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FOCK SPACES FOR THE q-BESSEL-STRUVE KERNEL

(COMMUNICATED BY PALLE JORGENSEN)

FETHI SOLTANI

Abstract. In this work, we introduce a class of Hilbert spaces Fq,α of entire

functions on the disk D(0, 1
1−q

), 0 < q < 1, with reproducing kernel given by

the q-Bessel-Struve kernel Sα(z; q2). The definition and properties of the space
Fq,α extend naturally those of the well-known classical Fock space. Next, we
study the bounded of some operators on the Fock spaces Fq,α; and we give an
application of the theory of reproducing kernels to the Tikhonov regularization,
which gives the approximate solutions for bounded linear operator equation
on the Fock spaces Fq,α.

1. Introduction

Fock space F (called also Segal-Bargmann space [3]) is the Hilbert space of entire
functions f(z) =

∑∞
n=0 anzn on C such that

‖f‖2F :=
∞∑

n=0

|an|2 n! < ∞.

This space was introduced by Bargmann in [2] and it was the aim of many works
[3]. Especially, the differential operator D = d/dz and the multiplication operator
by z are densely defined, closed and adjoint-operators on F (see [2]).

In [7], Gasmi and Soltani introduced a Hilbert space Fα of entire functions on
C, where the inner product is weighted by the modified Macdonald function. On
Fα the Bessel-Struve operator

`αf(z) := D2f(z) +
2α + 1

z

[
Df(z)−Df(0)

]
, α > −1/2,

and the multiplication operator M by z2 are densely defined, closed and adjoint-
operators.
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In this paper, we consider the q-Bessel-Struve kernel:

Sα(x; q2) :=
∞∑

n=0

xn

cn(α; q2)
,

where cn(α; q2) are given later in section 2. We discuss some properties of a class of
Fock spaces associated to the q-Bessel-Struve kernel and we give some applications.

The contents of the paper are as follows. In section 2, building on the ideas of
Bargmann [2], Cholewinski [4] and as the same of paper [18], we define the q-Fock
space Fq,α as the space of entire functions f(z) =

∑∞
n=0 anzn on the disk D(0, 1

1−q )
of center 0 and radius 1

1−q , and such that

‖f‖2Fq,α
:=

∞∑
n=0

|an|2 cn(α; q2) < ∞.

Let f and g be in Fq,α, such that f(z) =
∑∞

n=0 anzn and g(z) =
∑∞

n=0 bnzn, the
inner product is given by

〈f, g〉Fq,α =
∞∑

n=0

anbn cn(α; q2).

The q-Fock space Fq,α has also a reproducing kernel Kq,α given by

Kq,α(w, z) = Sα(wz; q2); w, z ∈ D(0,
1

1− q
).

Then, if f ∈ Fq,α, we have

〈f, Kq,α(w, .)〉Fq,α = f(w), w ∈ D(0,
1

1− q
).

Using this property, we prove that the space Fq,α is a Hilbert space and we give an
Hilbert basis.

In section 3, using the previous results, we consider the multiplication operator
M by z2 and the q-Bessel-Struve operator `q,α on the Fock space Fq,α, and we
prove that these operators are continuous from Fq,α into itself, and satisfy:

‖`q,αf‖Fq,α ≤
1

1− q
‖f‖Fq,α ,

‖Mf‖Fq,α ≤
1

1− q
‖f‖Fq,α .

Then, we prove that these operators are adjoint-operators on Fq,α:

〈Mf, g〉Fq,α = 〈f, `q,αg〉Fq,α ; f, g ∈ Fq,α.

These properties are not true on the classical Fock spaces [2, 4, 7, 15, 16]. For
example on Fα, these properties are statued on D(`α) = {f ∈ Fα : `αf ∈ Fα},
D(M) = {f ∈ Fα : Mf ∈ Fα} and D(`α) ∩ D(M), respectively.

Lastly, we define and study on the Fock space Fq,α, the q-translation operators:

Tzf(w) := Sα(z`q,α; q2)f(w); w, z ∈ D(0,
1

1− q
),
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and the generalized multiplication operators:

Mzf(w) := Sα(zM ; q2)f(w); w, z ∈ D(0,
1

1− q
).

Using the continuous properties of `q,α and M we deduce also that the operators
Tz and Mz, for z ∈ D(0, 1

1−q ), are continuous from Fq,α into itself, and satisfy:

‖Tzf‖Fq,α
≤ Sα(

|z|
1− q

; q2)‖f‖Fq,α ,

‖Mzf‖Fq,α ≤ Sα(
|z|

1− q
; q2)‖f‖Fq,α .

