BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 4 Issue 2 (2012), Pages 103-115

ON q-INTEGRAL TRANSFORMS AND THEIR APPLICATIONS

(COMMUNICATED BY R.K. RAINA)

DURMUŞ ALBAYRAK, SUNIL DUTT PUROHIT AND FARUK UÇAR

ABSTRACT. In this paper, we introduce a q-analogue of the \mathcal{P} -Widder transform and give a Parseval-Goldstein type theorem. Furthermore, we evaluate the q-Laplace transform of a product of q-Bessel functions. Several special cases of our results are also pointed out.

1. Introduction, Definitions and Preliminaries

In the classical analysis, a Parseval-Goldstein type theorem involving the Laplace transform, the Fourier transform, the Stieltjes transform, the Glasser transform, the Mellin transform, the Hankel transform, the Widder-Potential transform and their applications are used widely in several branches of Engineering and applied Mathematics. Some integral transforms in the classical analysis have their q-analogues in the theory of q-calculus. This has led various workers in the field of q-theory for extending all the important results involving the classical analysis to their q-analogues. With this objective in mind, this paper introduces q-analogue of the \mathcal{P} -Widder potential transform and establishes certain interesting properties for this integral transform.

Throughout this paper, we will assume that q satisfies the condition 0 < |q| < 1. The q-derivative $D_q f$ of an arbitrary function f is given by

$$(D_q f)(x) = \frac{f(x) - f(qx)}{(1 - q)x},$$

where $x \neq 0$. Clearly, if f is differentiable, then

$$\lim_{q \to 1^-} (D_q f)(x) = \frac{df(x)}{dx}.$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 05A30, 33D05; Secondary 44A10,44A20.

Key words and phrases. q-Calculus, q-Laplace transform, q-analogue of \mathcal{P} -Widder transform and q-Bessel function.

^{©2012} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted October 15, 2011. Accepted May 1, 2012.

Before we continue, let us introduce some notation that is used in the remainder of the paper. For any real number α ,

$$[\alpha] := \frac{q^{\alpha} - 1}{q - 1}.$$

In particular, if $n \in \mathbb{Z}^+$, we denote

$$[n] = \frac{q^n - 1}{q - 1} = q^{n - 1} + \dots + q + 1.$$

Following usual notation are very useful in the theory of q-calculus:

$$(a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k), \qquad (a;q)_{\infty} = \prod_{k=0}^{\infty} (1 - aq^k), (a;q)_t = \frac{(a;q)_{\infty}}{(aq^t;q)_{\infty}} \quad (t \in \mathbb{R}).$$

It is well known that in the literature there are two types of the q-Laplace transform and studied in details by many authors. Hahn [4] defined q-analogues of the wellknown classical Laplace transform

$$\phi(s) = \int_0^\infty \exp(-st)f(t)dt \quad (\Re(s) > 0), \qquad (1)$$

by means of the following q-integrals:

$$L_q\{f(t);s\} = {}_qL_s\{f(t)\} = \frac{1}{1-q} \int_0^{s^{-1}} E_q(qst)f(t)d_qt \quad (\Re(s) > 0), \quad (2)$$

and

$$\mathcal{L}_{q}\{f(t);s\} = {}_{q}\mathcal{L}_{s}\{f(t)\} = \frac{1}{1-q} \int_{0}^{\infty} e_{q}(-st)f(t)d_{q}t \quad (\Re(s) > 0), \qquad (3)$$

where the q-analogues of the classical exponential functions are defined by

$$e_q(t) = \sum_{n=0}^{\infty} \frac{t^n}{(q;q)_n} = \frac{1}{(t;q)_{\infty}} \quad (|t| < 1),$$
(4)

and

$$E_q(t) = \sum_{n=0}^{\infty} \frac{(-1)^n q^{n(n-1)/2} t^n}{(q;q)_n} = (t;q)_{\infty} \quad (t \in \mathbb{C}).$$
(5)

By virtue of the q-integral (see [6, 11, 3])

$$\int_{0}^{\infty} f(t)d_{q}t = (1-q)\sum_{k=-\infty}^{\infty} q^{k}f(q^{k}),$$
 (6)

the q-Laplace operator (3) can be expressed as

$${}_{q}\mathcal{L}_{s}\{f(t)\} = \frac{1}{(-s;q)_{\infty}} \sum_{k \in \mathbb{Z}} q^{k}(-s;q)_{k} f(q^{k}).$$
(7)

Throughout this paper, we will use \mathcal{L}_q instead of ${}_q\mathcal{L}_s$.

The improper integral (see [8] and [6]) is defined by

$$\int_0^{\infty/A} f(x)d_q x = (1-q)\sum_{k\in\mathbb{Z}} \frac{q^k}{A}f(\frac{q^k}{A}).$$
(8)

The q-analogue of the integration theorem by a change of variable can be started when $u(x) = \alpha x^{\beta}, \alpha \in \mathbb{C}$ and $\beta > 0$, as follows:

$$\int_{u(a)}^{u(b)} f(u) d_q u = \int_a^b f(u(x)) D_{q^{1/\beta}} u(x) d_{q^{1/\beta}} x.$$
(9)

As a special cases of the formula (9), one has the following reciprocity relations:

$$\int_{0}^{A} f(x)d_{q}x = \int_{q/A}^{\infty/A} \frac{1}{x^{2}}f(\frac{1}{x})d_{q}x,$$

$$\int_{0}^{\infty/A} f(x)d_{q}x = \int_{0}^{\infty\cdot A} \frac{1}{x^{2}}f(\frac{1}{x})d_{q}x.$$
(10)

Furthermore, the q-hypergeometric functions and well-known q-special functions are defined by (see [9] and [7]):

$${}^{r}\phi_{s} \left[\begin{array}{ccc} a_{1} & a_{2} & \cdots & a_{r} \\ b_{1} & b_{2} & \cdots & b_{s} \end{array} ; q, z \right] = \sum_{n=0}^{\infty} \frac{(a_{1};q)_{n} (a_{2};q)_{n} \cdots (a_{r};q)_{n}}{(q;q)_{n} (b_{1};q)_{n} \cdots (b_{s};q)_{n}} \left[(-1)^{n} q^{\binom{n}{2}} \right]^{1+s-r} z^{n},$$

$${}^{r}\psi_{s} \left[\begin{array}{ccc} a_{1} & a_{2} & \cdots & a_{r} \\ b_{1} & b_{2} & \cdots & b_{s} \end{array} ; q, z \right] = \sum_{n=-\infty}^{\infty} \frac{(a_{1};q)_{n} \cdots (a_{r};q)_{n}}{(b_{1};q)_{n} \cdots (b_{s};q)_{n}} \left[(-1)^{n} q^{\binom{n}{2}} \right]^{s-r} z^{n}$$

