BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume Issue (2012), Pages 116-119

A NOTE ON WALSH-FOURIER COEFFICIENTS

(COMMUNICATED BY SERGEY TIKHONOV)

K. N. DARJI AND R. G. VYAS

ABSTRACT. In this note we have estimate the order of magnitude of Walsh-Fourier coefficients for functions of the class $\Lambda BV(p(n) \uparrow \infty, \varphi)$.

1. Introduction

In 1949 N. J. Fine [1], using second mean value theorem, proved that if f is of bounded variation over [0,1] then its Walsh-Fourier coefficients $\hat{f}(n) = O(\frac{1}{n})$. U. Goginava [2] has studied uniform convergence of Walsh-Fourier series of a function of $BV(p(n),\varphi)$. In 2008 [3], the order of magnitude of Walsh-Fourier coefficients of functions of $\Lambda BV^{(p)}$ and $\phi \Lambda BV$ are estimated. Here we have estimate the order of magnitude of Walsh-Fourier coefficients for a function of $\Lambda BV(p(n) \uparrow \infty, \varphi)$.

Let f be a function defined on $(-\infty, \infty)$ with period 1. **P** is said to be a partition with period 1 if

 $\mathbf{P}: \ldots < x_{-1} < x_0 < x_1 < \ldots < x_m < \ldots$

satisfies $x_{k+m} = x_k + 1$ for $k = 0, \pm 1, \pm 2, ...$, where m is a positive integer.

Definition 1.1. Let $\varphi(n)$ be a real sequence such that $\varphi(1) \geq 2$ and $\lim_{n \to \infty} \varphi(n) = \infty$. For a given sequence $\Lambda = \{\lambda_m\}$ (m = 1, 2, ...) of non-decreasing positive real numbers λ_m such that $\sum_{m=1}^{\infty} \frac{1}{\lambda_m}$ diverges and $1 \leq p(n) \uparrow p$ as $n \to \infty$, where $1 \leq p \leq \infty$, we say that $f \in \Lambda BV(p(n) \uparrow p, \varphi)$ (that is, f is a function of p(n)- Λ -bounded variation over [0,1]) if

$$V_{\Lambda}(f, p(n), \varphi) = \frac{\sup}{n \ge 1} \frac{\sup}{\mathbf{P}} \{ V_{\Lambda}(\mathbf{P}, f, p(n), \varphi) : \rho\{\mathbf{P}\} \ge \frac{1}{\varphi(n)} \} < \infty,$$

where

$$V_{\Lambda}(\mathbf{P}, f, p(n), \varphi) = \left(\sum_{k=1}^{m} \frac{|f(x_k) - f(x_{k-1})|^{p(n)}}{\lambda_k}\right)^{1/p(n)}$$

²⁰⁰⁰ Mathematics Subject Classification. 42C10, 26D15.

Key words and phrases. Walsh-Fourier coefficients and the generalized Wiener class $\Lambda BV(p(n) \uparrow \infty, \varphi)$.

^{©2012} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted January 3, 2012. Accepted March 9, 2012.

and

$$p\{\mathbf{P}\} = rac{inf}{k} \mid x_k - x_{k-1} \mid .$$

For $p = \infty$, we denote the class $\Lambda BV(p(n) \uparrow \infty, \varphi)$ by simply $\Lambda BV(p(n), \varphi)$.

1

Note that, if $\varphi(n) = 2^n$, $\forall n$, and $p = \infty$ then one gets the class $\Lambda BV(p(n) \uparrow \infty)$; if $\lambda_m = 1, \forall m$, then one gets the class $BV(p(n) \uparrow p, \varphi)$; if $p(n) = p, \forall n$, one gets the class $\Lambda BV^{(p)}$.

Let $\{\phi_n\}$ $(n \in \mathbb{N}_0 = \{0, 1, 2, ...\})$ denotes the complete orthonormal Walsh system defined on the interval [0,1] in the Paley enumeration, where the subscript denote the number of zeros (that is, sign-changes) in the interior of the interval [0,1].

