a_{\alpha}^{\beta}+{ }^{m} a_{\alpha}^{\beta}=a_{\alpha}^{\beta}$ For

[^0]every vector $v^{\alpha} \in A_{N}\left(X_{n} \times X_{m}\right)$ we have $v^{\alpha}=\stackrel{n}{a_{\alpha}^{\beta}} v^{\beta}+{ }^{m} a_{\alpha}^{\beta} v^{\beta}=\stackrel{n}{V_{\alpha}}+\stackrel{m}{V_{\alpha}}$, where $V^{\alpha}=\stackrel{n}{a_{\alpha}^{\beta}} v^{\beta} \in P\left(X_{n}\right), \stackrel{m}{V^{\alpha}}={ }^{m} a_{\alpha}^{\beta} v^{\beta} \in P\left(X_{m}\right)[4]$.

The composition $X_{n} \times X_{m} \in A_{N}(n+m=N)$ for which the positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ are parallelly translated along any line of X_{n} and X_{m}, respectively is called a composition of the kind $(g-g)[3]$ or geodesic composition [6]. According to [3] the geodesic composition is characterized with the equality

$$
\begin{equation*}
a_{\alpha}^{\sigma} \nabla_{\beta} a_{\sigma}^{\nu}+a_{\beta}^{\sigma} \nabla_{\sigma} a_{\alpha}^{\nu}=0 \tag{2}
\end{equation*}
$$

Let A_{4} be an space with affine connectedness without a torsion, defined by $\Gamma_{\alpha \beta}^{\sigma}(\alpha, \beta, \sigma=$ $1 ; 2 ; 3 ; 4)$. Let $v_{1}^{\alpha},{\underset{2}{2}}_{v^{\alpha}}^{v}{\underset{3}{v}}_{v^{\alpha}}^{\left(v_{4}^{\alpha}\right.}$ are independent vector fields in A_{4}. Following [7] we define the covectors $\stackrel{\sigma}{v}_{\alpha}$ by the equalities

$$
\begin{equation*}
v_{\alpha}^{v^{\beta}} \stackrel{v}{v}_{\sigma}=\delta_{\sigma}^{\beta} \leftrightarrow v_{\alpha}^{v^{\beta}}{ }_{\beta}^{\sigma}=\delta_{\alpha}^{\sigma} \tag{3}
\end{equation*}
$$

According to [6], [7] we can define the affinor

$$
\begin{equation*}
a_{\alpha}^{\beta}=v_{1}^{v^{\beta}} \stackrel{1}{v}_{\alpha}+v_{2}^{v^{\beta}} \stackrel{v}{\alpha}_{\alpha}-v_{3}^{v^{\beta}} \stackrel{v}{\alpha}_{\alpha}-v_{4}^{v^{\beta}} v_{\alpha} \tag{4}
\end{equation*}
$$

that satisfy the equalities (1). The affinor (4) defines a composition $\left(X_{n} \times X_{m}\right)$ in A_{4}. The projective affinors of the composition $\left(X_{n} \times X_{m}\right)$ are [7]

Following [7] we choose the net $(\underset{1}{v}, \underset{2}{v}, \underset{3}{v}, \underset{4}{v})$ for a coordinate one. Then we have

$$
\begin{align*}
& v_{1}^{\alpha}(1,0,0,0),{\underset{2}{v}}^{\alpha}(0,1,0,0), \stackrel{v}{3}_{\alpha}^{\alpha}(0,0,1,0), \stackrel{v_{4}^{\alpha}}{ }(0,0,0,1) \\
& \stackrel{1}{v}_{\alpha}(1,0,0,0), \stackrel{2}{v}_{\alpha}(0,1,0,0), \stackrel{3}{v_{\alpha}}(0,0,1,0), \stackrel{4}{v_{\alpha}}(0,0,0,1) \tag{6}
\end{align*}
$$

Let consider the vectors [7]

$$
\begin{equation*}
\underset{1}{w^{\alpha}}=v_{1}^{v^{\alpha}}+\underset{2}{v_{2}^{\alpha}}, \underset{2}{w^{\alpha}}=\underset{2}{v^{\alpha}}+v_{4}^{\alpha}, \underset{3}{w^{\alpha}}=\underset{1}{v^{\alpha}}-\underset{2}{v^{\alpha}}, \underset{4}{w^{\alpha}}=v_{2}^{\alpha}-v_{4}^{\alpha} \tag{7}
\end{equation*}
$$

