ON q-INTEGRAL TRANSFORMS AND THEIR APPLICATIONS

> (COMMUNICATED BY R.K. RAINA)

DURMUŞ ALBAYRAK, SUNIL DUTT PUROHIT AND FARUK UÇAR

Abstract

In this paper, we introduce a q-analogue of the \mathcal{P}-Widder transform and give a Parseval-Goldstein type theorem. Furthermore, we evaluate the q-Laplace transform of a product of q-Bessel functions. Several special cases of our results are also pointed out.

1. Introduction, Definitions and Preliminaries

In the classical analysis, a Parseval-Goldstein type theorem involving the Laplace transform, the Fourier transform, the Stieltjes transform, the Glasser transform, the Mellin transform, the Hankel transform, the Widder-Potential transform and their applications are used widely in several branches of Engineering and applied Mathematics. Some integral transforms in the classical analysis have their q-analogues in the theory of q-calculus. This has led various workers in the field of q-theory for extending all the important results involving the classical analysis to their q analouges. With this objective in mind, this paper introduces q-analogue of the \mathcal{P}-Widder potential transform and establishes certain interesting properties for this integral transform.

Throughout this paper, we will assume that q satisfies the condition $0<|q|<1$. The q-derivative $D_{q} f$ of an arbitrary function f is given by

$$
\left(D_{q} f\right)(x)=\frac{f(x)-f(q x)}{(1-q) x},
$$

where $x \neq 0$. Clearly, if f is differentiable, then

$$
\lim _{q \rightarrow 1^{-}}\left(D_{q} f\right)(x)=\frac{d f(x)}{d x}
$$

[^0]Before we continue, let us introduce some notation that is used in the remainder of the paper. For any real number α,

$$
[\alpha]:=\frac{q^{\alpha}-1}{q-1} .
$$

In particular, if $n \in \mathbb{Z}^{+}$, we denote

$$
[n]=\frac{q^{n}-1}{q-1}=q^{n-1}+\cdots+q+1
$$

Following usual notation are very useful in the theory of q-calculus:

$$
\begin{aligned}
& (a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right) \\
& (a ; q)_{t}=\frac{(a ; q)_{\infty}}{\left(a q^{t} ; q\right)_{\infty}}(t \in \mathbb{R}) .
\end{aligned}
$$

It is well known that in the literature there are two types of the q-Laplace transform and studied in details by many authors. Hahn [4] defined q-analogues of the wellknown classical Laplace transform

$$
\begin{equation*}
\phi(s)=\int_{0}^{\infty} \exp (-s t) f(t) d t \quad(\Re(s)>0) \tag{1}
\end{equation*}
$$

by means of the following q-integrals:

$$
\begin{equation*}
L_{q}\{f(t) ; s\}={ }_{q} L_{s}\{f(t)\}=\frac{1}{1-q} \int_{0}^{s^{-1}} E_{q}(q s t) f(t) d_{q} t \quad(\Re(s)>0) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}_{q}\{f(t) ; s\}={ }_{q} \mathcal{L}_{s}\{f(t)\}=\frac{1}{1-q} \int_{0}^{\infty} e_{q}(-s t) f(t) d_{q} t \quad(\Re(s)>0), \tag{3}
\end{equation*}
$$

where the q-analogues of the classical exponential functions are defined by

$$
\begin{equation*}
e_{q}(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{(q ; q)_{n}}=\frac{1}{(t ; q)_{\infty}} \quad(|t|<1) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{q}(t)=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n-1) / 2} t^{n}}{(q ; q)_{n}}=(t ; q)_{\infty} \quad(t \in \mathbb{C}) \tag{5}
\end{equation*}
$$

By virtue of the q-integral (see [6, 11, 3])

$$
\begin{equation*}
\int_{0}^{\infty} f(t) d_{q} t=(1-q) \sum_{k=-\infty}^{\infty} q^{k} f\left(q^{k}\right) \tag{6}
\end{equation*}
$$

the q-Laplace operator (3) can be expressed as

$$
\begin{equation*}
{ }_{q} \mathcal{L}_{s}\{f(t)\}=\frac{1}{(-s ; q)_{\infty}} \sum_{k \in \mathbb{Z}} q^{k}(-s ; q)_{k} f\left(q^{k}\right) \tag{7}
\end{equation*}
$$

Throughout this paper, we will use \mathcal{L}_{q} instead of ${ }_{q} \mathcal{L}_{s}$.
The improper integral (see [8] and [6]) is defined by

$$
\begin{equation*}
\int_{0}^{\infty / A} f(x) d_{q} x=(1-q) \sum_{k \in \mathbb{Z}} \frac{q^{k}}{A} f\left(\frac{q^{k}}{A}\right) \tag{8}
\end{equation*}
$$

The q-analogue of the integration theorem by a change of variable can be started when $u(x)=\alpha x^{\beta}, \alpha \in \mathbb{C}$ and $\beta>0$, as follows:

$$
\begin{equation*}
\int_{u(a)}^{u(b)} f(u) d_{q} u=\int_{a}^{b} f(u(x)) D_{q^{1 / \beta}} u(x) d_{q^{1 / \beta}} x . \tag{9}
\end{equation*}
$$

As a special cases of the formula (9), one has the following reciprocity relations:

$$
\begin{align*}
& \int_{0}^{A} f(x) d_{q} x=\int_{q / A}^{\infty / A} \frac{1}{x^{2}} f\left(\frac{1}{x}\right) d_{q} x \\
& \int_{0}^{\infty / A} f(x) d_{q} x=\int_{0}^{\infty \cdot A} \frac{1}{x^{2}} f\left(\frac{1}{x}\right) d_{q} x \tag{10}
\end{align*}
$$

Furthermore, the q-hypergeometric functions and well-known q-special functions are defined by (see [9] and [7]):

$$
\begin{aligned}
& { }_{r} \phi_{s}\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{r} \\
b_{1} & b_{2} & \cdots & b_{s}
\end{array} ; q, z\right]=\sum_{n=0}^{\infty} \frac{\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \cdots\left(a_{r} ; q\right)_{n}}{(q ; q)_{n}\left(b_{1} ; q\right)_{n} \cdots\left(b_{s} ; q\right)_{n}}\left[(-1)^{n} q^{\binom{n}{2}}\right]^{1+s-r} z^{n}, \\
& { }_{r} \psi_{s}\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{r} \\
b_{1} & b_{2} & \cdots & b_{s} ; q, z
\end{array}\right]=\sum_{n=-\infty}^{\infty} \frac{\left(a_{1} ; q\right)_{n} \cdots\left(a_{r} ; q\right)_{n}}{\left(b_{1} ; q\right)_{n} \cdots\left(b_{s} ; q\right)_{n}}\left[(-1)^{n} q^{\binom{n}{2}}\right]^{s-r} z^{n}
\end{aligned}
$$

and

$$
\begin{align*}
\Gamma_{q}(\alpha) & =\int_{0}^{1 /(1-q)} x^{\alpha-1} E_{q}(q(1-q) x) d_{q} x \quad(\alpha>0) \tag{11}\\
\Gamma_{q}(\alpha) & =K(A ; \alpha) \int_{0}^{\infty / A(1-q)} x^{\alpha-1} e_{q}(-(1-q) x) d_{q} x \quad(\alpha>0), \tag{12}\\
B_{q}(t ; s) & =\frac{\Gamma_{q}(t) \Gamma_{q}(s)}{\Gamma_{q}(t+s)} \quad(t, s \in \mathbb{R}) \tag{13}
\end{align*}
$$

where last two representations are based on the following remarkable function (see [7, p.15])

$$
\begin{equation*}
K(A ; t)=A^{t-1} \frac{(-q / A ; q)_{\infty}}{\left(-q^{t} / A ; q\right)_{\infty}} \frac{(-A ; q)_{\infty}}{\left(-A q^{1-t} ; q\right)_{\infty}} \quad(t \in \mathbb{R}) \tag{14}
\end{equation*}
$$