These properties are not true on the classical Fock spaces.
The last section of this paper is devoted to give an application of the theory of

reproducing kernels to the Tikhonov regularization, which gives the approximate
solutions for bounded linear operator equation on the Fock spaces Fq,α.

Let L : Fq,α → Fq,α be a bounded operator from Fq,α into itself. For λ > 0, we
define on the space Fq,α, the new inner product by setting

〈f, g〉λ,Fq,α = λ〈f, g〉Fq,α + 〈Lf,Lg〉Fq,α .

Building on the ideas of Saitoh, Matsuura and Yamada [11, 12, 14, 19], and using
the theory of reproducing kernels [1], we give best approximation of the operator
L. More precisely, for all λ > 0, h ∈ Fq,α, the infimum

inf
f∈Fq,α

{
λ‖f‖2Fq,α

+ ‖h− Lf‖2Fq,α

}
,

is attained at one function f∗λ,h, called the extremal function.
In particular for f ∈ Fq,α and h = Lf , the corresponding extremal functions
{f∗λ,Lf}λ>0 converges to f as λ → 0+.

2. Preliminaries and the q-Fock spaces Fq,α

Let a and q be real numbers such that 0 < q < 1; the q-shifted factorial are
defined by

(a; q)0 := 1, (a; q)n :=
n−1∏

i=0

(1− aqi), n = 1, 2, ...,∞.

Jackson [8] defined the q-analogue of the Gamma function as

Γq(x) :=
(q; q)∞
(qx; q)∞

(1− q)1−x, x 6= 0,−1,−2, ....

It satisfies the functional equation

Γq(x + 1) =
1− qx

1− q
Γq(x), Γq(1) = 1,

and tends to Γ(x) when q tends to 1−. In particular, for n = 1, 2, ..., we have

Γq(n + 1) =
(q; q)n

(1− q)n
.

The q-derivative Dqf of a suitable function f (see [10]) is given by

Dqf(x) :=
f(x)− f(qx)

(1− q)x
, x 6= 0,
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and Dqf(0) = f ′(0) provided f ′(0) exists.
If f is differentiable then Dqf(x) tends to f ′(x) as q → 1−.

Taking account of the paper [6, 7] and the same way, we define the q-Bessel-
Struve kernel by

Sα(x; q2) := jα(ix; q2)− ihα(ix; q2),

where jα(x; q2) is the q-normalized Bessel function [5, 17] given by

jα(x; q2) := Γq2(α + 1)
∞∑

n=0

(−1)nx2n

(1 + q)2nΓq2(n + 1)Γq2(n + α + 1)
,

and hα(x; q2) is the q-normalized Struve function given by

hα(x; q2) := Γq2(α + 1)
∞∑

n=0

(−1)nx2n+1

(1 + q)2n+1Γq2(n + 3
2 )Γq2(n + α + 3

2 )
.

Furthermore, the q-Bessel-Struve kernel Sα(x; q2) can be expanded in a power series
in the form

Sα(x; q2) :=
∞∑

n=0

xn

cn(α; q2)
,

where

cn(α; q2) :=
(1 + q)nΓq2(n

2 + 1)Γq2(n
2 + α + 1)

Γq2(α + 1)
. (1)

If we put Un := 1
cn(α;q2) , then

Un

Un+1
→ 1

(1− q)2
, q → 1−.

Thus, the q-Bessel-Struve kernel Sα(x; q2) is defined on D(0, 1
(1−q)2 ) and tends to

the Bessel-Struve kernel Sα(x) as q → 1−.
We consider the q-Bessel-Struve operator `q,α defined by

`q,αf(x) := D2
qf(x) +

[2α + 1]q
x

[
Dqf(qx)−Dqf(0)

]
,

where

[2α + 1]q :=
1− q2α+1

1− q
.

The q-Bessel-Struve operator tends to the Bessel-Struve operator `α as q → 1− (see
[6, 7]).

Lemma 2.1. The function Sα(λ.; q2), λ ∈ D(0, 1
1−q ), is the unique analytic solu-

tion of the q-problem:
`q,αy(x) = λ2y(x), (2)

Dqy(0) =
λΓq2(α + 1)

(1 + q)Γq2( 3
2 )Γq2(α + 3

2 )
,

y(0) = 1.
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Proof. Searching a solution of (2) in the form y(x) =
∑∞

n=0 anxn. Then

Dqy(x) =
∞∑

n=1

an[n]qxn−1,

and

D2
qy(x) = Dq(Dqy)(x) =

∞∑
n=2

an[n]q[n− 1]qxn−2.

Replacing in (2), we obtain
∞∑

n=2

an[n]q([n− 1]q + qn−1[2α + 1]q)xn = λ2
∞∑

n=2

an−2x
n.

Thus,
an[n]q([n− 1]q + qn−1[2α + 1]q) = λ2an−2, n = 2, 3, ...