We define the covectors $\stackrel{\alpha}{w}_{\sigma}$ by the equalities

$$
\begin{equation*}
\underset{\alpha}{w^{\nu}} \stackrel{\alpha}{w}_{\sigma}=\delta_{\sigma}^{\nu} \Leftrightarrow \underset{\alpha}{w^{\sigma}} \stackrel{\beta}{w}_{\sigma}=\delta_{\alpha}^{\beta} \tag{8}
\end{equation*}
$$

From (3) and (8) follow

$$
\begin{equation*}
\stackrel{1}{w}_{\alpha}=\frac{1}{2}\left(\stackrel{1}{v}_{\alpha}+\stackrel{2}{v}_{\alpha}\right), \stackrel{2}{w}_{\alpha}=\frac{1}{2}\left(\stackrel{2}{v}_{\alpha}+\stackrel{4}{v}_{\alpha}\right), \stackrel{3}{w}_{\alpha}=\frac{1}{2}\left(\stackrel{1}{v}_{\alpha}-\stackrel{2}{v}_{\alpha}\right), \stackrel{4}{w}_{\alpha}=\frac{1}{2}\left(\stackrel{2}{v}_{\alpha}-\stackrel{4}{v}_{\alpha}\right) \tag{9}
\end{equation*}
$$

Let consider the affinor

$$
\begin{equation*}
b_{\alpha}^{\beta}={\underset{1}{w}}^{\beta} \stackrel{1}{w}_{\alpha}+{\underset{2}{w}}^{\beta} \stackrel{2}{w}_{\alpha}-w_{3}^{\beta} \stackrel{3}{w}_{\alpha}-{\underset{4}{w}}^{\beta} \stackrel{4}{w}_{\alpha} \tag{10}
\end{equation*}
$$

which according to [7] satisfies the equality $b_{\alpha}^{\beta} b_{\sigma}^{\alpha}=\delta_{\sigma}^{\beta}$. Therefore the affinor (10) defines a composition $Y_{2} \times \bar{Y}_{2}$ in A_{4}. According to [7] the compositions $X_{2} \times \bar{X}_{2}$ and $Y_{2} \times \bar{Y}_{2}$ are conjugate. By (3), (7), (8) and (10) we obtain

$$
\begin{equation*}
b_{\alpha}^{\beta}=v_{1}^{v^{\beta}} \stackrel{3}{\alpha}_{\alpha}+v_{3}^{\beta} \stackrel{v}{v}_{\alpha}^{1}+v_{2}^{\beta} \stackrel{4}{v}_{\alpha}+v_{4}^{\beta} \stackrel{v}{v}_{\alpha} \tag{11}
\end{equation*}
$$

Following [7] let consider the affinor $c_{\alpha}^{\beta}=-a_{\alpha}^{\beta} b_{\sigma}^{\alpha}$, which satisfies the equality $c_{\sigma}^{\beta} c_{\alpha}^{\sigma}=-\delta_{\alpha}^{\beta}$. With the help of (3), (4), (11) we establish

$$
\begin{equation*}
c_{\alpha}^{\beta}=v_{3}^{v^{\beta}} \stackrel{1}{v}_{\alpha}-v_{1}^{v^{\beta}} \stackrel{3}{v}_{\alpha}+v_{4}^{v^{\beta}} v_{\alpha}^{2}-v_{2}^{\beta^{4}} \stackrel{u}{\alpha}_{\alpha} . \tag{12}
\end{equation*}
$$

The affinor $\tilde{c}_{\alpha}^{\beta}=i c_{\alpha}^{\beta}$, where $i^{2}=-1$, defines a composition $Z_{2} \times \bar{Z}_{2}$ in A_{4}.

§2. Geodesic compositions in spaces A_{4}

According to [8] we have the following derivative equations

$$
\begin{equation*}
\nabla_{\sigma} v_{\alpha}^{\beta}=\stackrel{\nu}{\alpha}_{\sigma}{\underset{\nu}{v}}_{v^{\beta}}, \nabla_{\sigma} \stackrel{\alpha}{v}_{\beta}=-\stackrel{\alpha}{\nu}_{\sigma} \stackrel{\nu}{v}_{\beta} \tag{13}
\end{equation*}
$$

Let consider the composition $X_{2} \times \bar{X}_{2}$ and let accept:
$\alpha, \beta, \gamma, \sigma, \nu, \tau \in\{1,2,3,4\} ; i, j, k, s \in\{1,2\} ; \bar{i}, \bar{j}, \bar{k}, \bar{s} \in\{3,4\}$.
Theorem 1.1. The composition $X_{2} \times \bar{X}_{2}$ is of the kind $(g-g)$ if and only if the coefficients of the derivative equations (13) satisfy the conditions

$$
\begin{equation*}
\stackrel{\bar{i}}{i}_{\stackrel{\rightharpoonup}{k}_{\alpha}}^{\alpha} v_{s}^{\alpha}=0, \frac{i}{\frac{T}{k}} \alpha \frac{v^{\alpha}}{\alpha}=0 \tag{14}
\end{equation*}
$$