and

$$\Gamma_q(\alpha) = \int_0^{1/(1-q)} x^{\alpha-1} E_q(q(1-q)x) d_q x \quad (\alpha > 0),$$
(11)

$$\Gamma_q(\alpha) = K(A;\alpha) \int_0^{\infty/A(1-q)} x^{\alpha-1} e_q(-(1-q)x) d_q x \ (\alpha > 0), \qquad (12)$$

$$B_q(t;s) = \frac{\Gamma_q(t) \ \Gamma_q(s)}{\Gamma_q(t+s)} \quad (t,s \in \mathbb{R}),$$
(13)

where last two representations are based on the following remarkable function (see [7, p.15])

$$K(A;t) = A^{t-1} \frac{(-q/A;q)_{\infty}}{(-q^t/A;q)_{\infty}} \frac{(-A;q)_{\infty}}{(-Aq^{1-t};q)_{\infty}} \quad (t \in \mathbb{R}).$$
(14)

Recently Uçar and Albayrak [12] introduced q-analogues of the \mathcal{L}_2 -transfom in terms of the following q-integrals:

$${}_{q}L_{2}\left\{f\left(t\right);s\right\} = \frac{1}{1-q^{2}} \int_{0}^{1/s} t \ E_{q^{2}}(q^{2}s^{2}t^{2})f(t)d_{q}t \qquad (\Re(s) > 0), \qquad (15)$$

and

$${}_{q}\mathcal{L}_{2}\left\{f\left(t\right);s\right\} = \frac{1}{1-q^{2}} \int_{0}^{\infty} t \; e_{q^{2}}(-s^{2}t^{2})f(t)d_{q}t \qquad (\Re(s) > 0) \,. \tag{16}$$

In the same article [12], the author established an interesting relation between ${}_q\mathcal{L}_2$ and \mathcal{L}_q transforms, namely

$${}_{q}\mathcal{L}_{2}\left\{f\left(t\right);s\right\} = \frac{1}{[2]}\mathcal{L}_{q^{2}}\left\{f\left(t^{1/2}\right);s^{2}\right\}.$$
(17)

The paper is organized in the following manner. In the next two sections we introduce a q-analogue of the \mathcal{P} -Widder potential transform and establish a Parseval-Goldstein type theorem and its corollaries involving q-analogue of the \mathcal{P} -Widder and \mathcal{L}_2 -Laplace transforms. Whereas in Section 4, we evaluate the q-Laplace transform of a product of basic analogue of the Bessel functions. Several special cases and examples of our results are also pointed out in the concluding section.

2. q-Analogue of The \mathcal{P} -Widder Transform

Widder [13] has presented a theory of the integral transform

$$\mathcal{P}\left\{f\left(x\right);y\right\} = \int_{0}^{\infty} \frac{xf\left(x\right)}{x^{2} + y^{2}} dx,$$

in the real domain which is formally equivalent to the iterated \mathcal{L}_2 transform.

Definition [2] A function f is q-integrable on $[0, \infty)$ if the series $\sum_{n \in \mathbb{Z}} q^n f(q^n)$ converges absolutely.

We write $L^1_q(\mathbb{R}_q)$ for the set of all functions that are absolutely q-integrable on $[0,\infty)$, where \mathbb{R}_q is the set

$$\mathbb{R}_q = \{q^n : n \in \mathbb{Z}\},\$$

that is

$$L_q^1(\mathbb{R}_q) := \left\{ f : \sum_{n \in \mathbb{Z}} q^n |f(q^n)| < \infty \right\}$$
$$:= \left\{ f : \frac{1}{1-q} \int_0^\infty |f(x)| \, d_q x < \infty \right\}.$$

Now we introduce the following q-integral transform, which may be regarded as q-extension of the \mathcal{P} -Widder potential transform.

Definition 2.1. A q-analogue of \mathcal{P} -Widder potential transform will be denoted \mathcal{P}_q and defined by the following q-integral:

$$\mathcal{P}_{q}\left\{f\left(x\right);s\right\} = \frac{1}{1-q^{2}} \int_{0}^{\infty} \frac{x}{s^{2}+q^{2}x^{2}} f\left(x\right) d_{q}x, \quad (\Re(s)>0).$$
(18)

In view of (8), (18) can be expressed as

$$\mathcal{P}_{q}\left\{f\left(x\right);s\right\} = \frac{1}{1+q} \sum_{n \in \mathbb{Z}} \frac{q^{2n}}{s^{2} + q^{2+2n}} f\left(q^{n}\right).$$
(19)

Now we prove the following theorem that provide the existence and convergence for the \mathcal{P}_q -transform:

Theorem 2.1. If $f \in L^1_q(\mathbb{R}_q)$, then the improper q-integral defined by (18) is well-defined.

Proof. From (19), we have

$$|\mathcal{P}_{q} \{f(x);s\}| \leq \frac{1}{1+q} \sum_{n \in \mathbb{Z}} \left| \frac{q^{2n}}{s^{2}+q^{2+2n}} \right| |f(q^{n})|.$$

Since $\left\{ \frac{q^n}{s^2 + q^{2+2n}} : n \in \mathbb{Z} \right\}$ is bounded, then there exists a $K \in \mathbb{R}^+$ such that $\left| \frac{q^n}{s^2 + q^{2+2n}} \right| < K$. Thus, we have $|\mathcal{P}_q \{ f(x) ; s \}| \le \frac{K}{1+q} \sum_{n \in \mathbb{Z}} q^n |f(q^n)|.$ On the other hand, since $f \in L^1_q(\mathbb{R}_q)$, there is a $M \in \mathbb{R}^+$ such that

$$\frac{1}{(1-q)}\int_0^\infty |f(x)|\,d_q x = \sum_{n\in\mathbb{Z}} q^n\,|f(q^n)| = M < \infty.$$

Hence we have

$$\left|\mathcal{P}_{q}\left\{f\left(x\right);s\right\}\right| \leq \frac{MK}{1+q} < \infty$$

This completes to proof.