Any $x \in [0, 1)$ can be written as

$$x = \sum_{k=0}^{\infty} x_k \ 2^{-(k+1)}, \ each \ x_k = 0 \ or \ 1.$$

For any $x \in [0,1) \setminus Q$, there is only one expression of this form, where Q is the class of dyadic rationals in [0,1). When $x \in Q$ there are two expression of this form, one which terminates in 0's and one which terminates in 1's. For any $x, y \in [0,1)$ their dyadic sum is defined as

$$x + y = \sum_{k=0}^{\infty} |x_k - y_k| 2^{-(k+1)}$$

Observed that, for each $n \in \mathbb{N}_0$, $\phi_n(x \dotplus y) = \phi_n(x)\phi_n(y)$, $x \dotplus y \notin Q$.

For a 1-periodic function $f \in L^1[0,1]$, its Walsh-Fourier series is defined by

$$f(x) \sim \sum_{n \in \mathbb{N}_0} \hat{f}(n)\phi_n(x), \tag{1.1}$$

where $\hat{f}(n) = \int_0^1 f(x) \phi_n(x) dx$, $\forall n \in \mathbb{N}_0$, are the Walsh-Fourier coefficients of f.

2. Statement of the result

Here, we prove the following theorem.

Theorem 2.1. If 1-periodic $f \in \Lambda BV(p(n) \uparrow \infty, \varphi, [0,1]), 1 \le p(n) \uparrow \infty \text{ as } n \to \infty$, then

$$\hat{f}(m) = O(\frac{1}{(\sum_{j=1}^{m} \frac{1}{\lambda_j})^{1/p(\tau(m))}}),$$

where

$$\tau(m) = \min\{k : k \in \mathbb{N}, \varphi(k) \ge m\}, \ m \ge 1.$$

$$(2.1)$$

Remark 1. Here $\lambda_n = 1$, for all n, reduces the class $\Lambda BV(p(n), \varphi)$ to the class $BV(p(n), \varphi)$, and $O(1/(\sum_{i=1}^m \frac{1}{\lambda_i})^{1/p(\tau(m))})$ reduces to $O(1/m)^{1/p(\tau(m))}$.

We need the following lemma to prove the result.

Lemma 2.1. ([5, Lemma 3.1]). The class $\Lambda BV(p(n) \uparrow p, \varphi, [0, 1])$ $(1 \le p \le \infty) \subseteq B[0, 1]$.

3. Proof of result

Proof of Theorem 2.1. In view of Lemma 2.1, $f \in \Lambda BV(p(n), \varphi)$ over [0,1] implies f is bounded and hence $f \in L^1[0, 1]$.

Fix $k \in \mathbb{N}_0$ and $h = \frac{1}{2^{k+1}}$. If we put

$$g(x) = f(x + \frac{1}{2^k} + \frac{1}{2^{k+1}}) - f(x), \text{ for all } x.$$

Then $g \in L^1[0,1]$. For $m = 2^k$, $\phi_m(h) = -1$ and $\phi_m(\frac{1}{2^k}) = 1$ implies

$$\hat{g}(m) = \hat{f}(m)\phi_m(\frac{1}{2^k})\phi_m(h) - \hat{f}(m) = -2\hat{f}(m)$$

and

$$\begin{split} 2|\hat{f}(m)| &\leq \int_{0}^{1} |f(x \dotplus \frac{1}{2^{k}} \dotplus \frac{1}{2^{k+1}}) - f(x)| dx \\ &= \int_{0}^{1} |f((x \dotplus \frac{1}{2^{k+1}}) \dotplus (\frac{1}{2^{k}} \dotplus \frac{1}{2^{k+1}})) - f(x \dotplus \frac{1}{2^{k+1}})| dx \\ &= \int_{0}^{1} |f(x \dotplus \frac{1}{2^{k}}) - f(x \dotplus \frac{1}{2^{k+1}})| dx. \end{split}$$