Using the fact that [n− 1]q + qn−1[2α + 1]q = [n + 2α]q, we deduce that

an =
λ2

[n]q[n + 2α]q
an−2, n = 2, 3, ...

Since [2n]q = (1 + q)[n]q2 , we deduce

a2n =
λ2

(1 + q)2[n]q2 [n + α]q2
a2n−2,

a2n+1 =
λ2

(1 + q)2[n + 1
2 ]q2 [n + α + 1

2 ]q2
a2n−1.

This proves that

a2n =
λ2nΓq2(α + 1)

(1 + q)2nΓq2(n + 1)Γq2(n + α + 1)
,

a2n+1 =
λ2n+1Γq2(α + 1)

(1 + q)2n+1Γq2(n + 3
2 )Γq2(n + α + 3

2 )
.

Therefore,

y(x) = Γq2(α + 1)
∞∑

n=0

(λx)2n

(1 + q)2nΓq2(n + 1)Γq2(n + α + 1)

+Γq2(α + 1)
∞∑

n=0

(λx)2n+1

(1 + q)2n+1Γq2(n + 3
2 )Γq2(n + α + 3

2 )

= jα(iλx; q2)− ihα(iλx; q2),

which completes the proof of the lemma. ¤

Lemma 2.2. The constants bn(α; q2), n ∈ N satisfy the following relation:

cn+2(α; q2) = [n + 2]q[n + 2α + 2]qcn(α; q2).

Lemma 2.3. For n ∈ N, we have

`q,αzn =
cn(α; q2)

cn−2(α; q2)
zn−2, n ≥ 2.
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Proof. Since

Sα(λz; q2) :=
∞∑

k=0

(λz)k

ck(α; q2)
,

then from equation (2) we obtain
∞∑

k=2

`q,αzk

ck(α; q2)
λk =

∞∑

k=2

zk−2

ck−2(α; q2)
λk.

This clearly yields the result. ¤
Definition 2.1. Let α ≥ −1/2. The q-Fock space Fq,α is the prehilbertian space of
entire functions f(z) =

∑∞
n=0 anzn on D(0, 1

1−q ), such that

‖f‖2Fq,α
:=

∞∑
n=0

|an|2 cn(α; q2) < ∞, (3)

where cn(α; q2) is given by (1).

The inner product in Fq,α is given for f(z) =
∑∞

n=0 anzn and g(z) =
∑∞

n=0 bnzn

by

〈f, g〉Fq,α =
∞∑

n=0

anbn cn(α; q2). (4)

Remark 1. If q → 1−, the space Fq,α agrees with the generalized Fock space
associated to the Bessel-Struve operator (see [7]).

The following theorem prove that Fq,α is a reproducing kernel space.

Theorem 2.1. The function Kq,α given for w, z ∈ D(0, 1
1−q ), by

Kq,α(w, z) = Sα(wz; q2),

is a reproducing kernel for the q-Fock space Fq,α, that is:
(i) for all w ∈ D(0, 1

1−q ), the function z → Kq,α(w, z) belongs to Fq,α.
(ii) For all w ∈ D(0, 1

1−q ) and f ∈ Fq,α, we have

〈f, Kq,α(w, .)〉Fq,α = f(w).

Proof. (i) Since

Kq,α(w, z) =
∞∑

n=0

wn

cn(α; q2)
zn; z, w ∈ D(0,

1
1− q

), (5)

then from (3), we deduce that

‖Kq,α(w, .)‖2Fq,α
=

∞∑
n=0

|w|2n

cn(α; q2)
= Sα(|w|2; q2) < ∞,

which proves (i).

(ii) If f(z) =
∑∞

n=0 anzn ∈ Fq,α, from (4) and (5), we deduce

〈f, Kq,α(w, .)〉Fq,α =
∞∑

n=0

anwn = f(w), w ∈ D(0,
1

1− q
).

This completes the proof of the theorem. ¤
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Remark 2. From Theorem 2.1 (ii), for f ∈ Fq,α and w ∈ D(0, 1
1−q ), we have

|f(w)| ≤ ‖Kq,α(w, .)‖Fq,α
‖f‖Fq,α

= [Sα(|w|2; q2)]1/2‖f‖Fq,α
. (6)

Proposition 2.1. The space Fq,α equipped with the inner product 〈., .〉Fq,α
is an

Hilbert space; and the set
{

ξn(.; q2)
}

n∈N
given by

ξn(z; q2) =
zn

√
cn(α; q2)

, z ∈ D(0,
1

1− q
),

forms an Hilbert basis for the space Fq,α.

Proof. Let {fn}n∈N be a Cauchy sequence in Fq,α. We put

f = lim
n→∞

fn, in Fq,α.