3. Main Theorems and Applications

Proposition 3.1. For $A, t \in \mathbb{R}$, we have

$$\lim_{q \to 1^{-}} K\left(A; t\right) = 1.$$

Proof. Multiplying numerator and denominator of K(A;t) by (1 + 1/A), we get

$$\begin{split} K\left(A;t\right) &= A^{t-1} \frac{\left(1+1/A\right) \left(-q/A;q\right)_{\infty}}{\left(1+1/A\right) \left(-q^{t}/A;q\right)_{\infty}} \frac{\left(-A;q\right)_{\infty}}{\left(-q^{1-t}A;q\right)_{\infty}} \\ &= A^{t} \frac{\left(-1/A;q\right)_{\infty}}{\left(-q^{t}/A;q\right)_{\infty}} \frac{\left(-qA;q\right)_{\infty}}{\left(-q^{1-t}A;q\right)_{\infty}}. \end{split}$$

and then using the formula as $q \rightarrow 1^-$ (see [3, p. 9, 1.3.18])

$$\frac{(aq^{t};q)_{\infty}}{(a;q)_{\infty}} = {}_{1}\phi_{0}\left(q^{t};-;q,a\right) \to {}_{1}F_{0}\left(t;-;a\right) = (1-a)^{-t}, \ |a| < 1, t \text{ real}$$

into last expression, we obtain

$$\begin{split} \lim_{q \to 1^{-}} K\left(A; t\right) &= \lim_{q \to 1^{-}} A^{t} \frac{(-1/A; q)_{\infty}}{(-q^{t}/A; q)_{\infty}} \frac{(-qA; q)_{\infty}}{(-q^{1-t}A; q)_{\infty}} \\ &= \lim_{q \to 1^{-}} A^{t} \frac{1}{1\phi_{0}\left(q^{t}; -; q, -1/A\right)} \frac{1}{1\phi_{0}\left(q^{-t}; -; q, -qA\right)} \\ &= A^{t} \left(1 + \frac{1}{A}\right)^{t} (1 + A)^{-t} \\ &= 1. \end{split}$$

This completes to proof.

Theorem 3.1. The \mathcal{P}_q -Widder transform can be regarded as iterated ${}_q\mathcal{L}_2$ -Laplace transforms as under:

$${}_{q}\mathcal{L}_{2}\left\{{}_{q}\mathcal{L}_{2}\left\{f\left(x\right);s\right\};t\right\} = \frac{1}{[2]}\mathcal{P}_{q}\left\{f\left(x\right);t\right\},$$
(20)

provided that the q-integrals involved converge absolutely.

Proof. On using the definition of the ${}_{q}\mathcal{L}_{2}$ -Laplace transform (16) the left-hand side of (20) (say I) reduces to

$$I = \frac{1}{(1-q^2)^2} \int_0^\infty se_{q^2} \left(-t^2 s^2\right) \left(\int_0^\infty xe_{q^2} \left(-s^2 x^2\right) f(x) \, d_q x\right) d_q s.$$
(21)

107

Interchanging the order of the q-integration in (21), which is permissible by the absolute convergence of q-integrals, we obtain

$$I = \frac{1}{(1-q^2)^2} \int_0^\infty x f(x) \left(\int_0^\infty s e_{q^2} \left(-\left(t^2 + q^2 x^2\right) s^2\right) d_q s \right) d_q x.$$

In view of the definition (16), we obtain

$$I = \frac{1}{1 - q^2} \int_0^\infty q \mathcal{L}_2 \left\{ 1; \left(t^2 + q^2 x^2\right)^{1/2} \right\} x f(x) \, d_q x.$$

On setting f(x) = 1 and $s = (t^2 + q^2 x^2)^{1/2}$ in (17) and then using the formula $\mathcal{L}_{q^2}\{1; s^2\} = \frac{1}{s^2}$, we get the desired result

$$I = \frac{1}{[2]} \frac{1}{1 - q^2} \int_0^\infty \frac{x f(x)}{t^2 + q^2 x^2} d_q x$$

= $\frac{1}{[2]} \mathcal{P}_q \{ f(x) ; t \}.$

Corollary 3.1. If $-2 < \alpha < 0$ then the following formula holds:

$$\mathcal{P}_{q}\left\{x^{\alpha};t\right\} = \frac{1}{[2]} \frac{1}{1-q^{2}} \frac{B_{q^{2}}\left(1+\alpha/2;-\alpha/2\right)}{K\left(1;1+\alpha/2\right)K\left(1/t^{2};-\alpha/2\right)} t^{\alpha},\tag{22}$$

where K(A;t) is given by (14).

Proof. On setting $f(x) = x^{\alpha}$ and make use of the known result due to Uçar and Albayrak [12], namely

$${}_{q}\mathcal{L}_{2}\left\{x^{\alpha};s\right\} = \frac{1}{[2]} \frac{\Gamma_{q^{2}}\left(1+\alpha/2\right)}{K\left(1/s^{2};1+\alpha/2\right)} \frac{\left(1-q^{2}\right)^{\alpha/2}}{s^{\alpha+2}} \ (-2 < \alpha < 0),$$

the identity (20) of Theorem 3.1 give rise to

$$\mathcal{P}_{q}\left\{x^{\alpha};t\right\} = [2]\left\{q\mathcal{L}_{2}\left\{\frac{1}{[2]}\frac{\Gamma_{q^{2}}\left(1+\alpha/2\right)}{K\left(1/s^{2};1+\alpha/2\right)}\frac{\left(1-q^{2}\right)^{\alpha/2}}{s^{\alpha+2}};t\right\}\right\}$$
$$=\Gamma_{q^{2}}\left(1+\alpha/2\right)\left(1-q^{2}\right)^{\alpha/2}\ q\mathcal{L}_{2}\left\{\frac{s^{-\alpha-2}}{K\left(1/s^{2};1+\alpha/2\right)};t\right\}.$$

Using the series representation of the ${}_q\mathcal{L}_2$ -transform, we obtain

$$\mathcal{P}_{q}\left\{x^{\alpha};t\right\} = \Gamma_{q^{2}}\left(1+\alpha/2\right)\left(1-q^{2}\right)^{\alpha/2} \ \frac{1}{[2]}\frac{1}{(-t^{2};q^{2})_{\infty}}\sum_{n\in\mathbb{Z}}\frac{q^{2n}\left(q^{n}\right)^{-\alpha-2}\left(-t^{2};q^{2}\right)_{n}}{K\left(1/q^{2n};1+\alpha/2\right)}$$

Following Kac and Sole [7] the function of x, K(x;t) is a q-constant, that is, $K(q^nx;t) = K(x;t)$ for every integer n. Hence

$$\mathcal{P}_{q}\left\{x^{\alpha};t\right\} = \frac{\Gamma_{q^{2}}\left(1+\alpha/2\right)\left(1-q^{2}\right)^{\alpha/2}}{K\left(1;1+\alpha/2\right)} \frac{1}{\left[2\right]} \frac{1}{\left(-t^{2};q^{2}\right)_{\infty}} \sum_{n\in\mathbb{Z}} q^{2n} \left(q^{n}\right)^{-\alpha-2} \left(-t^{2};q^{2}\right)_{n}.$$