Recently Uçar and Albayrak [12] introduced q-analogues of the \mathcal{L}_{2}-transfom in terms of the following q-integrals:

$$
\begin{equation*}
{ }_{q} L_{2}\{f(t) ; s\}=\frac{1}{1-q^{2}} \int_{0}^{1 / s} t E_{q^{2}}\left(q^{2} s^{2} t^{2}\right) f(t) d_{q} t \quad(\Re(s)>0) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }_{q} \mathcal{L}_{2}\{f(t) ; s\}=\frac{1}{1-q^{2}} \int_{0}^{\infty} t e_{q^{2}}\left(-s^{2} t^{2}\right) f(t) d_{q} t \quad(\Re(s)>0) \tag{16}
\end{equation*}
$$

In the same article [12], the author established an interesting relation between ${ }_{q} \mathcal{L}_{2}$ and \mathcal{L}_{q} transforms, namely

$$
\begin{equation*}
{ }_{q} \mathcal{L}_{2}\{f(t) ; s\}=\frac{1}{[2]} \mathcal{L}_{q^{2}}\left\{f\left(t^{1 / 2}\right) ; s^{2}\right\} \tag{17}
\end{equation*}
$$

The paper is organized in the following manner. In the next two sections we introduce a q-analogue of the \mathcal{P}-Widder potential transform and establish a ParsevalGoldstein type theorem and its corollaries involving q-analogue of the \mathcal{P}-Widder and \mathcal{L}_{2}-Laplace transforms. Whereas in Section 4, we evaluate the q-Laplace transform of a product of basic analogue of the Bessel functions. Several special cases
and examples of our results are also pointed out in the concluding section.

2. q-Analogue of The \mathcal{P}-Widder Transform

Widder [13] has presented a theory of the integral transform

$$
\mathcal{P}\{f(x) ; y\}=\int_{0}^{\infty} \frac{x f(x)}{x^{2}+y^{2}} d x
$$

in the real domain which is formally equivalent to the iterated \mathcal{L}_{2} transform.
Definition [2] A function f is q-integrable on [0, ∞) if the series $\sum_{n \in \mathbb{Z}} q^{n} f\left(q^{n}\right)$ converges absolutely.

We write $L_{q}^{1}\left(\mathbb{R}_{q}\right)$ for the set of all functions that are absolutely q-integrable on $[0, \infty)$, where \mathbb{R}_{q} is the set

$$
\mathbb{R}_{q}=\left\{q^{n}: n \in \mathbb{Z}\right\}
$$

that is

$$
\begin{aligned}
L_{q}^{1}\left(\mathbb{R}_{q}\right) & :=\left\{f: \sum_{n \in \mathbb{Z}} q^{n}\left|f\left(q^{n}\right)\right|<\infty\right\} \\
& :=\left\{f: \frac{1}{1-q} \int_{0}^{\infty}|f(x)| d_{q} x<\infty\right\}
\end{aligned}
$$

Now we introduce the following q-integral transform, which may be regarded as q-extension of the \mathcal{P}-Widder potential transform.
Definition 2.1. A q-analogue of \mathcal{P}-Widder potential transform will be denoted \mathcal{P}_{q} and defined by the following q-integral:

$$
\begin{equation*}
\mathcal{P}_{q}\{f(x) ; s\}=\frac{1}{1-q^{2}} \int_{0}^{\infty} \frac{x}{s^{2}+q^{2} x^{2}} f(x) d_{q} x, \quad(\Re(s)>0) \tag{18}
\end{equation*}
$$

In view of (8), 18) can be expressed as

$$
\begin{equation*}
\mathcal{P}_{q}\{f(x) ; s\}=\frac{1}{1+q} \sum_{n \in \mathbb{Z}} \frac{q^{2 n}}{s^{2}+q^{2+2 n}} f\left(q^{n}\right) \tag{19}
\end{equation*}
$$

Now we prove the following theorem that provide the existence and convergence for the \mathcal{P}_{q}-transform:
Theorem 2.1. If $f \in L_{q}^{1}\left(\mathbb{R}_{q}\right)$, then the improper q-integral defined by 18) is well-defined.

Proof. From (19), we have

$$
\left|\mathcal{P}_{q}\{f(x) ; s\}\right| \leq \frac{1}{1+q} \sum_{n \in \mathbb{Z}}\left|\frac{q^{2 n}}{s^{2}+q^{2+2 n}}\right|\left|f\left(q^{n}\right)\right|
$$

Since $\left\{\frac{q^{n}}{s^{2}+q^{2+2 n}}: n \in \mathbb{Z}\right\}$ is bounded, then there exists a $K \in \mathbb{R}^{+}$such that $\left|\frac{q^{n}}{s^{2}+q^{2+2 n}}\right|<K$. Thus, we have

$$
\left|\mathcal{P}_{q}\{f(x) ; s\}\right| \leq \frac{K}{1+q} \sum_{n \in \mathbb{Z}} q^{n}\left|f\left(q^{n}\right)\right|
$$

On the other hand, since $f \in L_{q}^{1}\left(\mathbb{R}_{q}\right)$, there is a $M \in \mathbb{R}^{+}$such that

$$
\frac{1}{(1-q)} \int_{0}^{\infty}|f(x)| d_{q} x=\sum_{n \in \mathbb{Z}} q^{n}\left|f\left(q^{n}\right)\right|=M<\infty
$$

Hence we have

$$
\left|\mathcal{P}_{q}\{f(x) ; s\}\right| \leq \frac{M K}{1+q}<\infty
$$

This completes to proof.