Proof: According to (4) and (13) we have

$$
\begin{align*}
& \nabla \beta a_{\beta}^{\nu}=\stackrel{\tau}{T}_{1}^{\tau}{\underset{\tau}{v}}_{v^{\nu}}^{\stackrel{1}{v}_{\sigma}}-\stackrel{1}{\tau}_{\tau}^{1}{\underset{1}{v}}_{v^{\nu}}^{v_{\sigma}}+\stackrel{\tau}{T}_{2}^{\tau}{\underset{\tau}{v}}_{v^{\nu}}^{v_{\sigma}}-{\underset{\tau}{T}}_{\beta}^{2}{\underset{2}{v}}_{v^{\nu}}^{v_{\sigma}} \tag{15}
\end{align*}
$$

Taking into account the independence of the covectors $\stackrel{\sigma}{v}_{\alpha}$ and using (2), (3), (4), (15) we find the equalities

$$
\begin{align*}
& \left(\delta_{\beta}^{\sigma}-a_{\beta}^{\sigma}\right)\left(\stackrel{1}{T}_{3}^{\sigma}{\underset{3}{v}}_{v^{\nu}}+\stackrel{T}{T}_{3}^{2}{\underset{4}{v}}_{v^{\nu}}\right)=0, \quad\left(\delta_{\beta}^{\sigma}-a_{\beta}^{\sigma}\right)\left({\underset{4}{T}}_{\sigma}{\underset{3}{v}}_{v^{\nu}}+{\underset{4}{T}}_{4}^{2}{\underset{4}{v}}_{\nu}^{\nu}\right)=0 . \tag{16}
\end{align*}
$$

Because of the independence of the vectors $\underset{\alpha}{v^{\nu}}$ it follows an equivalence of (16) to the following equalities

$$
\begin{align*}
& \stackrel{3}{T}_{1}+a_{\beta}^{\sigma} \stackrel{3}{T}_{\sigma}=0, \stackrel{4}{T}_{1}+a_{\beta}^{\sigma} \stackrel{4}{T}_{1}=0, \stackrel{3}{T}_{2}+a_{\beta}^{\sigma}{\underset{2}{T}}_{2}^{3}=0, \stackrel{4}{T}_{2}+a_{\beta}^{\sigma} \stackrel{4}{T}_{2}=0, \\
& \stackrel{1}{T}_{3} \beta-a_{\beta}^{\sigma} \stackrel{1}{T}_{3}=0, \stackrel{2}{T}_{3} \beta-a_{\beta}^{\sigma} \stackrel{2}{T}_{3}=0, \stackrel{1}{T}_{4}-a_{\beta}^{\sigma}{\underset{4}{T}}^{1}=0, \stackrel{2}{T}_{4}-a_{\beta}^{\sigma} \stackrel{2}{T}_{4} \sigma=0 . \tag{17}
\end{align*}
$$

Now it is easy to see that the equalities (14) follow after contraction by v_{1}^{β} and $\underset{2}{v^{\beta}}$ for the first four equalities of (17) and by ${\underset{3}{\gamma}}^{\beta}$ and ${\underset{4}{v}}^{\beta}$ for the last four equalities of (17). Let?s note that the equalities (17) are proved in [6] by another approach.
Corollary 1.2. If the net $\left(\begin{array}{ll}v, v \\ 1 & v \\ 2 & , \\ 3 & , \\ 4\end{array}\right)$ vis chosen as a coordinate one then the composition $X_{2} \times \bar{X}_{2}$ from the kind $(g-g)$ characterizes by the following equalities for: (1.1) the coefficients of the derivative equations

$$
\begin{equation*}
\stackrel{\bar{i}}{T_{k}} s=0, \quad \stackrel{i}{\bar{k}} \bar{s}=0 \tag{18}
\end{equation*}
$$

1.2) the coefficients of the connectedness

$$
\begin{equation*}
\Gamma_{s k}^{\bar{i}}, \quad \Gamma_{\bar{s} \bar{k}}^{i}=0 . \tag{19}
\end{equation*}
$$

