BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 4 Issue 2(2012), Pages 120-128.

APPLICATION OF HÖLDER'S INEQUALITY AND CONVOLUTIONS

(COMMUNICATED BY R.K. RAINA)

S.P. GOYAL, ONKAR SINGH

ABSTRACT. In this paper we introduce a new subclass $M_p(n, \alpha, c)$ of analytic and multivalent functions in the unit disk which includes the class $S_p(n, \alpha)$ of multivalent starlike functions of order α and the class $T_p(n, \alpha)$ of multivalent convex functions of order α . Using generalized Bernardi Libera integral operator and Hölder's inequality, some interesting properties of convolution for the class $M_p(n, \alpha, c)$ are considered

1. Introduction

Let $A_p(n)$ be class of functions f(z) of the form

$$f(z) = z^p + \sum_{k=p+n}^{\infty} a_k z^k, \quad (p, n \in \mathcal{N})$$

which are analytic in the open unit disk $\mathcal{U} = \{z : z \in \mathcal{C}; |z| < 1\}$. Let $S_p(n, \alpha)$ be the subclass of $A_p(n)$ consisting of functions f(z) which satisfy

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \quad (z \in \mathcal{U})$$

for some $\alpha(0 \leq \alpha < p)$. A function $f(z) \in S_p(n, \alpha)$ is known as starlike of order α in U.

Further, let $T_p(n, \alpha)$ be the subclass of $A_p(n)$ consisting of functions f(z) satisfying $\frac{zf'(z)}{p} \in S_p(n, \alpha)$, that is,

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > \alpha \quad (z \in \mathcal{U})$$

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Multivalent starlike function, Multivalent convex function, Convolutions, Hölder's inequality, Generalized Libera integral operator.

^{©2012} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted April 1, 2012. Published May 22, 2012.

The author (S.P.G) is thankful to CSIR, New Delhi, India for awarding Emeritus Scientistship, under scheme number 21(084)/10/EMR-II. The second author (O.S.) is also thankful to CSIR for JRF under the same scheme.

for some α ($o \leq \alpha < p$). A function f(z) in $T_p(n, \alpha)$ is known as convex of order α in U.

These classes $A_p(n)$, $S_p(n,\alpha)$ and $T_p(n,\alpha)$ were studied earlier by Owa [9] respectively. Also Nishiwaki and Owa [6] have given the following lemmas which provide the sufficient conditions for functions $f(z) \in A_p(n)$ to be in the classes $S_p(n,\alpha)$ and $T_p(n,\alpha)$ respectively.

Lemma 1.1. If $f(z) \in A_p(n)$ satisfies

$$\sum_{k=p+n}^{\infty} (k-\alpha) |a_k| \le p - \alpha \tag{1.1}$$

for some α ($o \leq \alpha < p$), then $f(z) \in S_p(n, \alpha)$ **Lemma 1.2.** If $f(z) \in A_p(n)$ satisfies

$$\sum_{k=p+n}^{\infty} k(k-\alpha) |a_k| \le p(p-\alpha)$$
(1.2)

for some α ($o \leq \alpha < p$), then $f(z) \in T_p(n, \alpha)$.

Remark 1. We note that Silverman [10] has given Lemma (1.1) and Lemma (1.2) in the case of p = 1 and n = 1. Also Srivastava, Owa and Chatterjea [11] have given the coefficient inequalities in the case of p = 1.

In view of lemmas (1.1) and (1.2) Nishiwaki and Owa [6] introuced the subclasses $S_p^*(n,\alpha), T_p^*(n,\alpha)$ consisting of functions f(z) which satisfy the coefficient inequalities (1.1) and (1.2) respectively.

Now, we introduce subclass $M_p^*(n, \alpha, c)$ consisting of functions $f(z) \in A_p(n)$ which satisfy the following coefficient inequality.

$$\sum_{k=p+n}^{\infty} \left(\frac{k}{p}\right)^c (k-\alpha) |a_k| \le p - \alpha \tag{1.3}$$

for some $c \ge 0$ and α $(o \le \alpha < p)$.