Again, on using the series representation of the ${}_{q}\mathcal{L}_{2}$ -transform, we get

$$\begin{aligned} \mathcal{P}_{q}\left\{x^{\alpha};t\right\} &= \frac{\Gamma_{q^{2}}\left(1+\alpha/2\right)\left(1-q^{2}\right)^{\alpha/2}}{K\left(1;1+\alpha/2\right)} \ _{q}\mathcal{L}_{2}\left\{s^{-\alpha-2};t\right\} \\ &= \frac{\Gamma_{q^{2}}\left(1+\alpha/2\right)\left(1-q^{2}\right)^{\alpha/2}}{K\left(1;1+\alpha/2\right)} \frac{1}{\left[2\right]} \frac{\Gamma_{q^{2}}\left(-\alpha/2\right)\left(1-q^{2}\right)^{-\alpha/2-1}}{K\left(1/t^{2};-\alpha/2\right)t^{-\alpha}} \\ &= \frac{1}{\left[2\right]} \frac{1}{1-q^{2}} \frac{\Gamma_{q^{2}}\left(1+\alpha/2\right)}{K\left(1;1+\alpha/2\right)} \frac{\Gamma_{q^{2}}\left(-\alpha/2\right)}{K\left(1/t^{2};-\alpha/2\right)} t^{\alpha} \\ &= \frac{1}{\left[2\right]} \frac{1}{1-q^{2}} \frac{B_{q^{2}}\left(1+\alpha/2;-\alpha/2\right)}{K\left(1;1+\alpha/2\right)K\left(1/t^{2};-\alpha/2\right)} t^{\alpha}. \end{aligned}$$

In the following theorem, we establish a Parseval-Goldstein type theorem that involving q-analogue of the \mathcal{P} -Widder and \mathcal{L}_2 -Laplace transforms:

Theorem 3.2. If \mathcal{P}_q and $_q\mathcal{L}_2$ denote q-analogues of the \mathcal{P} -Widder and \mathcal{L}_2 -Laplace transforms, then the following result holds true:

$$\int_{0}^{\infty} x \,_{q} \mathcal{L}_{2} \left\{ f\left(y\right); x \right\} \,_{q} \mathcal{L}_{2} \left\{ g\left(z\right); x \right\} d_{q} x = \frac{1}{[2]} \int_{0}^{\infty} y f\left(y\right) \mathcal{P}_{q} \left\{ g\left(z\right); qy \right\} d_{q} y, \quad (23)$$

provided that the q-integrals involved converge absolutely.

Proof. Using the definition of the ${}_q\mathcal{L}_2$ -transform (16), the left-hand side of (23) (say J) yields to

$$J = \frac{1}{1 - q^2} \int_0^\infty x \, _q \mathcal{L}_2 \left\{ g\left(z\right); x \right\} \left\{ \int_0^\infty y e_{q^2} \left(-x^2 y^2 \right) f\left(y\right) d_q y \right\} d_q x$$

Changing the order of the q-integration, which is permissible by the hypothesis, we find that

$$J = \frac{1}{1 - q^2} \int_0^\infty y f(y) \left\{ \int_0^\infty x e_{q^2} \left(-q^2 y^2 x^2 \right) \, _q \mathcal{L}_2 \left\{ g(z) \, ; x \right\} d_q x \right\} d_q y.$$

In view of the definition (16) and the result (20) of Theorem 3.1, the above relation reduces to the desired right-hand side of (23). \Box

Corollary 3.2. We have

$$\int_{0}^{\infty} xh(x) \ _{q}\mathcal{L}_{2}\left\{f(y);x\right\}d_{q}x = \int_{0}^{\infty} yf(y) \ _{q}\mathcal{L}_{2}\left\{h(x);qy\right\}d_{q}y, \qquad (24)$$

provided that the q-integrals involved converge absolutely.

Proof. The identity (24) follows immediately after letting $h(x) = {}_{q}\mathcal{L}_{2} \{g(z); x\}$ in the relation (23).

Corollary 3.3. With due regards to convergence, we have

$$q^{2}\mathcal{P}_{q}\left\{q\mathcal{L}_{2}\left\{g\left(u\right);x\right\};q^{2}z\right\} = q\mathcal{L}_{2}\left\{\mathcal{P}_{q}\left\{g\left(u\right);qy\right\};qz\right\}.$$
(25)

Proof. To prove (25), we set $f\left(y\right)=e_{q^{2}}\left(-y^{2}z^{2}\right)$, then we get

$${}_{q}\mathcal{L}_{2}\left\{f\left(y\right);x\right\} = \frac{1}{1-q^{2}} \int_{0}^{\infty} y e_{q^{2}}\left(-x^{2}y^{2}\right) e_{q^{2}}\left(-q^{2}z^{2}y^{2}\right) d_{q}y$$
$$= \frac{1}{[2]} \frac{1}{x^{2}+q^{2}z^{2}}.$$
(26)

Substituting (26) into the identity (23) of Theorem 3.2, we obtain

$$\int_{0}^{\infty} \frac{x}{x^{2} + q^{2}z^{2}} \,_{q}\mathcal{L}_{2}\left\{g\left(u\right);x\right\} d_{q}x = \int_{0}^{\infty} ye_{q^{2}}\left(-q^{2}z^{2}y^{2}\right)\mathcal{P}_{q}\left\{g\left(u\right);qy\right\} d_{q}y$$
$$q^{2}\mathcal{P}_{q}\left\{q\mathcal{L}_{2}\left\{g\left(u\right);x\right\};q^{2}z\right\} = \left[q\mathcal{L}_{2}\left\{\mathcal{P}_{q}\left\{g\left(u\right);qy\right\};qz\right\}\right\}.$$

Similarly, if we set $f(y) = E_{1/q^2} \left(-\frac{y^2 z^2}{q^2}\right)$ in Theorem 3.2 and using the well-known q-exponential identity $e_{q^2}(q^2 x) = E_{1/q^2}(x)$ we find that

$${}_{q}\mathcal{L}_{2}\left\{E_{1/q^{2}}\left(-\frac{y^{2}z^{2}}{q^{2}}\right);x\right\} = {}_{q}\mathcal{L}_{2}\left\{e_{q^{2}}\left(-q^{2}z^{2}y^{2}\right);x\right\} = \frac{1}{[2]}\frac{1}{x^{2}+q^{2}z^{2}}$$
(27)