Proof: Let choose the net $(\underset{1}{v}, \underset{2}{v}, \underset{3}{v}, \underset{4}{v})$ for a coordinate one. Then by (6) and (14) we find (18). According to [1] and (13) we can write $\partial_{\sigma} v_{\alpha}^{\beta}+\Gamma_{\sigma \nu}^{\beta} v_{\alpha}^{\nu}={\underset{\alpha}{\nu}{ }_{\sigma} v_{\nu}^{\beta}}_{\nu^{\beta}}$ from where using (6) we obtain

$$
\begin{equation*}
\Gamma_{\sigma \alpha}^{\beta}=\stackrel{\beta}{\alpha}_{\alpha}{ }_{\sigma} . \tag{20}
\end{equation*}
$$

The equalities (19) follow from (18) and (20). Let's note that the equalities (19) are obtained in [3], when the coordinates are adaptive with the composition $X_{2} \times \bar{X}_{2}$. This happens so, because the chosen coordinate net raises adaptive with the composition coordinates.

From (19) and $R_{\alpha \beta \sigma^{\nu}}=2 \partial_{[\alpha} \Gamma_{\beta] \sigma}-2 \Gamma_{\sigma[\alpha}^{\tau} \Gamma_{\beta] \tau}$ [1] we establish the validity of the following statement:

Fact 1. When the composition $X_{2} \times \bar{X}_{2}$ is of the kind $(g-g)$ then in the parameters of the coordinate net $\left(\begin{array}{l}v \\ 1\end{array}, \underset{2}{2}, \underset{3}{2}, \underset{4}{v}\right)$ the tensor of the curvature satisfy the conditions $R_{i j k^{\bar{s}}}=0, R_{\overline{i j k}}=0$.

Theorem 1.3. The composition $Y_{2} \times \bar{Y}_{2}$ is of the kind $(g-g)$ if and only if the coefficients of the derivative equations satisfy the conditions

Proof: Because of the equalities (11) and (14) we have

$$
\begin{align*}
& \nabla_{\sigma} b_{\alpha}^{\beta}=\stackrel{\nu}{T}_{1} \sigma{\underset{\nu}{v}}_{v^{\beta}}^{\stackrel{3}{v}_{\alpha}}-\stackrel{3}{T}_{\nu} \sigma{\underset{1}{v}}_{v^{\beta}}^{\stackrel{\nu}{v}_{\alpha}}+\stackrel{\nu}{3}_{3} \sigma v_{\nu}^{\beta} \stackrel{1}{v}_{\alpha}-\stackrel{1}{T}_{\nu}{\underset{3}{v}}_{v^{\beta}}^{\stackrel{\nu}{v}_{\alpha}} \tag{22}
\end{align*}
$$

Transforming the condition $b_{\alpha}^{\sigma} \nabla_{\beta} b_{\sigma}^{\nu}+b_{\beta}^{\sigma} \nabla_{\sigma} b_{\alpha}^{\nu}=0$ with the help of (3), (11), (22) and using the independence of the covectors $\stackrel{\sigma}{v}_{\alpha}$ we obtain the following equalities

$$
\begin{align*}
& \stackrel{1}{T}_{1} \beta-\stackrel{3}{T}_{3} \beta+b_{\beta}^{\sigma}\left(\stackrel{1}{T}_{3} \sigma-\stackrel{3}{T}_{1} \sigma\right)=0, \stackrel{2}{T}_{1}-\stackrel{4}{T}_{3} \beta+b_{\beta}^{\sigma}\left(\stackrel{2}{T}_{3} \sigma-\stackrel{4}{T}_{1} \sigma\right)=0, \tag{23}\\
& \stackrel{1}{T}_{2} \beta-\stackrel{3}{T}_{4} \beta+b_{\beta}^{\sigma}\left(\stackrel{1}{T}_{4} \sigma-\stackrel{3}{T}_{2} \sigma\right)=0,{\stackrel{2}{\underset{2}{2}}}_{\beta}-\stackrel{4}{T}_{4} \beta+b_{\beta}^{\sigma}\left(\underset{4}{T} \sigma-\stackrel{4}{T}_{2} \sigma\right)=0 .
\end{align*}
$$

Now after contraction by $\underset{\sigma}{v^{\alpha}}$ it is easy to see the equivalence of (23) to (21).
 position $Y_{2} \times \bar{Y}_{2}$ from the kind $(g-g)$ characterizes by the following equalities for: 2.1) the coefficients of the derivative equations

$$
\begin{align*}
& \stackrel{1}{T}_{1} \alpha-\stackrel{3}{T}_{3} \alpha=\stackrel{3}{T} \bar{\alpha}-\stackrel{1}{T}_{3}^{\bar{\alpha}} \quad, \quad \stackrel{2}{T}_{1} \alpha-\stackrel{4}{T}_{3} \alpha=\stackrel{4}{T} \bar{\alpha}-\stackrel{2}{T} \bar{\alpha}, \\
& \stackrel{1}{T}_{2} \alpha-\stackrel{3}{T}_{4} \alpha=\stackrel{3}{T} \bar{\alpha}-\stackrel{1}{T}_{4}^{\bar{\alpha}} \quad, \quad \stackrel{2}{T}_{2} \alpha-\stackrel{4}{T}_{4} \alpha=\stackrel{4}{T} \bar{\alpha}-\stackrel{2}{T} \bar{\alpha} \bar{\alpha}, \tag{24}
\end{align*}
$$