Obviously $M_p^*(n, \alpha, 0) \equiv S_p^*(n, \alpha)$ and $M_p^*(n, \alpha, 1) \equiv T_p^*(n, \alpha)$. For functions $f_j(z) \in A_p(n)$ given by

$$f_j(z) = z^p + \sum_{k=p+n}^{\infty} a_{k,j} z^k (j = 1, 2, ..., m),$$
(1.4)

we define

$$G_m(z) = z^p + \sum_{k=p+n}^{\infty} \left(\prod_{j=1}^m a_{k,j}\right) z^k, \qquad (1.5)$$

and

$$H_m(z) = z^p + \sum_{k=p+n}^{\infty} \left(\prod_{j=1}^m (a_{k,j})^{p_j} \right) z^k \quad (p_j > 0)$$
(1.6)

where $G_m(z)$ denotes the convolution of $f_j(z)$ (j = 1, 2, ..., m). Therefore $H_m(z)$ is the generalization of convolutions. In the case $p_j = 1$, we have $G_m(z) := H_m(z)$. The generalization of the convolutions was considered by Choi, Kim and Owa [2], and Nishiwaki and Owa [6].

Further for functions $f_j(z) \in A_p(n)$ given by (1.4), generalized Libera integral operator is defined as follows :

$$B_{j,p}(z) = \frac{p+c_j}{z^{c_j}} \int_0^z t^{c_j-1} f(t) dt \quad (c_j > -p)$$
(1.7)

(For $c_j = 1$, we obtain multivalent Libera operator. For p = 1, we get generalized Bernardi-Libera-Livingston integral operator defined recently by Gordji et al. [4] and for p = 1, $c_j = 1$, Libera [5] studied the above operator. The operator (1.7) also includes the Alexander operator [1] for p = 1 and $c_j = 0$)

Using the operator (1.7), we find that the convolution integral of $B_{1,p}$ and $B_{2,p}$ as

$$(B_{1,p} * B_{2,p})(z) = \frac{p+c_1}{z^{c_1}} \int_0^z t^{c_1-1} f(t) dt * \frac{p+c_2}{z^{c_2}} \int_0^z t^{c_2-1} f(t) dt$$
$$= z^p + \sum_{k=p+n}^\infty \frac{(p+c_1)(p+c_2)}{(k+c_1)(k+c_2)} a_{k,1} a_{k,2} z^k$$

The convolution integral was studied by Duren [3]. Hence the convolution integral of $B_{1,p}, B_{2,p}, ..., B_{m,p}$ is given by

$$(B_{1,p} * B_{2,p} * \dots * B_{m,p})(z) = \frac{p+c_1}{z^{c_1}} \int_0^z t^{c_1-1} f(t) dt * \dots * \frac{p+c_m}{z^{c_m}} \int_0^z t^{c_m-1} f(t) dt$$
$$= z^p + \sum_{k=p+n}^\infty \left(\prod_{j=1}^m \frac{p+c_j}{k+c_j} a_{k,j} \right) z^k$$
(1.8)

For functions $f_j(z) \in A_p(n)$ (j = 1, 2, ..., m) given by (1.4), the familiar Hölder's inequality assumes the form

$$\sum_{k=p+n}^{\infty} \left(\prod_{j=1}^{m} |a_{k,j}| \right) \le \prod_{j=1}^{m} \left(\sum_{k=p+n}^{\infty} |a_{k,j}|^{p_j} \right)^{\frac{1}{p_j}}$$
(1.9)

where $p_j > 1$ and $\sum_{j=1}^{m} \frac{1}{p_j} \ge 1$ (j = 1, 2, ..., m)

Nishiwaki, Owa and Srivastava [8] have given some results of Hölder's-type inequalities for subclass of uniformly starlike functions. Also applying these inequalities, Nishiwaki and Owa [6] have obtained some interesting properties of generalizations of convolutions for functions f(z) in the classes $S_p^*(n, \alpha)$ and $T_p^*(n, \alpha)$. Again Nishiwaki and Owa [7] have given application of convolution integral for certain subclasses by using Hölder's inequalities . Motivated essentially by these papers, we discuss some applications of Hölder's inequalities for $H_m(z)$ defined by (1.6) and convolution integral defined by (1.8) for the subclass $M_p^*(n, \alpha, c)$.