Substituting (27) into (23) we obtain

$$\int_{0}^{\infty} \frac{x}{x^{2} + q^{2}z^{2}} \,_{q}\mathcal{L}_{2}\left\{g\left(u\right);x\right\}d_{q}x = \int_{0}^{\infty} yE_{1/q^{2}}\left(-z^{2}y^{2}\right)\mathcal{P}_{q}\left\{g\left(u\right);qy\right\}d_{q}y$$
for the number of the set

and finally we have

$$q^{2}\mathcal{P}_{q}\left\{{}_{q}\mathcal{L}_{2}\left\{g\left(u\right);x\right\};q^{2}z\right\} = \int_{0}^{\infty} y e_{q^{2}}\left(-q^{2}z^{2}y^{2}\right)\mathcal{P}_{q}\left\{g\left(u\right);qy\right\}d_{q}y$$
$$= {}_{q}\mathcal{L}_{2}\left\{\mathcal{P}_{q}\left\{g\left(u\right);qy\right\};qz\right\}.$$

Theorem 3.3. We have

J

$$\int_{0}^{\infty} x \,_{q} \mathcal{L}_{2} \left\{ h\left(y\right); \left(x^{2} + q^{2} z^{2}\right)^{1/2} \right\} \,_{q} \mathcal{L}_{2} \left\{ g\left(z\right); x \right\} d_{q} x$$
$$= \frac{1 - q^{2}}{[2]} \,_{q} \mathcal{L}_{2} \left\{ h\left(y\right) \mathcal{P}_{q} \left\{ g\left(z\right); qy \right\}; qz \right\}$$
(28)

provided that the q-integrals involved converge absolutely.

Proof. Let $f(y) = e_{q^2} (-y^2 z^2) h(y)$. Using the definition of the ${}_q \mathcal{L}_2$ -transform we obtain

$${}_{q}\mathcal{L}_{2}\left\{e_{q^{2}}\left(-y^{2}z^{2}\right)h\left(y\right);x\right\} = \frac{1}{1-q^{2}}\int_{0}^{\infty}ye_{q^{2}}\left(-\left(x^{2}+q^{2}z^{2}\right)y^{2}\right)h\left(y\right)d_{q}y$$
$$= {}_{q}\mathcal{L}_{2}\left\{h\left(y\right);\left(x^{2}+q^{2}z^{2}\right)^{1/2}\right\}.$$
(29)

Substituting (29) into (23), we find that

$$\int_{0}^{\infty} x \,_{q} \mathcal{L}_{2} \left\{ h\left(y\right); \left(x^{2} + q^{2} z^{2}\right)^{1/2} \right\} \,_{q} \mathcal{L}_{2} \left\{ g\left(z\right); x \right\} d_{q} x$$

$$= \frac{1}{[2]} \int_{0}^{\infty} y e_{q^{2}} \left(-q^{2} z^{2} y^{2}\right) h\left(y\right) \mathcal{P}_{q} \left\{ g\left(z\right); qy \right\} d_{q} y$$

$$= \frac{1 - q^{2}}{[2]} \,_{q} \mathcal{L}_{2} \left\{ h\left(y\right) \mathcal{P}_{q} \left\{ g\left(z\right); qy \right\}; qz \right\}.$$

It is interesting to observe that, if we set h(y) = 1 and make use of the Theorem 3.3, one can easily deduced Corollary 3.3.

Corollary 3.4. The following result holds true:

$${}_{q}\mathcal{L}_{2}\left\{\frac{1}{s^{2}} {}_{q}\mathcal{L}_{2}\left\{f\left(x\right);\frac{1}{s}\right\};t\right\} = \frac{1}{[2]}\mathcal{P}_{q}\left\{f\left(x\right);t\right\},$$
(30)

provided that the q-integrals involved converge absolutely.

Proof. In view of the definition of the ${}_q\mathcal{L}_2$ -transform, the left-hand side of (30) (say L) yields to

$$\begin{split} L &= \frac{1}{1 - q^2} \int_0^\infty \frac{1}{s} e_{q^2} \left(-t^2 \frac{1}{s^2} \right) \frac{1}{s^2} \, _q \mathcal{L}_2 \left\{ f\left(x\right); \frac{1}{s} \right\} d_q s \\ &= \frac{1}{\left(1 - q^2\right)^2} \int_0^\infty \frac{1}{s^3} e_{q^2} \left(-t^2 \frac{1}{s^2} \right) \left(\int_0^\infty x e_{q^2} \left(-\frac{1}{s^2} x^2 \right) f\left(x\right) d_q x \right) d_q s \\ &= \frac{1}{\left(1 - q^2\right)^2} \int_0^\infty x f\left(x\right) \left(\int_0^\infty \frac{1}{s^3} e_{q^2} \left(-t^2 \frac{1}{s^2} \right) e_{q^2} \left(-\frac{1}{s^2} x^2 \right) d_q s \right) d_q x. \end{split}$$

On making use of the identity (10) into the right-hand side, we obtain

$$\begin{split} L &= \frac{1}{\left(1 - q^2\right)^2} \int_0^\infty x f\left(x\right) \left(\int_0^\infty s e_{q^2} \left(-\left(t^2 + q^2 x^2\right) s^2\right) d_q s\right) d_q x \\ &= \frac{1}{1 - q^2} \int_0^\infty x f\left(x\right) \ _q \mathcal{L}_2 \left\{1; \left(t^2 + q^2 x^2\right)^{1/2}\right\} d_q x \\ &= \frac{1}{[2]} \frac{1}{1 - q^2} \int_0^\infty \frac{x f\left(x\right)}{t^2 + q^2 x^2} d_q x \\ &= \frac{1}{[2]} \mathcal{P}_q \left\{f\left(x\right); t\right\}. \end{split}$$

4. *q*-Laplace Image of a Product of *q*-Bessel functions

Recently, Purohit and Kalla [10] evaluated the q-Laplace image under the L_q operator (2) for a product of basic analogue of the Bessel functions. In this section, we propose to add one more dimension to this study by introducing a theorem which give rise to q-Laplace image under the \mathcal{L}_q operator (3) for a product of q-Bessel functions. The third q-Bessel function is defined by Jackson and in some literature it is called Hahn-Exton q-Bessel function. For further details see [5].

$$J_{\nu}^{(3)}(t;q) = \frac{\left(q^{\nu+1};q\right)_{\infty}}{\left(q;q\right)_{\infty}} t^{\nu} {}_{1}\Phi_{1} \begin{bmatrix} 0\\ q^{\nu+1} ; q, qt^{2} \end{bmatrix}$$
(31)
$$= t^{\nu} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n-1)/2} (qt^{2})^{n}}{\left(q;q\right)_{\nu+n} (q;q)_{n}}.$$