3. Main Theorems and Applications

Proposition 3.1. For $A, t \in \mathbb{R}$, we have

$$
\lim _{q \rightarrow 1^{-}} K(A ; t)=1
$$

Proof. Multiplying numerator and denominator of $K(A ; t)$ by $(1+1 / A)$, we get

$$
\begin{aligned}
K(A ; t) & =A^{t-1} \frac{(1+1 / A)(-q / A ; q)_{\infty}}{(1+1 / A)\left(-q^{t} / A ; q\right)_{\infty}} \frac{(-A ; q)_{\infty}}{\left(-q^{1-t} A ; q\right)_{\infty}} \\
& =A^{t} \frac{(-1 / A ; q)_{\infty}}{\left(-q^{t} / A ; q\right)_{\infty}} \frac{(-q A ; q)_{\infty}}{\left(-q^{1-t} A ; q\right)_{\infty}}
\end{aligned}
$$

and then using the formula as $q \rightarrow 1^{-}$(see [3, p. 9, 1.3.18])

$$
\frac{\left(a q^{t} ; q\right)_{\infty}}{(a ; q)_{\infty}}={ }_{1} \phi_{0}\left(q^{t} ;-; q, a\right) \rightarrow{ }_{1} F_{0}(t ;-; a)=(1-a)^{-t},|a|<1, t \text { real }
$$

into last expression, we obtain

$$
\begin{aligned}
\lim _{q \rightarrow 1^{-}} K(A ; t) & =\lim _{q \rightarrow 1^{-}} A^{t} \frac{(-1 / A ; q)_{\infty}}{\left(-q^{t} / A ; q\right)_{\infty}} \frac{(-q A ; q)_{\infty}}{\left(-q^{1-t} A ; q\right)_{\infty}} \\
& =\lim _{q \rightarrow 1^{-}} A^{t} \frac{1}{{ }_{1} \phi_{0}\left(q^{t} ;-; q,-1 / A\right)} \frac{1}{{ }_{1} \phi_{0}\left(q^{-t} ;-; q,-q A\right)} \\
& =A^{t}\left(1+\frac{1}{A}\right)^{t}(1+A)^{-t} \\
& =1 .
\end{aligned}
$$

This completes to proof.
Theorem 3.1. The \mathcal{P}_{q}-Widder transform can be regarded as iterated ${ }_{q} \mathcal{L}_{2}$-Laplace transforms as under:

$$
\begin{equation*}
{ }_{q} \mathcal{L}_{2}\left\{{ }_{q} \mathcal{L}_{2}\{f(x) ; s\} ; t\right\}=\frac{1}{[2]} \mathcal{P}_{q}\{f(x) ; t\} \tag{20}
\end{equation*}
$$

provided that the q-integrals involved converge absolutely.
Proof. On using the definition of the ${ }_{q} \mathcal{L}_{2}$-Laplace transform 16 the left-hand side of (20) (say I) reduces to

$$
\begin{equation*}
I=\frac{1}{\left(1-q^{2}\right)^{2}} \int_{0}^{\infty} s e_{q^{2}}\left(-t^{2} s^{2}\right)\left(\int_{0}^{\infty} x e_{q^{2}}\left(-s^{2} x^{2}\right) f(x) d_{q} x\right) d_{q} s \tag{21}
\end{equation*}
$$

Interchanging the order of the q-integration in 21, which is permissible by the absolute convergence of q-integrals, we obtain

$$
I=\frac{1}{\left(1-q^{2}\right)^{2}} \int_{0}^{\infty} x f(x)\left(\int_{0}^{\infty} s e_{q^{2}}\left(-\left(t^{2}+q^{2} x^{2}\right) s^{2}\right) d_{q} s\right) d_{q} x
$$

In view of the definition 16 , we obtain

$$
I=\frac{1}{1-q^{2}} \int_{0}^{\infty}{ }_{q} \mathcal{L}_{2}\left\{1 ;\left(t^{2}+q^{2} x^{2}\right)^{1 / 2}\right\} x f(x) d_{q} x
$$

On setting $f(x)=1$ and $s=\left(t^{2}+q^{2} x^{2}\right)^{1 / 2}$ in 17 and then using the formula $\mathcal{L}_{q^{2}}\left\{1 ; s^{2}\right\}=\frac{1}{s^{2}}$, we get the desired result

$$
\begin{aligned}
I & =\frac{1}{[2]} \frac{1}{1-q^{2}} \int_{0}^{\infty} \frac{x f(x)}{t^{2}+q^{2} x^{2}} d_{q} x \\
& =\frac{1}{[2]} \mathcal{P}_{q}\{f(x) ; t\}
\end{aligned}
$$

Corollary 3.1. If $-2<\alpha<0$ then the following formula holds:

$$
\begin{equation*}
\mathcal{P}_{q}\left\{x^{\alpha} ; t\right\}=\frac{1}{[2]} \frac{1}{1-q^{2}} \frac{B_{q^{2}}(1+\alpha / 2 ;-\alpha / 2)}{K(1 ; 1+\alpha / 2) K\left(1 / t^{2} ;-\alpha / 2\right)} t^{\alpha} \tag{22}
\end{equation*}
$$

where $K(A ; t)$ is given by 14).
Proof. On setting $f(x)=x^{\alpha}$ and make use of the known result due to Uçar and Albayrak [12], namely

$$
{ }_{q} \mathcal{L}_{2}\left\{x^{\alpha} ; s\right\}=\frac{1}{[2]} \frac{\Gamma_{q^{2}}(1+\alpha / 2)}{K\left(1 / s^{2} ; 1+\alpha / 2\right)} \frac{\left(1-q^{2}\right)^{\alpha / 2}}{s^{\alpha+2}}(-2<\alpha<0)
$$

the identity 20 of Theorem 3.1 give rise to

$$
\begin{aligned}
\mathcal{P}_{q}\left\{x^{\alpha} ; t\right\} & =[2]\left\{{ }_{q} \mathcal{L}_{2}\left\{\frac{1}{[2]} \frac{\Gamma_{q^{2}}(1+\alpha / 2)}{K\left(1 / s^{2} ; 1+\alpha / 2\right)} \frac{\left(1-q^{2}\right)^{\alpha / 2}}{s^{\alpha+2}} ; t\right\}\right\} \\
& =\Gamma_{q^{2}}(1+\alpha / 2)\left(1-q^{2}\right)^{\alpha / 2}{ }_{q} \mathcal{L}_{2}\left\{\frac{s^{-\alpha-2}}{K\left(1 / s^{2} ; 1+\alpha / 2\right)} ; t\right\} .
\end{aligned}
$$

Using the series representation of the ${ }_{q} \mathcal{L}_{2}$-transform, we obtain
$\mathcal{P}_{q}\left\{x^{\alpha} ; t\right\}=\Gamma_{q^{2}}(1+\alpha / 2)\left(1-q^{2}\right)^{\alpha / 2} \frac{1}{[2]} \frac{1}{\left(-t^{2} ; q^{2}\right)_{\infty}} \sum_{n \in \mathbb{Z}} \frac{q^{2 n}\left(q^{n}\right)^{-\alpha-2}\left(-t^{2} ; q^{2}\right)_{n}}{K\left(1 / q^{2 n} ; 1+\alpha / 2\right)}$.
Following Kac and Sole [7] the function of $x, K(x ; t)$ is a q-constant, that is, $K\left(q^{n} x ; t\right)=K(x ; t)$ for every integer n. Hence
$\mathcal{P}_{q}\left\{x^{\alpha} ; t\right\}=\frac{\Gamma_{q^{2}}(1+\alpha / 2)\left(1-q^{2}\right)^{\alpha / 2}}{K(1 ; 1+\alpha / 2)} \frac{1}{[2]} \frac{1}{\left(-t^{2} ; q^{2}\right)_{\infty}} \sum_{n \in \mathbb{Z}} q^{2 n}\left(q^{n}\right)^{-\alpha-2}\left(-t^{2} ; q^{2}\right)_{n}$.