2. Main Results

Theorem 1. If $f_j(z) \in M_p^*(n, \alpha_j, c)$ for each j = 1, 2, ..., m, then $H_m(z) \in$ $M_p^*(n,\beta,c)$ with

$$\beta = \inf_{k \ge p+n} \left\{ p - \frac{k^c (k-p) \prod_{j=1}^m \left[p^c (p-\alpha_j) \right]^{p_j}}{p^c \prod_{j=1}^m \left[k^c (k-\alpha_j) \right]^{p_j} - k^c \prod_{j=1}^m \left[p^c (p-\alpha_j) \right]^{p_j}} \right\}$$
(2.1)

where $p_j \geq \frac{1}{q_j}$, $q_j > 1$ and $\sum_{j=1}^m \frac{1}{q_j} \geq 1$. **Proof**. Since $f_j(z) \in M_p^*(n, \alpha_j, c)$, therefore by equation (1.3), we get

$$\sum_{k=p+n}^{\infty} \left(\frac{k}{p}\right)^c \left(\frac{k-\alpha_j}{p-\alpha_j}\right) |a_{k,j}| \le 1 \quad (j=1,2,\dots,m)$$

which implies

$$\left\{\sum_{k=p+n}^{\infty} \left(\frac{k}{p}\right)^c \left(\frac{k-\alpha_j}{p-\alpha_j}\right) |a_{k,j}|\right\}^{\frac{1}{q_j}} \le 1$$
(2.2)

with $q_j > 1$ and $\sum_{j=1}^m \frac{1}{q_j} \ge 1$. From (2.2), we have

$$\prod_{j=1}^{m} \left\{ \sum_{k=p+n}^{\infty} \left(\frac{k}{p}\right)^{c} \left(\frac{k-\alpha_{j}}{p-\alpha_{j}}\right) |a_{k,j}| \right\}^{\frac{1}{q_{j}}} \le 1$$

Applying Hölder's inequality (1.9), we find that

$$\sum_{k=p+n}^{\infty} \left\{ \prod_{j=1}^{m} \left(\frac{k}{p}\right)^{\frac{c}{q_j}} \left(\frac{k-\alpha_j}{p-\alpha_j}\right)^{\frac{1}{q_j}} |a_{k,j}|^{\frac{1}{q_j}} \right\} \le 1$$
(2.3)

Note that we have to find the largest β such that

$$\sum_{k=p+n}^{\infty} \left(\frac{k}{p}\right)^c \left(\frac{k-\beta}{p-\beta}\right) \left(\prod_{j=1}^m |a_{k,j}|^{p_j}\right) \le 1$$

that is,

$$\sum_{k=p+n}^{\infty} \left(\frac{k}{p}\right)^c \left(\frac{k-\beta}{p-\beta}\right) \left(\prod_{j=1}^m |a_{k,j}|^{p_j}\right) \le \sum_{k=p+n}^{\infty} \left\{\prod_{j=1}^m \left(\frac{k}{p}\right)^{\frac{c}{q_j}} \left(\frac{k-\alpha_j}{p-\alpha_j}\right)^{\frac{1}{q_j}} |a_{k,j}|^{\frac{1}{q_j}}\right\}$$

Therefore we need to find largest β such that

$$\left(\frac{k}{p}\right)^{c} \left(\frac{k-\beta}{p-\beta}\right) \left(\prod_{j=1}^{m} |a_{k,j}|^{p_{j}}\right) \leq \prod_{j=1}^{m} \left(\frac{k}{p}\right)^{\frac{c}{q_{j}}} \left(\frac{k-\alpha_{j}}{p-\alpha_{j}}\right)^{\frac{1}{q_{j}}} |a_{k,j}|^{\frac{1}{q_{j}}}$$

which is equivalent to

$$\left(\frac{k}{p}\right)^{c} \left(\frac{k-\beta}{p-\beta}\right) \left(\prod_{j=1}^{m} \left|a_{k,j}\right|^{p_{j}-\frac{1}{q_{j}}}\right) \leq \prod_{j=1}^{m} \left(\frac{k}{p}\right)^{\frac{c}{q_{j}}} \left(\frac{k-\alpha_{j}}{p-\alpha_{j}}\right)^{\frac{1}{q_{j}}}$$

for all $k \ge p + n$. Since

$$\prod_{j=1}^{m} \left\{ \left(\frac{k}{p}\right)^{c} \left(\frac{k-\alpha_{j}}{p-\alpha_{j}}\right) |a_{k,j}| \right\}^{p_{j}-\frac{1}{q_{j}}} \leq 1 \quad \left(p_{j}-\frac{1}{q_{j}} \geq 0\right)$$

therefore

$$\prod_{j=1}^{m} \left| a_{k,j} \right|^{p_j - \frac{1}{q_j}} \le \frac{1}{\prod_{j=1}^{m} \left\{ \left(\frac{k}{p} \right)^c \left(\frac{k - \alpha_j}{p - \alpha_j} \right) \right\}^{p_j - \frac{1}{q_j}}}$$