Theorem 4.1. Let $J_{2\mu_j}^{(3)}(\sqrt{a_jt};q)$, j = 1, 2, ..., n be n different q-Bessel functions. Then, q-Laplace transform of their product is as follow

$$\mathcal{L}_{q}\left\{f\left(t\right);s\right\} = \frac{\left(1-q\right)^{\nu-M-1}\Gamma_{q}\left(\nu+M\right)}{\Gamma_{q}\left(2\mu_{1}+1\right)\dots\Gamma_{q}\left(2\mu_{n}+1\right)}\frac{a_{1}^{\mu_{1}}\dots a_{n}^{\mu_{n}}s^{-\nu-M}}{K\left(1/s;\nu+M\right)}$$

$$\sum_{m_{1},\dots,m_{n}=0}^{\infty}\frac{\left(q^{\nu+M};q\right)_{m}}{\left(q^{2\mu_{1}+1};q\right)_{m_{1}}\dots\left(q^{2\mu_{n}+1};q\right)_{m_{n}}}\dots\frac{\left(-a_{1}/s\right)^{m_{1}}\dots\left(-a_{n}/s\right)^{m_{n}}}{\left(q;q\right)_{m_{1}}\cdots\left(q;q\right)_{m_{n}}q^{m(m-1)/2}}.$$
(32)

where $f(t) = t^{\nu-1}q^{\mu_1}J_{2\mu_1}^{(3)}\left(\sqrt{q^{\nu+M-1}a_1t};q\right)\cdots q^{\mu_n}J_{2\mu_n}^{(3)}\left(\sqrt{q^{\nu+M-1}a_nt};q\right), M = \mu_1 + \cdots + \mu_n, \operatorname{Re}(s) > 0, \operatorname{Re}(\nu+M) > 0.$

Proof. To prove the above theorem we put

$$f(t) = t^{\nu-1} q^{\mu_1} J_{2\mu_1}^{(3)} \left(\sqrt{q^{\nu+M-1} a_1 t}; q \right) \cdots q^{\mu_n} J_{2\mu_n}^{(3)} \left(\sqrt{q^{\nu+M-1} a_n t}; q \right),$$
$$M = \mu_1 + \cdots + \mu_n$$

into (7) and make use of (31), to obtain

$$\begin{aligned} \mathcal{L}_{q}\left\{f\left(t\right);s\right\} &= \frac{1}{\left(-s;q\right)_{\infty}} \sum_{j \in \mathbb{Z}} q^{j} \left(-s;q\right)_{j} \left(q^{j}\right)^{v-1} \\ &\times \left\{\frac{\left(q^{2\mu_{1}+1};q\right)_{\infty}}{\left(q;q\right)_{\infty}} \left(q^{v+M}a_{1}q^{j}\right)^{\mu_{1}} \cdots \frac{\left(q^{2\mu_{n}+1};q\right)_{\infty}}{\left(q;q\right)_{\infty}} \left(q^{v+M}a_{n}q^{j}\right)^{\mu_{n}}\right\} \\ &\times \sum_{m_{1},\cdots,m_{n}=0}^{\infty} \frac{q^{m_{1}(m_{1}-1)/2} \left(-q^{v+M}a_{1}q^{j}\right)^{m_{1}}}{\left(q^{2\mu_{1}+1};q\right)_{m_{1}} \left(q;q\right)_{m_{1}}} \cdots \frac{q^{m_{n}(m_{n}-1)/2} \left(-q^{v+M}a_{n}q^{j}\right)^{m_{n}}}{\left(q^{2\mu_{n}+1};q\right)_{m_{n}} \left(q;q\right)_{m_{n}}}. \end{aligned}$$

On interchanging the order of summations, which is valid under the conditions given with theorem, we obtain

$$\mathcal{L}_{q}\left\{f\left(t\right);s\right\} = \frac{1}{\left(-s;q\right)_{\infty}} \frac{\left(q^{2\mu_{1}+1};q\right)_{\infty}}{\left(q;q\right)_{\infty}} \cdots \frac{\left(q^{2\mu_{n}+1};q\right)_{\infty}}{\left(q;q\right)_{\infty}} a_{1}^{\mu_{1}} \cdots a_{n}^{\mu_{n}} \left(q^{v+M}\right)^{M}}{\left(q^{v+M}\right)^{m_{1}}} \\ \times \sum_{m_{1},\cdots,m_{n}=0}^{\infty} \frac{q^{m_{1}(m_{1}-1)/2} \left(-q^{v+M}a_{1}\right)^{m_{1}}}{\left(q^{2\mu_{1}+1};q\right)_{m_{1}} \left(q;q\right)_{m_{1}}} \cdots \frac{q^{m_{n}(m_{n}-1)/2} \left(-q^{v+M}a_{n}\right)^{m_{n}}}{\left(q^{2\mu_{n}+1};q\right)_{m_{n}} \left(q;q\right)_{m_{n}}}}{\left(q^{2\mu_{n}+1};q\right)_{m_{n}} \left(q;q\right)_{m_{n}}}.$$
$$\times \sum_{j\in\mathbb{Z}} \left(-s;q\right)_{j} q^{j\left(v+\mu_{1}+\cdots+\mu_{n}+m_{1}+\cdots+m_{n}\right)}$$

By using the well-known q-gamma function

$$\Gamma_{q}\left(t\right) = \frac{\left(q;q\right)_{\infty}}{\left(q^{t};q\right)_{\infty}\left(1-q\right)^{t-1}},$$

and then summing the inner series with the help of the bilateral summation formula (see [3, p. 126, 5.2.1]), namely

$${}_{1}\psi_{1}\left(b;c;q,z\right) = \sum_{n\in\mathbb{Z}} \frac{(b;q)_{n}}{(c;q)_{n}} z^{n} = \frac{(q,c/b,bz,q/bz;q)_{\infty}}{(c,q/b,z,c/bz;q)_{\infty}} \ (|c/b| < |z| < 1),$$

we have

$$\mathcal{L}_{q}\left\{f\left(t\right);s\right\} = \frac{1}{\left(-s;q\right)_{\infty}} \frac{\left(1-q\right)^{-2M}}{\Gamma_{q}\left(2\mu_{1}+1\right)\cdots\Gamma_{q}\left(2\mu_{n}+1\right)} a_{1}^{\mu_{1}}\cdots a_{n}^{\mu_{n}} \\ \times \sum_{m_{1},\cdots,m_{n}=0}^{\infty} \frac{\left(-a_{1}\right)^{m_{1}}}{\left(q^{2\mu_{1}+1};q\right)_{m_{1}}\left(q;q\right)_{m_{1}}} \cdots \frac{\left(-a_{n}\right)^{m_{n}}}{\left(q^{2\mu_{n}+1};q\right)_{m_{n}}\left(q;q\right)_{m_{n}}} \\ \times \frac{\left(q,0,-sq^{\upsilon+M+m_{1}+\cdots+m_{n}},-q^{1-\left(\upsilon+M+m_{1}+\cdots+m_{n}\right)}/s;q\right)_{\infty}}{\left(0,-q/s,q^{\upsilon+M+m_{1}+\cdots+m_{n}},0;q\right)_{\infty}},$$