Again, on using the series representation of the ${ }_{q} \mathcal{L}_{2}$-transform, we get

$$
\begin{aligned}
\mathcal{P}_{q}\left\{x^{\alpha} ; t\right\} & =\frac{\Gamma_{q^{2}}(1+\alpha / 2)\left(1-q^{2}\right)^{\alpha / 2}}{K(1 ; 1+\alpha / 2)}{ }_{q} \mathcal{L}_{2}\left\{s^{-\alpha-2} ; t\right\} \\
& =\frac{\Gamma_{q^{2}}(1+\alpha / 2)\left(1-q^{2}\right)^{\alpha / 2}}{K(1 ; 1+\alpha / 2)} \frac{1}{[2]} \frac{\Gamma_{q^{2}}(-\alpha / 2)\left(1-q^{2}\right)^{-\alpha / 2-1}}{K\left(1 / t^{2} ;-\alpha / 2\right) t^{-\alpha}} \\
& =\frac{1}{[2]} \frac{1}{1-q^{2}} \frac{\Gamma_{q^{2}}(1+\alpha / 2)}{K(1 ; 1+\alpha / 2)} \frac{\Gamma_{q^{2}}(-\alpha / 2)}{K\left(1 / t^{2} ;-\alpha / 2\right)} t^{\alpha} \\
& =\frac{1}{[2]} \frac{1}{1-q^{2}} \frac{B_{q^{2}}(1+\alpha / 2 ;-\alpha / 2)}{K(1 ; 1+\alpha / 2) K\left(1 / t^{2} ;-\alpha / 2\right)} t^{\alpha} .
\end{aligned}
$$

In the following theorem, we establish a Parseval-Goldstein type theorem that involving q-analogue of the \mathcal{P}-Widder and \mathcal{L}_{2}-Laplace transforms:

Theorem 3.2. If \mathcal{P}_{q} and ${ }_{q} \mathcal{L}_{2}$ denote q-analogues of the \mathcal{P}-Widder and \mathcal{L}_{2}-Laplace transforms, then the following result holds true:

$$
\begin{equation*}
\int_{0}^{\infty} x{ }_{q} \mathcal{L}_{2}\{f(y) ; x\}{ }_{q} \mathcal{L}_{2}\{g(z) ; x\} d_{q} x=\frac{1}{[2]} \int_{0}^{\infty} y f(y) \mathcal{P}_{q}\{g(z) ; q y\} d_{q} y \tag{23}
\end{equation*}
$$

provided that the q-integrals involved converge absolutely.
Proof. Using the definition of the ${ }_{q} \mathcal{L}_{2}$-transform (16), the left-hand side of 23) (say J) yields to

$$
J=\frac{1}{1-q^{2}} \int_{0}^{\infty} x{ }_{q} \mathcal{L}_{2}\{g(z) ; x\}\left\{\int_{0}^{\infty} y e_{q^{2}}\left(-x^{2} y^{2}\right) f(y) d_{q} y\right\} d_{q} x
$$

Changing the order of the q-integration, which is permissible by the hypothesis, we find that

$$
J=\frac{1}{1-q^{2}} \int_{0}^{\infty} y f(y)\left\{\int_{0}^{\infty} x e_{q^{2}}\left(-q^{2} y^{2} x^{2}\right){ }_{q} \mathcal{L}_{2}\{g(z) ; x\} d_{q} x\right\} d_{q} y
$$

In view of the definition (16) and the result (20) of Theorem 3.1, the above relation reduces to the desired right-hand side of (23).

Corollary 3.2. We have

$$
\begin{equation*}
\int_{0}^{\infty} x h(x){ }_{q} \mathcal{L}_{2}\{f(y) ; x\} d_{q} x=\int_{0}^{\infty} y f(y){ }_{q} \mathcal{L}_{2}\{h(x) ; q y\} d_{q} y \tag{24}
\end{equation*}
$$

provided that the q-integrals involved converge absolutely.
Proof. The identity (24) follows immediately after letting $h(x)={ }_{q} \mathcal{L}_{2}\{g(z) ; x\}$ in the relation 23 .

Corollary 3.3. With due regards to convergence, we have

$$
\begin{equation*}
q^{2} \mathcal{P}_{q}\left\{{ }_{q} \mathcal{L}_{2}\{g(u) ; x\} ; q^{2} z\right\}={ }_{q} \mathcal{L}_{2}\left\{\mathcal{P}_{q}\{g(u) ; q y\} ; q z\right\} . \tag{25}
\end{equation*}
$$

Proof. To prove 25 , we set $f(y)=e_{q^{2}}\left(-y^{2} z^{2}\right)$, then we get

$$
\begin{align*}
{ }_{q} \mathcal{L}_{2}\{f(y) ; x\} & =\frac{1}{1-q^{2}} \int_{0}^{\infty} y e_{q^{2}}\left(-x^{2} y^{2}\right) e_{q^{2}}\left(-q^{2} z^{2} y^{2}\right) d_{q} y \\
& =\frac{1}{[2]} \frac{1}{x^{2}+q^{2} z^{2}} \tag{26}
\end{align*}
$$

Substituting 26 into the identity 23 of Theorem 3.2, we obtain

$$
\begin{aligned}
\int_{0}^{\infty} \frac{x}{x^{2}+q^{2} z^{2}}{ }_{q} \mathcal{L}_{2}\{g(u) ; x\} d_{q} x & =\int_{0}^{\infty} y e_{q^{2}}\left(-q^{2} z^{2} y^{2}\right) \mathcal{P}_{q}\{g(u) ; q y\} d_{q} y \\
q^{2} \mathcal{P}_{q}\left\{{ }_{q} \mathcal{L}_{2}\{g(u) ; x\} ; q^{2} z\right\} & ={ }_{q} \mathcal{L}_{2}\left\{\mathcal{P}_{q}\{g(u) ; q y\} ; q z\right\}
\end{aligned}
$$

Similarly, if we set $f(y)=E_{1 / q^{2}}\left(-\frac{y^{2} z^{2}}{q^{2}}\right)$ in Theorem 3.2 and using the wellknown q-exponential identity $e_{q^{2}}\left(q^{2} x\right)=E_{1 / q^{2}}(x)$ we find that

$$
\begin{equation*}
{ }_{q} \mathcal{L}_{2}\left\{E_{1 / q^{2}}\left(-\frac{y^{2} z^{2}}{q^{2}}\right) ; x\right\}={ }_{q} \mathcal{L}_{2}\left\{e_{q^{2}}\left(-q^{2} z^{2} y^{2}\right) ; x\right\}=\frac{1}{[2]} \frac{1}{x^{2}+q^{2} z^{2}} \tag{27}
\end{equation*}
$$