This implies that

$$\left(\frac{k}{p}\right)^{c} \left(\frac{k-\beta}{p-\beta}\right) \leq \prod_{j=1}^{m} \left\{ \left(\frac{k}{p}\right)^{c} \left(\frac{k-\alpha_{j}}{p-\alpha_{j}}\right) \right\}^{p_{j}}$$

for all $k \ge p + n$. Therefore β should be

$$\beta \le p - \frac{k^c (k-p) \prod_{j=1}^m \left(p^c (p-\alpha_j)\right)^{p_j}}{p^c \prod_{j=1}^m \left(k^c (k-\alpha_j)\right)^{p_j} - k^c \prod_{j=1}^m \left(p^c (p-\alpha_j)\right)^{p_j}}$$

for all $k \geq p+n$ This completes the proof of the theorem.

Taking $p_j = 1$ in Theorem 1, we obtain **Corollary 2.1**. If $f_j(z) \in M_p^*(n, \alpha_j, c)$ for each j = 1, 2, ..., m, then $G_m(z) \in M_p^*(n, \beta, c)$ with

$$\beta = p - \frac{n p^{(m-1)c} \prod_{j=1}^{m} (p - \alpha_j)}{(p+n)^{(m-1)c} \prod_{j=1}^{m} (p+n - \alpha_j) - p^{(m-1)c} \prod_{j=1}^{m} (p - \alpha_j)}$$
(2.4)

Proof. In view of Theorem 1, we obtain

$$\beta \leq \inf_{k \geq p+n} \left\{ p - \frac{k^c(k-p) \prod_{j=1}^m p^c(p-\alpha_j)}{p^c \prod_{j=1}^m k^c(k-\alpha_j) - k^c \prod_{j=1}^m p^c(p-\alpha_j)} \right\}$$

Let F(c, k, m) be the right-hand side of the above inequality. Further let us define G(c, k, m) be the numerator of F'(c, k, m). Then

$$G(c,k,m) = -p^{(m-1)c} \prod_{j=1}^{m} (p - \alpha_j) \left\{ k^{(m-1)c} \prod_{j=1}^{m} (k - \alpha_j) - p^{(m-1)c} \prod_{j=1}^{m} (p - \alpha_j) \right\}$$

$$+ (k-p)(pk)^{(m-1)c} \prod_{j=1}^{m} (p-\alpha_j) [\frac{(m-1)c}{k} \prod_{j=1}^{m} (k-\alpha_j) + (k-\alpha_j)(k-\alpha_j) \cdots (k-\alpha_{m-1})]$$

$$+ \{(k-\alpha_2)(k-\alpha_3) \cdots (k-\alpha_m) + \cdots + (k-\alpha_1)(k-\alpha_2) \cdots (k-\alpha_{m-1}) \}]$$

$$= -p^{(m-1)c} \prod_{j=1}^{m} (p-\alpha_j) \left\{ k^{(m-1)c} \prod_{j=1}^{m} (k-\alpha_j) - p^{(m-1)c} \prod_{j=1}^{m} (p-\alpha_j) \right\}$$

$$+ (k-p)(pk)^{(m-1)c} \prod_{j=1}^{m} (p-\alpha_j) \left[\frac{(m-1)c}{k} \prod_{j=1}^{m} (k-\alpha_j) + \left\{ \sum_{j=1}^{m} \frac{\prod_{j=1}^{m} (k-\alpha_j)}{(k-\alpha_j)} \right\} \right] .$$

$$= (pk)^{(m-1)c} \prod_{j=1}^{m} \{(p-\alpha_j)(k-\alpha_j)\} \left\{ (k-p) \left(\sum_{j=1}^{m} \frac{1}{k-\alpha_j} + \frac{(m-1)c}{k} \right) - 1 \right\}$$