From (6), we have

|fn+p(w)− fn(w)| ≤ [Sα(|w|2; q2)]1/2‖fn+p − fn‖Fq,α .

This inequality shows that the sequence {fn}n∈N is pointwise convergent to f .
Since the function w → [Sα(|w|2; q2)]1/2 is continuous on D(0, 1

1−q ), then {fn}n∈N
converges to f uniformly on all compact set of D(0, 1

1−q ). Consequently, f is an
entire function on D(0, 1

1−q ), then f belongs to the space Fq,α.
On the other hand, from the relation (4), we get

〈ξn(.; q2), ξm(.; q2)〉Fq,α = δn,m,

where δn,m is the Kronecker symbol.

This shows that the family
{

ξn(.; q2)
}

n∈N
is an orthonormal set in Fq,α.

Let f(z) =
∑∞

n=0 anzn be an element of Fq,α such that

〈f, ξn(.; q2)〉Fq,α = 0, ∀ n ∈ N.

From the relation (4), we deduce that

an = 0, ∀ n ∈ N.

This completes the proof. ¤

Remark 3. (a) The set
{

Sα(w.; q2), w ∈ D(0, 1
1−q )

}
is dense in Fq,α.

(b) For all z, w ∈ D(0, 1
1−q ), we have

Sα(wz; q2) = 〈Sα(z.; q2), Sα(w.; q2)〉Fq,α .

3. Multiplication and translation operators on Fq,α

On Fq,α, we consider the multiplication operators M and Nq given by

Mf(z) := z2f(z),

Nqf(z) := zDqf(z) =
f(z)− f(qz)

1− q
.

We denote also by `q,α the q-Bessel-Struve operator defined for entire functions on
D(0, 1

1−q ).
We write

[`q,α, M ] = `q,αM −M`q,α.

Then by straightforward calculation we obtain.
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Lemma 3.1. [`q,α,M ] = (1 + q)[2α + 2]qBq2 + Wq,α,
where

Bqf(z) := f(qz),

Wq,αf(z) := (1 + q)(1 + q2α)qzDqf(qz) + [2α + 1]qzDqf(0). (7)

Remark 4. The constant (1 + q)[2α + 2]q equals to c2(α; q2), and the Lemma 3.1
is the analogous commutation rule of [7]. When q → 1−, then [`q,α, M ] tends to
4(α + 1)I + W , where I is the identity operator and W is the operator given by

Wf(z) := 4zDf(z) + (2α + 1)zDf(0).

Lemma 3.2. If f ∈ Fq,α then Bqf , Nqf and Wq,αf belong to Fq,α, and
(i) ‖Bqf‖Fq,α ≤ ‖f‖Fq,α ,

(ii) ‖Nqf‖Fq,α ≤ 1
1−q‖f‖Fq,α ,

(iii) ‖Wq,αf‖Fq,α ≤ (1+q)(1+q2α)
1−q ‖f‖Fq,α .

Proof. Let f(z) =
∑∞

n=0 anzn ∈ Fq,α, then

Bqf(z) = f(qz) =
∞∑

n=0

anqnzn, (8)

Nqf(z) =
f(z)− f(qz)

1− q
=

∞∑
n=0

an[n]qzn, (9)

and from (3), we obtain

‖Bqf‖2Fq,α
=

∞∑
n=0

|an|2q2ncn(α; q2) ≤
∞∑

n=0

|an|2cn(α; q2) = ‖f‖2Fq,α
,

and

‖Nqf‖2Fq,α
=

∞∑
n=0

|an|2([n]q)2cn(α; q2).

Using the fact that [n]q ≤ 1
1−q , we deduce

‖Nqf‖2Fq,α
≤ 1

(1− q)2

∞∑
n=0

|an|2cn(α; q2) =
1

(1− q)2
‖f‖2Fq,α

.

On the other hand from (7), we have

Wq,αf(z) = [2α + 1]qa1z + (1 + q)(1 + q2α)
∞∑

n=1

an[n]qqnzn, (10)

and

‖Wq,αf‖2Fq,α
= (q+q2+[2α+3]q)2|a1|2c1(α; q2)+[(1+q)(1+q2α)]2

∞∑
n=2

|an|2([n]q)2q2ncn(α; q2).

Using the fact that [n]q ≤ 1
1−q , we deduce that

‖Wq,αf‖2Fq,α
≤ [(1 + q)(1 + q2α)]2

(1− q)2

∞∑
n=1

|an|2cn(α; q2).
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Therefore, we conclude that

‖Wq,αf‖Fq,α ≤
(1 + q)(1 + q2α)

1− q
‖f‖Fq,α .

which completes the proof of the Lemma. ¤
In the classical Fock spaces Fα, if f ∈ Fα, the functions `αf and Mf are

not necessarily elements of Fα. For thus, the authors statued these operators on
D(`α) = {f ∈ Fα : `αf ∈ Fα} and D(M) = {f ∈ Fα : Mf ∈ Fα}, respectively.
But on Fq,α, we can study the continuous property of the operators `q,α and M
from Fq,α into itself.