We may rewrite this series

$$\mathcal{L}_{q}\left\{f\left(t\right);s\right\} = \frac{\left(1-q\right)^{-2M}}{\Gamma_{q}\left(2\mu_{1}+1\right)\cdots\Gamma_{q}\left(2\mu_{n}+1\right)}a_{1}^{\mu_{1}}\cdots a_{n}^{\mu_{n}}\left(q^{v+M}\right)^{M}$$

$$\times \sum_{m_{1},\cdots,m_{n}=0}^{\infty} \frac{q^{m_{1}(m_{1}-1)/2}\left(-q^{v+M}a_{1}\right)^{m_{1}}}{\left(q^{2\mu_{1}+1};q\right)_{m_{1}}\left(q;q\right)_{m_{1}}}\cdots \frac{q^{m_{n}(m_{n}-1)/2}\left(-q^{v+M}a_{n}\right)^{m_{n}}}{\left(q^{2\mu_{n}+1};q\right)_{m_{n}}\left(q;q\right)_{m_{n}}}$$

$$\times \frac{\left(q;q\right)_{\infty}}{\left(q^{v+M+m};q\right)_{\infty}}\frac{\left(-sq^{v+M+m};q\right)_{\infty}}{\left(-s;q\right)_{\infty}}\frac{\left(-q^{1-\left(v+M+m\right)}/s;q\right)_{\infty}}{\left(-q/s;q\right)_{\infty}},$$
(33)

where $m = m_1 + \cdots + m_n$. Setting A = s and t = v + M + m in (14), we get

$$K(1/s; v + M + m) = \left(\frac{1}{s}\right)^{v+M+m} \frac{s}{1+s} \frac{(-s;q)_{\infty}}{(-q^{v+M+m}s;q)_{\infty}} \frac{(-1/s;q)_{\infty}}{(-q^{1-(v+M+m)}/s;q)_{\infty}} \\ = \left(\frac{1}{s}\right)^{v+M+m} \frac{(-s;q)_{\infty}}{(-q^{v+M+m}s;q)_{\infty}} \frac{(-q/s;q)_{\infty}}{(-q^{1-(v+M+m)}/s;q)_{\infty}}.$$
(34)

Substituting relation (34) into (33), we obtain

$$\mathcal{L}_{q}\left\{f\left(t\right);s\right\} = \frac{\left(1-q\right)^{-2M}}{\Gamma_{q}\left(2\mu_{1}+1\right)\cdots\Gamma_{q}\left(2\mu_{n}+1\right)}a_{1}^{\mu_{1}}\cdots a_{n}^{\mu_{n}}\left(q^{v+M}\right)^{M}}$$

$$\times \sum_{m_{1},\cdots,m_{n}=0}^{\infty} \frac{q^{m_{1}(m_{1}-1)/2}\left(-q^{v+M}a_{1}\right)^{m_{1}}}{\left(q^{2\mu_{1}+1};q\right)_{m_{1}}\left(q;q\right)_{m_{1}}}\cdots \frac{q^{m_{n}(m_{n}-1)/2}\left(-q^{v+M}a_{n}\right)^{m_{n}}}{\left(q^{2\mu_{n}+1};q\right)_{m_{n}}\left(q;q\right)_{m_{n}}}$$

$$\times \frac{\left(q;q\right)_{\infty}}{\left(q^{v+M+m};q\right)_{\infty}}\frac{1}{K\left(1/s;v+M+m\right)}\cdot \frac{1}{s^{v+M+m}}.$$

Finally, on considering the following remarkable identity

$$\begin{split} \left(q^{t+m};q\right)_{\infty} &= \frac{(q^t;q)_{\infty}}{(q^t;q)_m} \qquad (m\in\mathbb{N}),\\ K\left(t;s\right) &= q^{s-1}K\left(t;s-1\right) \end{split}$$

we have

$$\mathcal{L}_{q}\left\{f\left(t\right);s\right\} = \frac{(1-q)^{\upsilon-M-1}}{\Gamma_{q}\left(2\mu_{1}+1\right)\cdots\Gamma_{q}\left(2\mu_{n}+1\right)K\left(1/s;\upsilon+M\right)s^{\upsilon+M}} \\ \times \sum_{m_{1},\cdots,m_{n}=0}^{\infty} \frac{\left(q^{\upsilon+M};q\right)_{m}}{\left(q^{2\mu_{1}+1};q\right)_{m_{1}}\cdots\left(q^{2\mu_{n}+1};q\right)_{m_{n}}}\cdots\frac{\left(-a_{1}/s\right)^{m_{1}}\ldots\left(-a_{n}/s\right)^{m_{n}}}{\left(q;q\right)_{m_{1}}\cdots\left(q;q\right)_{m_{n}}q^{m(m-1)/2}}.$$

Chis completes the proof.

This completes the proof.

5. Special Cases

In this section, we briefly consider some consequences and special cases of the results derived in the preceding sections. If we take n = 1, $\mu_1 = v$, $v = \mu$ and $a_1 = a$ in (32), we obtain

$$\mathcal{L}_{q}\left\{t^{\mu-1}q^{v}J_{2v}^{(3)}\left(\sqrt{q^{v+\mu-1}at};q\right);s\right\}$$

$$=\frac{(q^{\mu+v})^{v}\Gamma_{q}\left(\mu+v\right)(1-q)^{\mu-v-1}}{s^{v+\mu}\Gamma_{q}\left(2v+1\right)K\left(1/s;\mu+v\right)}a^{v}{}_{2}\Phi_{1}\left(\begin{array}{c}q^{\mu+v},0\\q^{2v+1}\end{array};q,-\frac{a}{s}\right)$$
(35)

where $\operatorname{Re}(\mu + v) > 0$ and $\operatorname{Re}(s) > 0$.