$$+ p^{2(m-1)c} \prod_{j=1}^{m} (p-\alpha_j)^2 \ge 0$$

Thus F(c, k, m) is increasing function for all $k \ge p + n$. This means that

$$\beta = F(p+n) = p - \frac{np^{(m-1)c} \prod_{j=1}^{m} (p-\alpha_j)}{(p+n)^{(m-1)c} \prod_{j=1}^{m} (p+n-\alpha_j) - p^{(m-1)c} \prod_{j=1}^{m} (p-\alpha_j)}$$

On taking c = 0 and c = 1 in Theorem 1, we get the Theorem 2.1, 2.6 and 2.8 obtained recently by Nishiwaki and Owa [6]. Corollaries 2.2, 2.3, 2.5, 2.7 and 2.9 due to them are also special cases of our Theorem 1 and corollary 2.1 **Theorem 2.** If $f_j(z) \in M_p^*(n, \alpha_j, c)$ for each j = 1, 2, ..., m then $(B_1 * B_2 * B_m)(z) \in M_p^*(n, \beta, c)$ with

$$\beta = p - \frac{np^{(m-1)c} \prod_{j=1}^{m} (p+c_j)(p-\alpha_j)}{(p+n)^{(m-1)c} \prod_{j=1}^{m} (p+n+c_j)(p+n-\alpha_j) - p^{(m-1)c} \prod_{j=1}^{m} (p+c_j)(p-\alpha_j)}$$
(2.5)

Proof . Since $f_j(z) \in M_p^*(n, \alpha_j, c)$, then from (2.3), we get

$$\sum_{k=p+n}^{\infty} \left\{ \prod_{j=1}^{m} \left(\frac{k}{p}\right)^{\frac{c}{q_j}} \left(\frac{k-\alpha_j}{p-\alpha_j}\right)^{\frac{1}{q_j}} |a_{k,j}|^{\frac{1}{q_j}} \right\} \le 1$$

Note that we have to find the largest β such that

$$\sum_{k=p+n}^{\infty} \left(\frac{k}{p}\right)^c \left(\frac{k-\beta}{p-\beta}\right) \prod_{j=1}^m \left(\frac{p+c_j}{k+c_j}\right) |a_{k,j}| \le 1$$

that is

$$\sum_{k=p+n}^{\infty} \left(\frac{k}{p}\right)^c \left(\frac{k-\beta}{p-\beta}\right) \prod_{j=1}^m \left(\frac{p+c_j}{k+c_j}\right) |a_{k,j}| \le \sum_{j=1}^m \left\{\prod_{j=1}^m \left(\frac{k}{p}\right)^{\frac{c}{q_j}} \left(\frac{k-\alpha_j}{p-\alpha_j}\right)^{\frac{1}{q_j}} |a_{k,j}|^{\frac{1}{q_j}}\right\}$$

Using the same procedure of Theorem 1, we can easily prove that for all $k \geq p+n,$ $\beta \,$ should be

$$\beta \le p - \frac{k^c (k-p) \prod_{j=1}^m (p+c_j) p^c (p-\alpha_j)}{p^c \prod_{j=1}^m (k+c_j) k^c (k-\alpha_j) - k^c \prod_{j=1}^m (p+c_j) p^c (p-\alpha_j)}$$
(2.6)

Let F(c, k, m) be the right hand side of the above inequality. Further let us define G(c, k, m) be the numerator of F'(c, k, m). Then

$$\begin{aligned} G(c,k,m) &= -p^{(m-1)c} \prod_{j=1}^{m} (p-\alpha_j)(p+c_j) \left\{ k^{(m-1)c} \prod_{j=1}^{m} (k-\alpha_j)(k+c_j) - p^{(m-1)c} \prod_{j=1}^{m} (p-\alpha_j)(p+c_j) \right\} \\ &+ (k-p)(pk)^{(m-1)c} \prod_{j=1}^{m} (p-\alpha_j)(p-c_j) [\frac{(m-1)c}{k} \prod_{j=1}^{m} (k-\alpha_j)(k+c_j) \\ &+ \{(k-\alpha_2)(k-\alpha_3)\cdots(k-\alpha_m)(k+c_1)\cdots(k+c_m) + \cdots + (k-\alpha_1) \\ &(k-\alpha_2)\cdots(k-\alpha_{m-1})(k+c_1)\cdots(k+c_m) + (k-\alpha_1)\cdots(k-\alpha_m)(k+c_2)\cdots(k+c_m) + \\ &\cdots + (k-\alpha_1)\cdots(k-\alpha_m)(k+c_1)\cdots(k+c_{m-1})\}] \end{aligned}$$