Theorem 3.1. If f ∈ Fq,α then `q,αf and Mf belong to Fq,α, and we have
(i) ‖`q,αf‖Fq,α ≤ 1

1−q‖f‖Fq,α ,
(ii) ‖Mf‖Fq,α ≤ 1

1−q‖f‖Fq,α .

Proof. Let f(z) =
∑∞

n=0 anzn ∈ Fq,α.
(i) From Lemma 2.3,

`q,αf(z) =
∞∑

n=2

an
cn(α; q2)

cn−2(α; q2)
zn−2 =

∞∑
n=0

an+2
cn+2(α; q2)
cn(α; q2)

zn. (11)

Then from (11), we get

‖`q,αf‖2Fq,α
=

∞∑
n=0

|an+2|2 cn+2(α; q2)
cn(α; q2)

cn+2(α; q2).

Using Lemma 2.2, we obtain

‖`q,αf‖2Fq,α
=

∞∑
n=0

|an+2|2[n + 2]q[n + 2α + 2]q cn+2(α; q2),

and consequently,

‖`q,αf‖2Fq,α
=

∞∑
n=2

|an|2[n]q[n + 2α]q cn(α; q2). (12)

Using the fact that [n]q[n + 2α]q ≤ 1
(1−q)2 , we obtain

‖`q,αf‖Fq,α ≤
1

1− q

[ ∞∑
n=0

|an|2 cn(α; q2)
]1/2

=
1

1− q
‖f‖Fq,α .

(ii) On the other hand, since

Mf(z) =
∞∑

n=2

an−2 zn, (13)

then

‖Mf‖2Fq,α
=

∞∑
n=2

|an−2|2 cn(α; q2) =
∞∑

n=0

|an|2 cn+2(α; q2).

By Lemma 2.2, we deduce

‖Mf‖2Fq,α
=

∞∑
n=0

|an|2[n + 2]q[n + 2α + 2]q cn(α; q2). (14)
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Using the fact that [n + 2]q[n + 2α + 2]q ≤ 1
(1−q)2 , we obtain

‖Mf‖Fq,α ≤
1

1− q
‖f‖Fq,α ,

which completes the proof of the theorem. ¤
We deduce also the following norm equalities.

Theorem 3.2. If f ∈ Fq,α then
(i) 〈f, Wq,αf〉Fq,α

= (1+q)(1+q2α)〈Nqf, Bqf〉Fq,α
+[2α+1]q|Dqf(0)|2c1(α; q2),

(ii) ‖`q,αf‖2Fq,α
= ‖Nqf‖2Fq,α

+[2α]q〈Nqf, Bqf〉Fq,α
−[2α+1]q|Dqf(0)|2c1(α; q2),

(iii) ‖Mf‖2Fq,α
= ‖Nqf‖2Fq,α

+ (1 + q)[2α + 2]q‖Bqf‖2Fq,α
+ (1 + q + [2α +

2]q)〈Nqf, Bqf〉Fq,α
,

(iv) ‖Mf‖2Fq,α
= ‖`q,αf‖2Fq,α

+ (1 + q)[2α + 2]q‖Bqf‖2Fq,α
+ 〈f, Wq,αf〉Fq,α

.

Proof. Let f(z) =
∑∞

n=0 anzn ∈ Fq,α.
(i) Follows from (8), (9) and (10).
(ii) From (12), we get

‖`q,αf‖2Fq,α
=

∞∑
n=0

|an|2[n]q[n + 2α]q cn(α; q2)− [2α + 1]q|Dqf(0)|2c1(α; q2).

Using the fact [n + 2α]q = [n]q + qn[2α]q, we deduce

‖`q,αf‖2Fq,α
= ‖Nqf‖2Fq,α

+ [2α]q〈Nqf,Bqf〉Fq,α − [2α + 1]q|Dqf(0)|2c1(α; q2).

(iii) By (14) and using the fact that

[n + 2]q[n + 2α + 2]q = ([n]q)2 + (1 + q + [2α + 2]q)qn[n]q + (1 + q)[2α + 2]qq2n,

we obtain

‖Mf‖2Fq,α
= ‖Nqf‖2Fq,α

+(1+q)[2α+2]q‖Bqf‖2Fq,α
+(1+q+[2α+2]q)〈Nqf,Bqf〉Fq,α .