2.2) the coefficients of the connectedness

$$
\begin{equation*}
\Gamma_{11}^{\alpha}+\Gamma_{33}^{\alpha}=2 \Gamma_{13}^{\bar{\alpha}}, \Gamma_{22}^{\alpha}+\Gamma_{44}^{\alpha}=2 \Gamma_{24}^{\bar{\alpha}}, \Gamma_{12}^{\alpha}+\Gamma_{34}^{\alpha}=\Gamma_{14}^{\bar{\alpha}}+\Gamma_{23}^{\bar{\alpha}} \tag{25}
\end{equation*}
$$

as when α accepts consecutively the values $1,2,3,4$ then $\bar{\alpha}$ accepts the values $3,4,1,2$, respectively.

Proof: Let choose the net $(\underset{v}{v}, \underset{2}{v}, \underset{3}{v}, \underset{4}{v})$ for a coordinate net. With the help of (6) and (21) we find (24).

Then by (20) and (24) we obtain (25).

Theorem 1.5. The composition $Z_{2} \times \bar{Z}_{2}$ is of the kind $(g-g)$ if and only if the coefficients of the derivative equations (13) satisfy the conditions

Proof: By the equalities (12) and (14) we obtain

Transforming the condition $c_{\alpha}^{\sigma} \nabla_{\beta} b_{\sigma}^{\nu}+c_{\beta}^{\sigma} \nabla_{\sigma} b_{\alpha}^{\nu}=0$ with the help of (3), (12), (27) and using the independence of the covectors $\stackrel{\sigma}{v}_{\alpha}$ we obtain the following equalities

$$
\begin{equation*}
\stackrel{3}{T}_{3}-\stackrel{1}{T}_{1} \beta+c_{\beta}^{\sigma}\left(\stackrel{1}{T}_{3} \sigma+\stackrel{3}{T}_{1} \sigma\right)=0, \stackrel{4}{T}_{3}-\stackrel{2}{T}_{1} \beta+c_{\beta}^{\sigma}\left(\stackrel{2}{T}_{3} \sigma+\stackrel{4}{T}_{1} \sigma\right)=0 \tag{28}
\end{equation*}
$$

$$
\stackrel{3}{T}_{\beta}-\stackrel{1}{T}_{2} \beta+c_{\beta}^{\sigma}\left(\stackrel{3}{T}_{2} \sigma+\stackrel{1}{T}_{4} \sigma\right)=0, \stackrel{4}{T}_{4} \beta-\stackrel{2}{T}_{2} \beta+c_{\beta}^{\sigma}\left(\stackrel{2}{T}_{4} \sigma+\stackrel{4}{T}_{2} \sigma\right)=0
$$

Now after contraction by $\underset{\sigma}{v^{\alpha}}$ it is easy to see the equivalence of (28) to (26).
Corollary 1.6. If the net $\left(\begin{array}{ccc}v, v, v, v, \\ 1 & 2 & 3\end{array}\right)$ is chosen as a coordinate one then the composition $Z_{2} \times \bar{Z}_{2}$ from the kind $(g-g)$ characterizes by the following equalities for: 3.1) the coefficients of the derivative equations
3.2) the coefficients of the connectedness

$$
\begin{equation*}
\Gamma_{11}^{\alpha}-\Gamma_{33}^{\alpha}=2 \epsilon \Gamma_{13}^{\bar{\alpha}}, \Gamma_{22}^{\alpha}-\Gamma_{44}^{\alpha}=2 \epsilon \Gamma_{24}^{\bar{\alpha}}, \Gamma_{12}^{\alpha}-\Gamma_{34}^{\alpha}=\Gamma_{14}^{\bar{\alpha}}+\Gamma_{23}^{\bar{\alpha}}, \tag{30}
\end{equation*}
$$

as when α accepts consecutively the values 1; 2; 3; 4 then $\bar{\alpha}$ accepts the values 3; 4; 1; 2; respectively and
$\epsilon=1$ for $\alpha=1,2, \epsilon=-1$ for $\alpha=3,4$.
Proof. Let choose the net $\left(\begin{array}{ccc}v, v, v, v, \\ 1 & 2 & 3\end{array}\right)$ for a coordinate net. Then the equalities (29) follow by (6) and (26), and the equalities (30) follow by (20) and (29).