Substituting (27) into (23) we obtain

$$
\int_{0}^{\infty} \frac{x}{x^{2}+q^{2} z^{2}}{ }_{q} \mathcal{L}_{2}\{g(u) ; x\} d_{q} x=\int_{0}^{\infty} y E_{1 / q^{2}}\left(-z^{2} y^{2}\right) \mathcal{P}_{q}\{g(u) ; q y\} d_{q} y
$$

and finally we have

$$
\begin{aligned}
q^{2} \mathcal{P}_{q}\left\{{ }_{q} \mathcal{L}_{2}\{g(u) ; x\} ; q^{2} z\right\} & =\int_{0}^{\infty} y e_{q^{2}}\left(-q^{2} z^{2} y^{2}\right) \mathcal{P}_{q}\{g(u) ; q y\} d_{q} y \\
& ={ }_{q} \mathcal{L}_{2}\left\{\mathcal{P}_{q}\{g(u) ; q y\} ; q z\right\}
\end{aligned}
$$

Theorem 3.3. We have

$$
\begin{gather*}
\int_{0}^{\infty} x_{q} \mathcal{L}_{2}\left\{h(y) ;\left(x^{2}+q^{2} z^{2}\right)^{1 / 2}\right\}{ }_{q} \mathcal{L}_{2}\{g(z) ; x\} d_{q} x \\
=\frac{1-q^{2}}{[2]}{ }_{q} \mathcal{L}_{2}\left\{h(y) \mathcal{P}_{q}\{g(z) ; q y\} ; q z\right\} \tag{28}
\end{gather*}
$$

provided that the q-integrals involved converge absolutely.
Proof. Let $f(y)=e_{q^{2}}\left(-y^{2} z^{2}\right) h(y)$. Using the definition of the ${ }_{q} \mathcal{L}_{2}$-transform we obtain

$$
\begin{align*}
{ }_{q} \mathcal{L}_{2}\left\{e_{q^{2}}\left(-y^{2} z^{2}\right) h(y) ; x\right\} & =\frac{1}{1-q^{2}} \int_{0}^{\infty} y e_{q^{2}}\left(-\left(x^{2}+q^{2} z^{2}\right) y^{2}\right) h(y) d_{q} y \\
& ={ }_{q} \mathcal{L}_{2}\left\{h(y) ;\left(x^{2}+q^{2} z^{2}\right)^{1 / 2}\right\} \tag{29}
\end{align*}
$$

Substituting 29 into 23 , we find that

$$
\begin{aligned}
& \int_{0}^{\infty} x_{{ }_{q}} \mathcal{L}_{2}\left\{h(y) ;\left(x^{2}+q^{2} z^{2}\right)^{1 / 2}\right\}{ }_{q} \mathcal{L}_{2}\{g(z) ; x\} d_{q} x \\
& =\frac{1}{[2]} \int_{0}^{\infty} y_{q^{2}}\left(-q^{2} z^{2} y^{2}\right) h(y) \mathcal{P}_{q}\{g(z) ; q y\} d_{q} y \\
& =\frac{1-q^{2}}{[2]}{ }_{q} \mathcal{L}_{2}\left\{h(y) \mathcal{P}_{q}\{g(z) ; q y\} ; q z\right\}
\end{aligned}
$$

It is interesting to observe that, if we set $h(y)=1$ and make use of the Theorem 3.3 , one can easily deduced Corollary 3.3.

Corollary 3.4. The following result holds true:

$$
\begin{equation*}
{ }_{q} \mathcal{L}_{2}\left\{\frac{1}{s^{2}}{ }_{q} \mathcal{L}_{2}\left\{f(x) ; \frac{1}{s}\right\} ; t\right\}=\frac{1}{[2]} \mathcal{P}_{q}\{f(x) ; t\} \tag{30}
\end{equation*}
$$

provided that the q-integrals involved converge absolutely.
Proof. In view of the definition of the ${ }_{q} \mathcal{L}_{2}$-transform, the left-hand side of 30) (say $L)$ yields to

$$
\begin{aligned}
L & =\frac{1}{1-q^{2}} \int_{0}^{\infty} \frac{1}{s} e_{q^{2}}\left(-t^{2} \frac{1}{s^{2}}\right) \frac{1}{s^{2}}{ }_{q} \mathcal{L}_{2}\left\{f(x) ; \frac{1}{s}\right\} d_{q} s \\
& =\frac{1}{\left(1-q^{2}\right)^{2}} \int_{0}^{\infty} \frac{1}{s^{3}} e_{q^{2}}\left(-t^{2} \frac{1}{s^{2}}\right)\left(\int_{0}^{\infty} x e_{q^{2}}\left(-\frac{1}{s^{2}} x^{2}\right) f(x) d_{q} x\right) d_{q} s \\
& =\frac{1}{\left(1-q^{2}\right)^{2}} \int_{0}^{\infty} x f(x)\left(\int_{0}^{\infty} \frac{1}{s^{3}} e_{q^{2}}\left(-t^{2} \frac{1}{s^{2}}\right) e_{q^{2}}\left(-\frac{1}{s^{2}} x^{2}\right) d_{q} s\right) d_{q} x
\end{aligned}
$$

On making use of the identity 10 into the right-hand side, we obtain

$$
\begin{aligned}
L & =\frac{1}{\left(1-q^{2}\right)^{2}} \int_{0}^{\infty} x f(x)\left(\int_{0}^{\infty} s e_{q^{2}}\left(-\left(t^{2}+q^{2} x^{2}\right) s^{2}\right) d_{q} s\right) d_{q} x \\
& =\frac{1}{1-q^{2}} \int_{0}^{\infty} x f(x){ }_{q} \mathcal{L}_{2}\left\{1 ;\left(t^{2}+q^{2} x^{2}\right)^{1 / 2}\right\} d_{q} x \\
& =\frac{1}{[2]} \frac{1}{1-q^{2}} \int_{0}^{\infty} \frac{x f(x)}{t^{2}+q^{2} x^{2}} d_{q} x \\
& =\frac{1}{[2]} \mathcal{P}_{q}\{f(x) ; t\} .
\end{aligned}
$$

4. q-Laplace Image of a Product of q-Bessel functions

Recently, Purohit and Kalla [10] evaluated the q-Laplace image under the L_{q} operator (2) for a product of basic analogue of the Bessel functions. In this section, we propose to add one more dimension to this study by introducing a theorem which give rise to q-Laplace image under the \mathcal{L}_{q} operator (3) for a product of q Bessel functions. The third q-Bessel function is defined by Jackson and in some literature it is called Hahn-Exton q-Bessel function. For further details see [5.

$$
\begin{align*}
J_{\nu}^{(3)}(t ; q) & =\frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} t^{\nu}{ }_{1} \Phi_{1}\left[\begin{array}{c}
0 \\
q^{\nu+1} ; q, q t^{2}
\end{array}\right] \tag{31}\\
& =t^{\nu} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n-1) / 2}\left(q t^{2}\right)^{n}}{(q ; q)_{\nu+n}(q ; q)_{n}}
\end{align*}
$$