(iv) Follows directly from (i), (ii) and (iii). ¤

Remark 5. (a) Let f(z) =
∑∞

n=0 anzn ∈ Fq,α. Since 〈f,Wq,αf〉Fq,α ≥ 0, then

‖Mf‖2Fq,α
≥ (1 + q)[2α + 2]q‖Bqf‖2Fq,α

.

Therefore Mf = 0 implies that f = 0. Then M : Fq,α → Fq,α is injective
continuous operator on Fq,α.

(b) In the classical Fock spaces Fα the norm inequalities of Theorem 3.2 are
realized on D(M), and therefore M : D(M) → Fq,α is injective continuous
operator on D(M).

In the classical Fock spaces Fα, for f ∈ D(M) and g ∈ D(`α), we have

〈Mf, g〉Fα = 〈f, `αg〉Fα .

But in Fq,α, and since D(M) = D(`q,α) = Fq,α, we obtain the following.

Proposition 3.1. The operators M and `q,α are adjoint-operators on Fq,α; and
for all f, g ∈ Fq,α, we have

〈Mf, g〉Fq,α = 〈f, `q,αg〉Fq,α .
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Proof. Consider f(z) =
∑∞

n=0 anzn and g(z) =
∑∞

n=0 bnzn in Fq,α. From (11)
and (13),

`q,αg(z) =
∞∑

n=0

bn+2
cn+2(α; q2)
cn(α; q2)

zn,

and

Mf(z) =
∞∑

n=2

an−2 zn.

Thus from (4), we get

〈Mf, g〉Fq,α
=

∞∑
n=2

an−2bn cn(α; q2) =
∞∑

n=0

anbn+2 cn+2(α; q2) = 〈f, `q,αg〉Fq,α
,

which gives the result. ¤
In the next part of this section we study a generalized translation and multipli-

cation operators on Fq,α. We begin by the following definition.

Definition 3.1. For f ∈ Fq,α and w, z ∈ D(0, 1
1−q ), we define:

- The q-translation operators on Fq,α, by

Tzf(w) :=
∞∑

n=0

`n
q,αf(w)

cn(α; q2)
zn. (15)

- The generalized multiplication operators on Fq,α, by

Mzf(w) :=
∞∑

n=0

Mnf(w)
cn(α; q2)

zn. (16)

For w, z ∈ D(0, 1
1−q ), the function Sα(.; q2) satisfies the following product for-

mulas:
TzSα(.; q2)(w) = Sα(z; q2)Sα(w; q2),

MzSα(.; q2)(w) = Sα(zw2; q2)Sα(w; q2).

Proposition 3.2. Let f(z) =
∑∞

n=0 anzn ∈ Fq,α and z, w ∈ D(0, 1
1−q ). Then

(i) Tzf(w) =
∑∞

n=0 an

[ ∑[n/2]
k=0 γ(n, k; q2)

Γq2 (α+1)Γq2 ( n
2 +α+1)

Γq2 ( k
2 +α+1)Γq2 ( n

2−k+α+1)
( z

w2 )k
]
wn,

where [n/2] is the integer part of n/2 and

γ(n, k; q2) =
(1 + q)kΓq2(n

2 + 1)
Γq2(k

2 + 1)Γq2(n
2 − k + 1)

.

(ii) Mzf(w) =
∑∞

n=0

[∑[n/2]
k=0

an−2k

ck(α;q2)z
k
]
wn.

Proof. Let f(z) =
∑∞

n=0 anzn ∈ Fq,α.
(i) From (15), we have

Tzf(w) =
∞∑

n=0

`n
q,αf(w)

cn(α; q2)
zn; w, z ∈ D(0,

1
1− q

).

Since from Lemma 2.3,

`n
q,αwk =

ck(α; q2)
ck−2n(α; q2)

wk−2n, k ≥ 2n,
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we can write

`n
q,αf(w) =

∞∑

k=2n

ak
ck(α; q2)

ck−2n(α; q2)
wk−2n.

Thus we obtain

Tzf(w) =
∞∑

n=0

an

[n/2]∑

k=0

cn(α; q2)
ck(α; q2)cn−2k(α; q2)

wn−2kzk.

On the other hand from (1), we get

cn(α; q2)
ck(α; q2)cn−2k(α; q2)

= γ(n, k; q2)
Γq2(α + 1)Γq2(n

2 + α + 1)
Γq2(k

2 + α + 1)Γq2(n
2 − k + α + 1)

,

which gives the (i).
(ii) From (16), we have

Mzf(w) =
∞∑

n=0

Mnf(w)
cn(α; q2)

zn; w, z ∈ D(0,
1

1− q
).

But from (13), we have

Mnf(w) =
∞∑

k=2n

ak−2nwk.