Using (19) (25) and (30) we establish the validity of the following statement:

Fact 2. If two of the compositions $X_{2} \times \bar{X}_{2}, Y_{2} \times \bar{Y}_{2}, Z_{2} \times \bar{Z}_{2}$ are from the kind $(g-g)$ then and the third composition is of the kind $(g-g)$.

Since from (19), (25) and (30) it follows

$$
\begin{equation*}
\Gamma_{i j}^{\alpha}=\Gamma_{i j}^{\alpha}=0, \Gamma_{13}^{\alpha}=\Gamma_{44}^{\alpha}=0, \Gamma_{14}^{\alpha}+\Gamma_{23}^{\alpha}=0 \tag{31}
\end{equation*}
$$

then we can formulate

Fact 3. When the compositions $X_{2} \times \bar{X}_{2}, Y_{2} \times \bar{Y}_{2}, Z_{2} \times \bar{Z}_{2}$ are of the kind (g-g) then in the parameters of the coordinate net $\left(\begin{array}{cccc}v, & v, v, v, \\ 1 & 2 & 3 & 4\end{array}\right)$ the tensor of the curvature satisfy the conditions $R_{i j k s}{ }^{\overline{8}}=R_{\overline{i j k} s}{ }^{8}=0, R_{133}{ }^{\alpha}=R_{244}{ }^{\alpha}=$ $R_{311}{ }^{\alpha}=R_{422}{ }^{\alpha}=R_{143} \stackrel{\alpha}{\alpha}^{\alpha}=R_{234}{ }^{\alpha}=R_{321} \stackrel{\alpha}{ }=R_{412}{ }^{\alpha}=0$.

Let consider the affinor

$$
\begin{equation*}
d_{\alpha}^{\beta}=a_{\alpha}^{\beta}+b_{\alpha}^{\beta}+c_{\alpha}^{\beta} \tag{32}
\end{equation*}
$$

According to (3), (4), (10) and (12) we have

$$
\begin{equation*}
a_{\alpha}^{\beta} b_{\alpha}^{\beta}+b_{\alpha}^{\beta} a_{\alpha}^{\beta}=0, b_{\alpha}^{\beta} c_{\alpha}^{\beta}+c_{\alpha}^{\beta} b_{\alpha}^{\beta}=0, c_{\alpha}^{\beta} a_{\alpha}^{\beta}+a_{\alpha}^{\beta} c_{\alpha}^{\beta}=0 . \tag{33}
\end{equation*}
$$

From (32) and (33) it follows $d_{\alpha}^{\beta}=a_{\alpha}^{\beta} a_{\alpha}^{\beta}+b_{\alpha}^{\beta} b_{\alpha}^{\beta}+c_{\alpha}^{\beta} c_{\alpha}^{\beta}=\delta_{\alpha}^{\beta}+\delta_{\alpha}^{\beta}-\delta_{\alpha}^{\beta}=\delta_{\alpha}^{\beta}$, which means that the affinor d_{α}^{β} defines a composition $U_{2} \times \bar{U}_{2}$ with the positions $\mathrm{P}(\mathrm{U} 2)$ and $P\left(\bar{U}_{2}\right)$:
Theorem 1.7. The composition $U_{2} \times \bar{U}_{2}$ is of the kind ($g-g$) if and only if the coefficients of the derivative equations (13) satisfy the conditions (34)

Proof According to (2) the composition $U_{2} \times \bar{U}_{2}$ will be of the kind (g g) if and only if

$$
\begin{equation*}
d_{\alpha}^{\sigma} \nabla_{\beta} d_{\sigma}^{\nu}+d_{\beta}^{\sigma} \nabla_{\sigma} d_{\alpha}^{\nu}=0 \tag{36}
\end{equation*}
$$