Theorem 4.1. Let $J_{2 \mu_{j}}^{(3)}\left(\sqrt{a_{j} t} ; q\right), j=1,2, \ldots, n$ be n different q-Bessel functions. Then, q-Laplace transform of their product is as follow

$$
\begin{align*}
& \mathcal{L}_{q}\{f(t) ; s\}=\frac{(1-q)^{v-M-1} \Gamma_{q}(v+M)}{\Gamma_{q}\left(2 \mu_{1}+1\right) \ldots \Gamma_{q}\left(2 \mu_{n}+1\right)} \frac{a_{1}^{\mu_{1}} \ldots a_{n}^{\mu_{n}} s^{-v-M}}{K(1 / s ; v+M)} \tag{32}\\
& \sum_{m_{1}, \ldots, m_{n}=0}^{\infty} \frac{\left(q^{v+M} ; q\right)_{m}}{\left(q^{2 \mu_{1}+1} ; q\right)_{m_{1}} \ldots\left(q^{2 \mu_{n}+1} ; q\right)_{m_{n}}} \ldots \frac{\left(-a_{1} / s\right)^{m_{1}} \ldots\left(-a_{n} / s\right)^{m_{n}}}{(q ; q)_{m_{1}} \cdots(q ; q)_{m_{n}} q^{m(m-1) / 2}}
\end{align*}
$$

where $f(t)=t^{v-1} q^{\mu_{1}} J_{2 \mu_{1}}^{(3)}\left(\sqrt{q^{v+M-1} a_{1} t} ; q\right) \cdots q^{\mu_{n}} J_{2 \mu_{n}}^{(3)}\left(\sqrt{q^{v+M-1} a_{n} t} ; q\right), M=$ $\mu_{1}+\cdots+\mu_{n}, \operatorname{Re}(s)>0, \operatorname{Re}(v+M)>0$.

Proof. To prove the above theorem we put

$$
\begin{gathered}
f(t)=t^{v-1} q^{\mu_{1}} J_{2 \mu_{1}}^{(3)}\left(\sqrt{q^{v+M-1} a_{1} t} ; q\right) \cdots q^{\mu_{n}} J_{2 \mu_{n}}^{(3)}\left(\sqrt{q^{v+M-1} a_{n} t} ; q\right) \\
M=\mu_{1}+\cdots+\mu_{n}
\end{gathered}
$$

into (7) and make use of (31), to obtain

$$
\begin{aligned}
& \mathcal{L}_{q}\{f(t) ; s\}=\frac{1}{(-s ; q)_{\infty}} \sum_{j \in \mathbb{Z}} q^{j}(-s ; q)_{j}\left(q^{j}\right)^{v-1} \\
& \times\left\{\frac{\left(q^{2 \mu_{1}+1} ; q\right)_{\infty}}{(q ; q)_{\infty}}\left(q^{v+M} a_{1} q^{j}\right)^{\mu_{1}} \cdots \frac{\left(q^{2 \mu_{n}+1} ; q\right)_{\infty}}{(q ; q)_{\infty}}\left(q^{v+M} a_{n} q^{j}\right)^{\mu_{n}}\right\} \\
& \times \sum_{m_{1}, \cdots, m_{n}=0}^{\infty} \frac{q^{m_{1}\left(m_{1}-1\right) / 2}\left(-q^{v+M} a_{1} q^{j}\right)^{m_{1}}}{\left(q^{2 \mu_{1}+1} ; q\right)_{m_{1}}(q ; q)_{m_{1}}} \cdots \frac{q^{m_{n}\left(m_{n}-1\right) / 2}\left(-q^{v+M} a_{n} q^{j}\right)^{m_{n}}}{\left(q^{2 \mu_{n}+1} ; q\right)_{m_{n}}(q ; q)_{m_{n}}} .
\end{aligned}
$$

On interchanging the order of summations, which is valid under the conditions given with theorem, we obtain

$$
\begin{aligned}
& \mathcal{L}_{q}\{f(t) ; s\}= \frac{1}{(-s ; q)_{\infty}} \frac{\left(q^{2 \mu_{1}+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} \cdots \frac{\left(q^{2 \mu_{n}+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} a_{1}^{\mu_{1}} \cdots a_{n}^{\mu_{n}}\left(q^{v+M}\right)^{M} \\
&\left.\times \sum_{m_{1}, \cdots, m_{n}=0}^{\infty} \frac{q^{m_{1}\left(m_{1}-1\right) / 2}\left(-q^{v+M} a_{1}\right)^{m_{1}}}{\left(q^{2 \mu_{1}+1}\right.} \cdots q\right)_{m_{1}}(q ; q)_{m_{1}} q^{m_{n}\left(m_{n}-1\right) / 2}\left(-q^{v+M} a_{n}\right)^{m_{n}} \\
&\left(q^{2 \mu_{n}+1} ; q\right)_{m_{n}}(q ; q)_{m_{n}}
\end{aligned},
$$

By using the well-known q-gamma function

$$
\Gamma_{q}(t)=\frac{(q ; q)_{\infty}}{\left(q^{t} ; q\right)_{\infty}(1-q)^{t-1}}
$$

and then summing the inner series with the help of the bilateral summation formula (see [3, p. 126, 5.2.1]), namely

$$
{ }_{1} \psi_{1}(b ; c ; q, z)=\sum_{n \in \mathbb{Z}} \frac{(b ; q)_{n}}{(c ; q)_{n}} z^{n}=\frac{(q, c / b, b z, q / b z ; q)_{\infty}}{(c, q / b, z, c / b z ; q)_{\infty}}(|c / b|<|z|<1)
$$

we have

$$
\begin{aligned}
\mathcal{L}_{q}\{f(t) ; s\} & =\frac{1}{(-s ; q)_{\infty}} \frac{(1-q)^{-2 M}}{\Gamma_{q}\left(2 \mu_{1}+1\right) \cdots \Gamma_{q}\left(2 \mu_{n}+1\right)} a_{1}^{\mu_{1}} \cdots a_{n}^{\mu_{n}} \\
& \times \sum_{m_{1}, \cdots, m_{n}=0}^{\infty} \frac{\left(-a_{1}\right)^{m_{1}}}{\left(q^{2 \mu_{1}+1} ; q\right)_{m_{1}}(q ; q)_{m_{1}}} \cdots \frac{\left(-a_{n}\right)^{m_{n}}}{\left(q^{2 \mu_{n}+1} ; q\right)_{m_{n}}(q ; q)_{m_{n}}} \\
& \times \frac{\left(q, 0,-s q^{v+M+m_{1}+\cdots+m_{n}},-q^{1-\left(v+M+m_{1}+\cdots+m_{n}\right)} / s ; q\right)_{\infty}}{\left(0,-q / s, q^{v+M+m_{1}+\cdots+m_{n}}, 0 ; q\right)_{\infty}}
\end{aligned}
$$