Thus we obtain

Mzf(w) =
∞∑

n=0

[ [n/2]∑

k=0

an−2k

ck(α; q2)
zk

]
wn,

which completes the proof of the proposition. ¤
In the classical Fock spaces Fα, if f ∈ Fα, then τzf and Mzf , z ∈ C are not

necessarily elements of Fα. But on Fq,α, and according to Theorem 3.1 we can study
the continuous property of the operators Tz and Mz on Fq,α, for z ∈ D(0, 1

1−q ).

Theorem 3.3. If f ∈ Fq,α and z ∈ D(0, 1
1−q ), then Tzf and Mzf belong to Fq,α,

and
(i) ‖Tzf‖Fq,α ≤ Sα( |z|1−q ; q2)‖f‖Fq,α ,

(ii) ‖Mzf‖Fq,α ≤ Sα( |z|1−q ; q2)‖f‖Fq,α .

Proof. From (15) and Theorem 3.1 (i), we deduce

‖Tzf‖Fq,α ≤
∞∑

n=0

‖`n
q,αf‖Fq,α

|z|n
cn(α; q2)

≤
∞∑

n=0

|z|n
(1− q)ncn(α; q2)

‖f‖Fq,α .

Therefore,

‖Tzf‖Fq,α ≤ Sα(
|z|

1− q
; q2)‖f‖Fq,α ,

which gives the first inequality, and as in the same way we prove the second in-
equality of this theorem. ¤

From Proposition 3.1 we deduce the following results.

Proposition 3.3. For all f, g ∈ Fq,α and z ∈ D(0, 1
1−q ), we have

〈Mzf, g〉Fq,α = 〈f, Tzg〉Fq,α ,

〈Tzf, g〉Fq,α = 〈f, Mzg〉Fq,α .
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We denote by Rz, z ∈ D(0, 1
1−q ) the following operator defined on Fq,α by

Rz := TzMz −MzTz = Sα(z`q,α; q2)Sα(zM ; q2)− Sα(zM ; q2)Sα(z`q,α; q2).

Then, we prove the following theorem.

Theorem 3.4. For all f ∈ Fq,α and z ∈ D(0, 1
1−q ), we have

(i) ‖Mzf‖2Fq,α
= ‖Tzf‖2Fq,α

+ 〈f, Rzf〉Fq,α
,

(ii) ‖Rzf‖Fq,α
≤ 2[Sα( |z|1−q ; q2)]2‖f‖Fq,α

.

Proof. (i) From Proposition 3.3, we get

‖Mzf‖2Fq,α
= 〈f, TzMzf〉Fq,α

= 〈f, (MzTz + Rz)f〉Fq,α
= ‖Tzf‖2Fq,α

+ 〈f, Rzf〉Fq,α
.

(ii) From Theorem 3.3, we have

‖Rzf‖Fq,α ≤ ‖TzMzf‖Fq,α + ‖MzTz‖Fq,α ≤ 2[Sα(
|z|

1− q
; q2)]2‖f‖Fq,α ,

which completes the proof. ¤

4. Application: Extremal function on Fq,α

In this section we shall give an application of the theory of reproducing kernels
to the Tikhonov regularization, which gives the approximate solutions for bounded
linear operator equation on the Fock spaces Fq,α.

Definition 4.1. Let λ > 0 and let L : Fq,α → Fq,α be a bounded linear operator
from Fq,α into itself. We denote by 〈., .〉λ,Fq,α the inner product defined on the space
Fq,α by

〈f, g〉λ,Fq,α := λ〈f, g〉Fq,α + 〈Lf, Lg〉Fq,α , (17)

and the norm ‖f‖λ,Fq,α :=
√〈f, f〉λ,Fq,α .

As examples of the operator L we can choose the precedent operators Bq, Nq,
Wq,α, `α,q, M , Tz, Mz and Rz, when z ∈ D(0, 1

1−q ).

Remark 6. Let λ > 0 and let f ∈ Fq,α. The two norms ‖.‖Fq,α and ‖.‖λ,Fq,α are
equivalent, and

√
λ ‖f‖Fq,α ≤ ‖f‖λ,Fq,α ≤

√
λ + ‖L‖2 ‖f‖Fq,α .

Lemma 4.1. Let λ > 0. The Fock space (Fq,α, 〈., .〉λ,Fq,α) possesses a reproducing
kernel KL(w, z); w, z ∈ D(0, 1

1−q ) which satisfying the equation

(λI + L∗L)KL(w, .) = Kq,α(w, .), (18)

where L∗ is the adjoint of L in (Fq,α, 〈., .〉Fq,α).