With the help of (4), (10), (12) and (32) we find

Then (36) can be written in the form

The equalities received from (38) after contraction by v_{k}^{α} and $\frac{v_{k}^{\alpha}}{}$ are contracted once again by $\stackrel{s}{v}_{\nu}$ and $\stackrel{\bar{v}}{\nu}$. As a result of these operations we reach to (34) and (35).
Corollary 4 If the net $\left(\begin{array}{l}v, v, v \\ 1 \\ 2\end{array}, \frac{v}{3}, \underset{4}{4}\right)$ is chosen as a coordinate one then the composition $U_{2} \times \bar{U}_{2}$ from the kind $(g-g)$ characterizes by the following
equalities for:
4.1) the coefficients of the derivative equations

$$
\begin{aligned}
& \stackrel{s}{T}_{\bar{k}}^{\bar{i}}=0
\end{aligned}
$$

4.2) the coefficients of the connectedness

$$
\begin{gather*}
\Gamma_{\bar{k}}^{s} \bar{i}=0, \tag{40}\\
\Gamma_{i k}^{\bar{s}}+\Gamma_{i k+2}^{\bar{s}}-\Gamma_{i}^{\bar{s}-2}{ }_{k}-\Gamma_{i}^{\bar{s}-2}{ }_{k+2}+\Gamma_{i+2 k}^{\bar{s}}+\Gamma_{i+2 k+2}^{\bar{s}}-\Gamma_{i+2}^{\bar{s}-2}=0
\end{gather*}
$$

 into account (4), (6) and (37) we find the following presentation of the affinor d_{α}^{β}

$$
\left(d_{\alpha}^{\beta}\right)=\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \tag{41}\\
0 & 1 & 0 & 2 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

From (34), (35) and (41) we obtain the equalities (39), from where according to (20) follow (40) From [2] and the first equation of (39) it follows the validity of the statement:

Fact 4 If the composition $U_{2} \times \bar{U}_{2}$ is of the kind $(g-g)$, then the composition $X_{2} \times \bar{X}_{2}$ is of the kind $\left(X_{3}-g\right)$, i.e. the positions $P\left(\bar{X}_{2}\right)$ are parallelly translated along any line of \bar{X}_{2}.

3. Geodesic compositions in spaces $E q A_{4}$

Let A_{4} by an equiaffine space with a fundamental 4 -vector $e_{\alpha \beta \gamma \delta}$. The quantity $e_{\alpha \beta \gamma \delta} v_{1}^{\alpha} v_{2}^{\beta} v_{3}^{\gamma} v_{4}^{\delta}$ is called an extent, defined by the vector fields ${\underset{\alpha}{\sigma}}^{\sigma}$ It is known that the extent V preserves when the vectors v_{α}^{σ} are parallelly translated along any line in $E q A_{4}$ [1]. We denote by $e=e_{1234}$ the fundamental density of the equiaffine space $E q A_{4}$. The following characteristics for the equiaffine spaces are known: $\Gamma_{\alpha \sigma}^{\sigma}=\partial-\alpha \ln e, \nabla_{\nu} e_{\alpha \beta \gamma \delta}=0, R_{\alpha \beta}=R_{\beta \alpha}[1]$

Proposition 1 If in the equiaffine space $E q A_{4}$ with a fundamental 4-vector $\left.e_{\alpha \beta \gamma \delta}=\stackrel{1}{v}_{\alpha} \stackrel{2}{v}_{\beta} \stackrel{3}{v}_{\gamma} \stackrel{4}{v}_{\delta}\right]$, where $\stackrel{\sigma}{v}_{\alpha}$ are defined by (3), the compositions $X_{2} \times$ $\bar{X}_{2}, Y_{2} \times \bar{Y}_{2}$ are the kind of $(g-g)$, then the space $E q A_{4}$ is affine

Proof: From $\nabla e_{\alpha \beta \gamma \delta}=\nabla \stackrel{1}{v}\left[\alpha \stackrel{2}{v}_{\beta} \stackrel{3}{v}_{\gamma} \stackrel{4}{v}_{\delta}\right]=0$ and derivative equations (13)
we obtain ${\underset{\sigma}{\sigma}}_{\underset{\sigma}{\sigma}}^{\nu}=0$ which, according to (20), is equivalent to $\Gamma_{\nu \delta}^{\delta}=0$. Since the compositions $X_{2} \times \bar{X}_{2}, Y_{2} \times \bar{Y}_{2}$ are the kind of (g-g), then on basis of Fact $2,(31)$ and $\Gamma_{\nu \delta}^{\delta}=\partial_{\nu} \ln e=0$ we establish $\Gamma_{\nu \delta}^{\delta}=0$, i.e. the space $E q A_{4}$ is affine.