We may rewrite this series

$$
\begin{gather*}
\mathcal{L}_{q}\{f(t) ; s\}=\frac{(1-q)^{-2 M}}{\Gamma_{q}\left(2 \mu_{1}+1\right) \cdots \Gamma_{q}\left(2 \mu_{n}+1\right)} a_{1}^{\mu_{1}} \cdots a_{n}^{\mu_{n}}\left(q^{v+M}\right)^{M} \\
\times \sum_{m_{1}, \cdots, m_{n}=0}^{\infty} \frac{q^{m_{1}\left(m_{1}-1\right) / 2}\left(-q^{v+M} a_{1}\right)^{m_{1}}}{\left(q^{2 \mu_{1}+1} ; q\right)_{m_{1}}(q ; q)_{m_{1}}} \cdots \frac{q^{m_{n}\left(m_{n}-1\right) / 2}\left(-q^{v+M} a_{n}\right)^{m_{n}}}{\left(q^{2 \mu_{n}+1} ; q\right)_{m_{n}}(q ; q)_{m_{n}}} \\
\quad \times \frac{(q ; q)_{\infty}}{\left(q^{v+M+m} ; q\right)_{\infty}} \frac{\left(-s q^{v+M+m} ; q\right)_{\infty}}{(-s ; q)_{\infty}} \frac{\left(-q^{1-(v+M+m)} / s ; q\right)_{\infty}}{(-q / s ; q)_{\infty}} \tag{33}
\end{gather*}
$$

where $m=m_{1}+\cdots+m_{n}$. Setting $A=s$ and $t=v+M+m$ in 14, we get

$$
\begin{align*}
K(1 / s ; v+M+m) & =\left(\frac{1}{s}\right)^{v+M+m} \frac{s}{1+s} \frac{(-s ; q)_{\infty}}{\left(-q^{v+M+m} s ; q\right)_{\infty}} \frac{(-1 / s ; q)_{\infty}}{\left(-q^{1-(v+M+m)} / s ; q\right)_{\infty}} \\
& =\left(\frac{1}{s}\right)^{v+M+m} \frac{(-s ; q)_{\infty}}{\left(-q^{v+M+m} s ; q\right)_{\infty}} \frac{(-q / s ; q)_{\infty}}{\left(-q^{1-(v+M+m)} / s ; q\right)_{\infty}} \tag{34}
\end{align*}
$$

Substituting relation (34) into (33), we obtain

$$
\begin{gathered}
\mathcal{L}_{q}\{f(t) ; s\}=\frac{(1-q)^{-2 M}}{\Gamma_{q}\left(2 \mu_{1}+1\right) \cdots \Gamma_{q}\left(2 \mu_{n}+1\right)} a_{1}^{\mu_{1}} \cdots a_{n}^{\mu_{n}}\left(q^{v+M}\right)^{M} \\
\times \sum_{m_{1}, \cdots, m_{n}=0}^{\infty} \frac{q^{m_{1}\left(m_{1}-1\right) / 2}\left(-q^{v+M} a_{1}\right)^{m_{1}}}{\left(q^{2 \mu_{1}+1} ; q\right)_{m_{1}}(q ; q)_{m_{1}}} \cdots \frac{q^{m_{n}\left(m_{n}-1\right) / 2}\left(-q^{v+M} a_{n}\right)^{m_{n}}}{\left(q^{2 \mu_{n}+1} ; q\right)_{m_{n}}(q ; q)_{m_{n}}} \\
\times \frac{(q ; q)_{\infty}}{\left(q^{v+M+m} ; q\right)_{\infty}} \frac{1}{K(1 / s ; v+M+m)} \cdot \frac{1}{s^{v+M+m}} .
\end{gathered}
$$

Finally, on considering the following remarkable identity

$$
\begin{aligned}
\left(q^{t+m} ; q\right)_{\infty} & =\frac{\left(q^{t} ; q\right)_{\infty}}{\left(q^{t} ; q\right)_{m}} \quad(m \in \mathbb{N}) \\
K(t ; s) & =q^{s-1} K(t ; s-1)
\end{aligned}
$$

we have

$$
\begin{gathered}
\mathcal{L}_{q}\{f(t) ; s\}=\frac{(1-q)^{v-M-1} a_{1}^{\mu_{1}} \cdots a_{n}^{\mu_{n}} \Gamma_{q}(v+M)}{\Gamma_{q}\left(2 \mu_{1}+1\right) \cdots \Gamma_{q}\left(2 \mu_{n}+1\right) K(1 / s ; v+M) s^{v+M}} \\
\times \sum_{m_{1}, \cdots, m_{n}=0}^{\infty} \frac{\left(q^{v+M} ; q\right)_{m}}{\left(q^{2 \mu_{1}+1} ; q\right)_{m_{1}} \cdots\left(q^{2 \mu_{n}+1} ; q\right)_{m_{n}}} \cdots \frac{\left(-a_{1} / s\right)^{m_{1}} \ldots\left(-a_{n} / s\right)^{m_{n}}}{(q ; q)_{m_{1}} \cdots(q ; q)_{m_{n}} q^{m(m-1) / 2}} .
\end{gathered}
$$

This completes the proof.

5. Special Cases

In this section, we briefly consider some consequences and special cases of the results derived in the preceding sections. If we take $n=1, \mu_{1}=v, v=\mu$ and $a_{1}=a$ in (32), we obtain

$$
\begin{align*}
& \mathcal{L}_{q}\left\{t^{\mu-1} q^{v} J_{2 v}^{(3)}\left(\sqrt{q^{v+\mu-1} a t} ; q\right) ; s\right\} \\
& =\frac{\left(q^{\mu+v}\right)^{v} \Gamma_{q}(\mu+v)(1-q)^{\mu-v-1}}{s^{v+\mu} \Gamma_{q}(2 v+1) K(1 / s ; \mu+v)} a^{v}{ }_{2} \Phi_{1}\binom{q^{\mu+v}, 0}{q^{2 v+1} ; q,-\frac{a}{s}} \tag{35}
\end{align*}
$$

where $\operatorname{Re}(\mu+v)>0$ and $\operatorname{Re}(s)>0$.
Again, if we write $\frac{v}{2}+1$ and $\frac{v}{2}$ instead of μ and v in (35), respectively, we obtain

$$
\begin{equation*}
\mathcal{L}_{q}\left\{(q t)^{v / 2} J_{v}^{(3)}\left(\sqrt{q^{v} a t} ; q\right) ; s\right\}=\frac{a^{v / 2} s^{-v-1} q^{v(v+1) / 2}}{K(1 / s ; v+1)} e_{q}(-a / s) \tag{36}
\end{equation*}
$$

Now, setting $v=1$ in (36) we obtain

$$
\begin{equation*}
\mathcal{L}_{q}\left\{(q t)^{1 / 2} J_{1}^{(3)}(\sqrt{q a t} ; q) ; s\right\}=a^{1 / 2} s^{-2} e_{q}(-a / s) \quad(\operatorname{Re}(s)>0) \tag{37}
\end{equation*}
$$