Proof. Let f ∈ Fq,α. From relation (6) and Remark 6, we have

|f(w)| ≤ ‖Kq,α(w, .)‖Fq,α‖f‖Fq,α =
[Sα(|w|2; q2)

λ

]1/2

‖f‖λ,Fq,α .

Then, the map f → f(w), w ∈ D(0, 1
1−q ) is a continuous linear functional on

(Fq,α, 〈., .〉λ,Fq,α). Thus from [1], (Fq,α, 〈., .〉λ,Fq,α) has a reproducing kernel denoted
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by KL(w, z).
On the other hand,

f(w) = λ〈f, KL(w, .)〉Fq,α
+ 〈Lf,L[KL(w, .)]〉Fq,α

= 〈f, (λI + L∗L)[KL(w, .)]〉Fq,α .

Thus,
(λI + L∗L)KL(w, .) = Kq,α(w, .).

This clearly yields the result. ¤
Example 4.1. Let w, z ∈ D(0, 1

1−q ).

(a) If L = M , then

KL(w, z) =
∞∑

n=0

(wz)n

(λ + [n + 2]q[n + 2α + 2]q)cn(α; q2)
.

(b) If L = `q,α, then

KL(w, z) =
1

λc0(α; q2)
+

wz

λc1(α; q2)
+

∞∑
n=2

(wz)n

(λ + [n]q[n + 2α]q)cn(α; q2)
.

(c) If L = Bq, then

KL(w, z) =
∞∑

n=0

(wz)n

(λ + q2n)cn(α; q2)
.

(d) If L = Nq, then

KL(w, z) =
∞∑

n=0

(wz)n

(λ + ([n]q)2)cn(α; q2)
.

(e) If L = Wq,α, then

KL(w, z) =
1

λc0(α; q2)
+

wz

([2α + 1]q)2c1(α; q2)
+

∞∑
n=1

(wz)n

(λ + η([n]q)2q2n)cn(α; q2)
,

where
η = (1 + q)2(1 + q2α)2.

The main result of this section can then be stated as follows.

Theorem 4.1. For any h ∈ Fq,α and for any λ > 0, there exists a unique function
f∗λ,h, where the infimum

inf
f∈Fq,α

{
λ‖f‖2Fq,α

+ ‖h− Lf‖2Fq,α

}
(19)

is attained. Moreover, the extremal function f∗λ,h is given by

f∗λ,h(w) = 〈h,L[KL(w, .)]〉Fq,α ,

where KL is the kernel given by (18).

Proof. The existence and unicity of the extremal function f∗λ,h satisfying (19), is
given by [9, 11, 13]. Moreover, by Lemma 4.1 we deduce that

f∗λ,h(w) = 〈h,L[KL(w, .)]〉Fq,α , (20)

where KL is the kernel given by (18).
This clearly yields the result. ¤
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Remark 7. The extremal function f∗λ,h satisfies the following inequalities

|f∗λ,h(w)| ≤ ‖L‖‖h‖Fq,α‖KL(w, .)‖Fq,α

≤ ‖L‖√
λ
‖h‖Fq,α

‖KL(w, .)‖λ,Fq,α

≤ ‖L‖√
λ

[KL(w,w)]1/2‖h‖Fq,α
.

If we take in (20), h = Lf , where f ∈ Fq,α, we obtain the following Calderón’s
reproducing formula.

Theorem 4.2. (Calderón’s formula). Let λ > 0 and f ∈ Fq,α. The extremal
function f∗λ given by

f∗λ(w) = 〈Lf, L[KL(w, .)]〉Fq,α
,

satisfies
f(w) = lim

λ→0+
f∗λ(w) = lim

λ→0+
〈Lf,L[KL(w, .)]〉Fq,α

.

Proof. Let f ∈ Fq,α, h = Lf and f∗λ = f∗λ,Lf . Then

f∗λ(w) = 〈f, L∗L[KL(w, .)]〉Fq,α . (21)

But from (18), we have

lim
λ→0+

L∗L[KL(w, .)] = Kq,α(w, .).

Thus,
lim

λ→0+
f∗λ(w) = 〈f, Kq,α(w, .)〉Fq,α = f(w),

which ends the proof. ¤
Remark 8. Let w ∈ D(0, 1

1−q ). From (18) and (21), the extremal function f∗λ
satisfies

f∗λ(w) = f(w)− λ〈f, KL(w, .)〉Fq,α .

Thus we obtain
lim

λ→0+
λKL(w, .) = 0,

and

|f∗λ(w)− f(w)| ≤ λ‖f‖Fq,α‖KL(w, .)‖Fq,α

≤
√

λ‖f‖Fq,α‖KL(w, .)‖λ,Fq,α

≤
√

λ[KL(w, w)]1/2‖f‖Fq,α .
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