Again, if we write $\frac{v}{2} + 1$ and $\frac{v}{2}$ instead of μ and v in (35), respectively, we obtain $\frac{v/2}{2} - \frac{v-1}{2} \frac{v(v+1)/2}{2}$

$$\mathcal{L}_{q}\left\{\left(qt\right)^{\upsilon/2}J_{\upsilon}^{(3)}\left(\sqrt{q^{\upsilon}at};q\right);s\right\} = \frac{a^{\upsilon/2}s^{-\upsilon-1}q^{\upsilon(\upsilon+1)/2}}{K\left(1/s;\upsilon+1\right)} e_{q}\left(-a/s\right)$$
(36)

Now, setting v = 1 in (36) we obtain

$$\mathcal{L}_{q}\left\{ (qt)^{1/2} J_{1}^{(3)}\left(\sqrt{qat};q\right);s\right\} = a^{1/2}s^{-2}e_{q}\left(-a/s\right) \qquad (\operatorname{Re}\left(s\right)>0). \tag{37}$$

Similarly, if we set v = 0 in (36), then we have

$$\mathcal{L}_q\left\{J_0^{(3)}\left(\sqrt{at};q\right);s\right\} = s^{-1} e_q\left(-a/s\right) \qquad (\operatorname{Re}\left(s\right) > 0).$$
(38)

In (35) we write v = 0 and then a = 0, we find that

$$\mathcal{L}_{q}\left\{t^{\mu-1};s\right\} = \frac{\Gamma_{q}\left(\mu\right)\left(1-q\right)^{\mu-1}}{s^{\mu}}\frac{1}{K\left(1/s;\mu\right)}.$$
(39)

If we let $q \to 1^-$, and make use of the limit formulae

$$\lim_{q \to 1^{-}} \Gamma_{q}\left(t\right) = \Gamma\left(t\right), \qquad \lim_{q \to 1^{-}} K\left(A;t\right) = 1$$

and

$$\lim_{q \to 1^{-}} \frac{(q^{a};q)_{n}}{\left(1-q\right)^{n}} = (a)_{n}$$

where $(a)_n = a (a + 1) \dots (a + n - 1)$, we observe that the identity (28) of Theorem 3.3 and (25) of Corollary 3.3 provide, respectively, the *q*-extensions of the known related results due to Yürekli [14, p. 97, Theorem 1 and Corollary 1]. Also, the results (32), (35), (36), (37) and (38) provide, respectively, the *q*-extensions of the following known results given in Erdélyi, Magnus, Oberhettinger and Tricomi [1, pp. 182-187]:

$$L\left\{t^{\nu-1}J_{2\mu_{1}}\left(2\sqrt{a_{1}t}\right)J_{2\mu_{2}}\left(2\sqrt{a_{2}t}\right)\cdots J_{2\mu_{n}}\left(2\sqrt{a_{n}t}\right);s\right\}$$
$$=\frac{a_{1}^{\mu_{1}}\cdots a_{n}^{\mu_{n}}}{\Gamma\left(2\mu_{1}+1\right)\cdots\Gamma\left(2\mu_{n}+1\right)}\frac{\Gamma\left(\nu+M\right)}{s^{\nu+M}}\cdot$$
$$\times\Psi_{2}^{(n)}\left(\nu+M;2\mu_{1}+1,\cdots,2\mu_{n}+1;\frac{-a_{1}}{s},\cdots,\frac{-a_{n}}{s}\right)$$

where $M = \mu_1 + ... + \mu_n$, Re (s) > 0 and Re (v + M) > 0.

$$L\left\{t^{\mu-1}J_{2\upsilon}\left(2\sqrt{at}\right);s\right\} = \frac{\Gamma\left(\mu+\upsilon\right)a^{\upsilon}}{s^{\mu+\upsilon}\Gamma\left(2\upsilon+1\right)} {}_{1}F_{1}\left[\begin{array}{c}\mu+\upsilon;\\2\upsilon+1;\\-a/s\right],\\L\left\{t^{\upsilon/2}J_{\upsilon}\left(2\sqrt{at}\right);s\right\} = a^{\upsilon/2}s^{-\upsilon-1} e^{-a/s},$$

 $L\left\{t^{1/2}J_1\left(2\sqrt{at}\right);s\right\} = a^{1/2}s^{-2}e^{-a/s},$

and

$$L\left\{J_0\left(2\sqrt{at}\right);s\right\} = s^{-1}e^{-a/s},$$

where $\operatorname{Re}(s) > 0$ and $\operatorname{Re}(\mu + v) > 0$.

Acknowledgement. The authors are thankful to the referee for his/her valuable comments and suggestions which have helped in improvement of the paper. The authors also thanks to Professor M.E.H.Ismail for sharing his unpublished work.

References

- Erdélyi A., Magnus W., Oberhettinger F. and Tricomi F.G., Tables of Integral Transforms, Vol. I, McGraw-Hill Inc., New York, 1954.
- [2] Fitouhi A., Bettaibi N. and Brahim K., The Mellin transform in Quantum Calculus, Constr. Approx. 23(3) (2006) 305–323.
- [3] Gasper G. and Rahman M., Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
- [4] Hahn W., Beitrage zur theorie der heineschen reihen, die 24 integrale der hypergeometrischen q-diferenzengleichung, das q-analog on der Laplace transformation, Math. Nachr., 2 (1949), 340-379.
- [5] Ismail M.E.H., Some properties of Jackson's third q-Bessel function, preprint.
- [6] Jackson F. H., On q-definite Integrals, Quart. J. Pure and Appl. Math. 41 (1910), 193-203.
- [7] Kac V.G. and De Sole A., On integral representations of q-gamma and q-beta functions, Rend. Mat. Acc. Lincei 9 (2005), 11-29.
- [8] Koornwinder T. H., Special functions and q-commuting variables, in special functions, qseries and related topics (Toronto, ON, 1995), volume 14 of Fields Inst. Commun., pp. 131-166, Amer.Math.Soc., Providence, RI, 1997.
- [9] Koelink H.T. and Koornwinder T.H., Q-special functions, a tutorial, in deformation theory quantum groups with applications to mathematical physics, (amherst, MA, 1990) volume 134 of Contemp. math., pp. 141-142, Amer. Math. Soc., Providence, RI, 1992.
- [10] Purohit S.D. and Kalla S.L., On q-Laplace transforms of the q-Bessel functions, Fract. Calc. Appl. Anal., 10(2) (2007), 189-196.
- [11] Thomae J., Beitrage zur theorie der durch die heinesche reihe., J. Reine angew.Math, 70 (1869) 258-281.
- [12] Uçar F. and Albayrak D., On q-Laplace type integral operators and their Applications, J. Difference Equ. Appl. iFirst article, 2011, 1-14. doi: 10.1080/10236198.2010.540572
- [13] Widder D.V., A transform related to the Poisson integral for a half-plane, Duke Math. J. 33 (1966), 355-362.
- [14] Yürekli O., Theorems on L_2 -transforms and its applications, Complex Variables Theory Appl. **38** (1999), 95-107.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND LETTERS, MARMARA UNIVERSITY, TR-34722 KADIKÖY, ISTANBUL, TURKEY,

E-mail address: durmusalbayrak@marun.edu.tr, fucar@marmara.edu.tr

Department of Basic Science (Mathematics), College of Technology & Engineering, M.P. University of Agri. & Tech., Udaipur-313001, India,

E-mail address: sunil_a_purohit@yahoo.com