Similarly, if we set $v=0$ in (36), then we have

$$
\begin{equation*}
\mathcal{L}_{q}\left\{J_{0}^{(3)}(\sqrt{a t} ; q) ; s\right\}=s^{-1} e_{q}(-a / s) \quad(\operatorname{Re}(s)>0) \tag{38}
\end{equation*}
$$

In (35) we write $v=0$ and then $a=0$, we find that

$$
\begin{equation*}
\mathcal{L}_{q}\left\{t^{\mu-1} ; s\right\}=\frac{\Gamma_{q}(\mu)(1-q)^{\mu-1}}{s^{\mu}} \frac{1}{K(1 / s ; \mu)} \tag{39}
\end{equation*}
$$

If we let $q \rightarrow 1^{-}$, and make use of the limit formulae

$$
\lim _{q \rightarrow 1^{-}} \Gamma_{q}(t)=\Gamma(t), \quad \lim _{q \rightarrow 1^{-}} K(A ; t)=1
$$

and

$$
\lim _{q \rightarrow 1^{-}} \frac{\left(q^{a} ; q\right)_{n}}{(1-q)^{n}}=(a)_{n}
$$

where $(a)_{n}=a(a+1) \ldots(a+n-1)$, we observe that the identity 28$)$ of Theorem 3.3 and 25 of Corollary 3.3 provide, respectively, the q-extensions of the known related results due to Yürekli [14, p. 97, Theorem 1 and Corollary 1]. Also, the results (32), (35), (36), (37) and (38) provide, respectively, the q-extensions of the following known results given in Erdélyi, Magnus, Oberhettinger and Tricomi [1, pp. 182-187]:

$$
\begin{gathered}
L\left\{t^{v-1} J_{2 \mu_{1}}\left(2 \sqrt{a_{1} t}\right) J_{2 \mu_{2}}\left(2 \sqrt{a_{2} t}\right) \cdots J_{2 \mu_{n}}\left(2 \sqrt{a_{n} t}\right) ; s\right\} \\
=\frac{a_{1}^{\mu_{1}} \cdots a_{n}^{\mu_{n}}}{\Gamma\left(2 \mu_{1}+1\right) \cdots \Gamma\left(2 \mu_{n}+1\right)} \frac{\Gamma(v+M)}{s^{v+M}} . \\
\times \Psi_{2}^{(n)}\left(v+M ; 2 \mu_{1}+1, \cdots, 2 \mu_{n}+1 ; \frac{-a_{1}}{s}, \cdots, \frac{-a_{n}}{s}\right)
\end{gathered}
$$

where $M=\mu_{1}+\ldots+\mu_{n}, \operatorname{Re}(s)>0$ and $\operatorname{Re}(v+M)>0$.

$$
\begin{gathered}
L\left\{t^{\mu-1} J_{2 v}(2 \sqrt{a t}) ; s\right\}=\frac{\Gamma(\mu+v) a^{v}}{s^{\mu+v} \Gamma(2 v+1)}{ }_{1} F_{1}\left[\begin{array}{c}
\mu+v ; \\
2 v+1 ;
\end{array}-a / s\right] \\
L\left\{t^{v / 2} J_{v}(2 \sqrt{a t}) ; s\right\}=a^{v / 2} s^{-v-1} e^{-a / s}
\end{gathered}
$$

$$
L\left\{t^{1 / 2} J_{1}(2 \sqrt{a t}) ; s\right\}=a^{1 / 2} s^{-2} e^{-a / s}
$$

and

$$
L\left\{J_{0}(2 \sqrt{a t}) ; s\right\}=s^{-1} e^{-a / s}
$$

where $\operatorname{Re}(s)>0$ and $\operatorname{Re}(\mu+v)>0$.

Acknowledgement. The authors are thankful to the referee for his/her valuable comments and suggestions which have helped in improvement of the paper. The authors also thanks to Professor M.E.H.Ismail for sharing his unpublished work.

References

[1] Erdélyi A., Magnus W., Oberhettinger F. and Tricomi F.G., Tables of Integral Transforms, Vol. I, McGraw-Hill Inc., New York, 1954.
[2] Fitouhi A., Bettaibi N. and Brahim K.,The Mellin transform in Quantum Calculus, Constr. Approx. 23(3) (2006) 305-323.
[3] Gasper G. and Rahman M., Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[4] Hahn W., Beitrage zur theorie der heineschen reihen, die 24 integrale der hypergeometrischen q-diferenzengleichung, das q-analog on der Laplace transformation, Math. Nachr., 2 (1949), 340-379.
[5] Ismail M.E.H., Some properties of Jackson's third q-Bessel function, preprint.
[6] Jackson F. H., On q-definite Integrals, Quart. J. Pure and Appl. Math. 41 (1910), 193-203.
[7] Kac V.G. and De Sole A., On integral representations of q-gamma and q-beta functions, Rend. Mat. Acc. Lincei 9 (2005), 11-29.
[8] Koornwinder T. H., Special functions and q-commuting variables, in special functions, q series and related topics (Toronto,ON,1995), volume 14 of Fields Inst. Commun., pp. 131-166, Amer.Math.Soc., Providence, RI, 1997.
[9] Koelink H.T. and Koornwinder T.H., Q-special functions, a tutorial, in deformation theory quantum groups with applications to mathematical physics, (amherst, MA, 1990) volume 134 of Contemp. math., pp. 141-142, Amer. Math. Soc., Providence, RI, 1992.
[10] Purohit S.D. and Kalla S.L., On q-Laplace transforms of the q-Bessel functions, Fract. Calc. Appl. Anal., 10(2) (2007), 189-196.
[11] Thomae J., Beitrage zur theorie der durch die heinesche reihe., J. Reine angew.Math, 70 (1869) 258-281.
[12] Uçar F. and Albayrak D., On q-Laplace type integral operators and their Applications, J. Difference Equ. Appl. iFirst article, 2011, 1-14. doi: 10.1080/10236198.2010.540572
[13] Widder D.V., A transform related to the Poisson integral for a half-plane, Duke Math. J. 33 (1966), 355-362.
[14] Yürekli O., Theorems on L_{2}-transforms and its applications, Complex Variables Theory Appl. 38 (1999), 95-107.

Department of Mathematics, Faculty of Science and Letters, Marmara University, TR-34722 Kadiköy, Istanbul, Turkey,

E-mail address: durmusalbayrak@marun.edu.tr, fucar@marmara.edu.tr
Department of Basic Science (Mathematics), College of Technology \& Engineering, M.P. University of Agri. \& Tech., Udaipur-313001, India,

E-mail address: sunil_a_purohit@yahoo.com

[^0]: 2000 Mathematics Subject Classification. Primary 05A30, 33D05; Secondary 44A10,44A20.
 Key words and phrases. q-Calculus, q-Laplace transform, q-analogue of \mathcal{P}-Widder transform and q-Bessel function.
 © 2012 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted October 15, 2011. Accepted May 1, 2012.