Similarly, we get

$$2|\hat{f}(m)| \le \int_0^1 |f(x \dotplus \frac{4}{2^{k+1}}) - f(x \dotplus \frac{3}{2^{k+1}})| dx$$

and in general we have

$$2|\hat{f}(m)| \le \int_0^1 |f(x \dotplus \frac{2j}{2^{k+1}}) - f(x \dotplus \frac{(2j-1)}{2^{k+1}})| dx, \text{ for all } j = 1 \text{ to } 2^k - 1.$$

Dividing both the sides of the above inequality by λ_j and summing over j = 1 to $2^k - 1$, we get

$$2|\hat{f}(2^k)|(\sum_{j=1}^{2^k-1}\frac{1}{\lambda_j}) \le (\int_0^1 \sum_{j=1}^{2^k-1}\frac{|f_j(x)|}{\lambda_j^{(\frac{1}{p(\tau(2^k))} + \frac{1}{q(\tau(2^k))})}}dx),$$

where $f_j(x) = f(x \div \frac{2j}{2^{k+1}}) - f(x \div \frac{(2j-1)}{2^{k+1}})$ and $q(\tau(2^k))$ is the index conjugate of $p(\tau(2^k))$. Then by applying Holder's inequality on the right we have

$$2|\hat{f}(2^{k})|(\sum_{j=1}^{2^{k}-1}\frac{1}{\lambda_{j}})$$

$$\leq \int_{0}^{1} (\sum_{j=1}^{2^{k}-1}\frac{|f_{j}(x)|^{p(\tau(2^{k}))}}{\lambda_{j}})^{1/p(\tau(2^{k}))} (\sum_{j=1}^{2^{k}-1}\frac{1}{\lambda_{j}})^{1/q(\tau(2^{k}))} dx.$$

For any $x \in \mathbb{R}$, all these points x + 2jh, x + (2j - 1)h, for $j = 1, 2, ..., 2^k - 1$ lie in the interval of length 1. Thus, $f \in \Lambda BV(p(n), \varphi)$ over [0,1] implies

 $\left(\sum_{j=1}^{2^k-1} \frac{|f_j(x)|^{p(\tau(2^k))}}{\lambda_j}\right)^{1/p(\tau(2^k))} = O(1).$ This together with $\sum_{j=1}^{2^k} \frac{1}{\lambda_j} \approx \sum_{j=1}^{2^k-1} \frac{1}{\lambda_j}$ and the above inequality implies

$$|\hat{f}(2^k)| = O((\sum_{j=1}^{2^k} \frac{1}{\lambda_j})^{-1/p(\tau(2^k))}).$$

This proves the theorem.

Acknowledgements. Authors are grateful to the referee for his valuable comments and suggestion.

References

- [1] N.J. Fine, On the Walsh functions, Trans. Amer. Math. Soc., 65 (1949), 372-414.
- [2] U. Goginava, On the uniform convergence of Walsh-Fourier series, Acta Math. Hungar, 93 (2001), No.1-2, 59-70.
- B. L. Ghodadra and J. R. Patadia, A note on the magnitude of Walsh Fourier coefficients, J. Inequal. Pure Appl. Math., 9 (2008), No.2, Art.44, 7 pp.
- [4] Ferenc Moricz, Absolute convergence of Walsh Fourier series and related results, Analysis Mathematica, 36 (2010), 275-286.
- [5] R. G. Vyas, A note on functions of p(n) Λ-bounded variation, J. Indian Math. Soc., V.78, 1-4 (2011), 215-220.

K. N. Darji

DEPARTMENT OF SCIENCE AND HUMANITY, TATVA INSTITUTE OF TECHNOLOGICAL STUDIES, MODASA, SABARKANTHA, GUJARAT, INDIA.

 $E\text{-}mail\ address:\ \texttt{darjikiranmsu@gmail.com}$

R. G. Vyas

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, THE MAHARAJA SAYAJIRAO UNIVERSITY OF BARODA, VADODARA-390002, GUJARAT, INDIA.

E-mail address: drrgvyas@yahoo.com