Proposition 2 If in the equiaffine $E q A_{4}$ with a fundamental density e the compositions $X_{2} \times \bar{X}_{2}, Y_{2} \times \bar{Y}_{2}$ are the kind of $(g-g)$ hen the components of the Richi?s tensor of the space $E q A_{4}$ have the following presentation:

$$
\begin{array}{ll}
R_{13}=-\sigma_{13} \ln e, & R_{14}=-\sigma_{14} \ln e+\Gamma_{14}^{\alpha} \partial_{\alpha} \ln e+\partial_{\alpha} \Gamma_{14}^{\alpha} \\
R_{24}=-\sigma_{24} \ln e, & R_{23}=-\sigma_{23} \ln e-\Gamma_{23}^{\alpha} \partial_{\alpha} \ln e-\partial_{\alpha} \Gamma_{23}^{\alpha} \tag{43}
\end{array}
$$

$$
R_{i j}=-\delta_{i j} \ln e-\epsilon \Gamma_{14}^{\bar{i}} \Gamma_{14}^{\bar{j}}, \quad R_{\overline{i j}}=-\delta_{\overline{i j}} \ln e-\epsilon \Gamma_{14}^{i} \Gamma_{14}^{j}
$$

where $\epsilon=1$ for $i=j$ or $\bar{i}=\bar{j}, \epsilon=-1$ for $i \neq j$ or $\bar{i} \neq \bar{j}$ and for the indexes are fulfilled: $1 \leftrightarrow 4,2 \leftrightarrow 3$.

Proof. According to [1] for the tensor of Richi in the space $E q A_{4}$ we have $R_{\beta v}=R_{\alpha \beta v}{ }^{\alpha}=\delta_{\alpha} \Gamma_{\beta v}^{\alpha}-\delta_{\beta v} \ln e+\Gamma_{\beta v}^{\rho} \delta_{\rho} \ln e-\Gamma_{\beta \rho}^{\alpha} \Gamma_{\alpha v}^{\rho}$: Then applying (31) we find

$$
\begin{array}{cl}
\quad R_{i j}=-\sigma_{i j} \ln e-\Gamma_{i \bar{k}}^{\overline{8}} \Gamma_{\overline{8} j}^{\bar{k}}, & R_{\overline{i j}}=-\sigma_{\overline{i j}} \ln e-\Gamma_{\bar{i} k}^{8} \Gamma_{8 \bar{j}}^{k} \tag{44}\\
R_{i \bar{j}}=\sigma_{\alpha} \Gamma_{i \bar{j}}^{\alpha}-\sigma_{i \bar{j}} \ln e+\Gamma_{i \bar{j}}^{\alpha} \sigma_{\alpha} \ln e &
\end{array}
$$

Now using (31) and (44) we obtain

$$
\begin{array}{ll}
R_{11}=-\delta_{11} \ln e-\left(\Gamma_{14}^{4}\right)^{2}, & R_{33}=-\delta_{33} \ln e-\left(\Gamma_{14}^{2}\right)^{2} \\
R_{22}=-\delta_{22} \ln e-\left(\Gamma_{14}^{3}\right)^{2}, & R_{44}=-\delta_{44} \ln e-\left(\Gamma_{14}^{1}\right)^{2} \\
R_{12}=-\delta_{12} \ln e+\Gamma_{14}^{4} \Gamma_{14}^{3}, & R_{34}=-\delta_{34} \ln e+\Gamma_{14}^{1} \Gamma_{14}^{2}
\end{array}
$$

and (42). It is obviously that $R_{14}+R_{23}=-\delta_{14} \ln e-\delta_{23} \ln e$.

References

[1] Norden, A.: Affinely connected spaces, Moskow, 1976
[2] Norden, A.: Spaces with Cartesian compositions, Izv. Vyssh. Uchebn. Zaved. Math., 4 (1963), 117-128. (in Russian)
[3] Norden, A., Timofeev, G.: Invariant tests of special compositions in many-dimensional spaces, Izv. Vyssh. Uchebn. Zaved. Math., 8 (1972), 81-89. (in Russian)
[4] Timofeev,G.: Invariant tests of special compositions in Weyl spaces, Izv. Vyssh. Uchebn. Zaved. Math., 1 (1976), 87-99. (in Russian)
[5] Willmore, T.: Connexions for systems of parallel distributions, Quart. J., Math., v.7, 28, (1956), 269-276.
[6] Zlatanov, G.: Compositions generated by special nets in affinely connected spaces, Serdika Math. J., 28, (2002), 1001-1012.
[7] Zlatanov, G., Tsareva B. Conjugated Compositions in evendimensional affinely conncected spaces without a torsion, REMIA 2010, 1012 December, 2010, Plovdiv, Bulgaria, 225231.
[8] Zlatanov, G., Tsareva B. Geometry of the Nets in Equiaffine Spaces, J. Geometry, 55 (1996), 192201.

Musa Ajeti, Preshevë, Serbia
E-mail address: m-ajeti@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 53A40, 53A55.
 Key words and phrases. Affinely connected spaces, spaces of compositions, affinors of compositions, geodesic composition.
 (C)2012 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted August 26, 2011. Published September 19, 2011.