$$= -p^{(m-1)c} \prod_{j=1}^{m} (p - \alpha_j)(p + c_j) \left\{ k^{(m-1)c} \prod_{j=1}^{m} (k - \alpha_j)(k + c_j) - p^{(m-1)c} \prod_{j=1}^{m} (p - \alpha_j)(p + c_j) \right\}$$

$$+ (k - p)(pk)^{(m-1)c} \prod_{j=1}^{m} (p - \alpha_j)(p + c_j) \left[\frac{(m-1)c}{k} \prod_{j=1}^{m} (k - \alpha_j)(k + c_j) + \left\{ \sum_{j=1}^{m} \frac{\prod_{j=1}^{m} (k - \alpha_j)(k + c_j)}{k - \alpha_j} + \sum_{j=1}^{m} \frac{\prod_{j=1}^{m} (k - \alpha_j)(k + c_j)}{k + c_j} \right\} \right]$$

$$= (pk)^{(m-1)c} \prod_{j=1}^{m} (p - \alpha_j)(p + c_j)(k - \alpha_j)(k + c_j)$$

$$\times \left\{ (k - p) \left(\sum_{j=1}^{m} \frac{1}{k - \alpha_j} \sum_{j=1}^{m} \frac{1}{k + c_j} + \frac{(m - 1)c}{k} \right) - 1 \right\} + p^{2(m-1)c} \prod_{j=1}^{m} (p - \alpha_j)^2 (p + c_j)^2 \ge 0.$$

Thus
$$F(c, k, m)$$
 is increasing function for all $k \ge p + n$.
This means that

$$\beta = F(p+n) = p - \frac{np^{(m-1)c} \prod_{j=1}^{m} (p+c_j)(p-\alpha_j)}{(p+n)^{(m-1)c} \prod_{j=1}^{m} (p+n+c_j)(p+n-\alpha_j) - p^{(m-1)c} \prod_{j=1}^{m} (p+c_j)(p-\alpha_j)}$$

If we take $c_j = 1$ in Theorem 2, we get

Corollary 2.2. If $f_j(z) \in M_p^*(n, \alpha_j, c)$ for each j = 1, 2, ..., m then $(B_1 * B_2 * B_m)(z) \in M_p^*(n, \beta, c)$ with

$$\beta = p - \frac{np^{(m-1)c}(p+1)^m \prod_{j=1}^m (p-\alpha_j)}{(p+n)^{(m-1)c}(p+n+1)^m \prod_{j=1}^m (p+n-\alpha_j) - p^{(m-1)c}(p+1)^m \prod_{j=1}^m (p-\alpha_j)}$$

If we take p = 1 in Theorem 2 and Corollary 2.2, we deduce that **Corollary 2.3**. If $f_j(z) \in M^*(n, \alpha_j, c)$ for each j = 1, 2, ..., m then $(B_1 * B_2 * B_m)(z) \in M^*(n, \beta, c)$ with

$$\beta = 1 - \frac{n \prod_{j=1}^{m} (1+c_j)(1-\alpha_j)}{(n+1)^{(m-1)c} \prod_{j=1}^{m} (n+1+c_j)(n+1-\alpha_j) - \prod_{j=1}^{m} (1+c_j)(1-\alpha_j)}$$

Corollary 2.4. If $f_j(z) \in M^*(n, \alpha_j, c)$ for each j = 1, 2, ..., m then $(B_1 * B_2 * B_m)(z) \in M^*(n, \beta, c)$ with

$$\beta = 1 - \frac{n2^m \prod_{j=1}^m (1 - \alpha_j)}{(n+1)^{(m-1)c} (n+2)^m \prod_{j=1}^m (n+1 - \alpha_j) - 2^m \prod_{j=1}^m (1 - \alpha_j)}$$

Further taking $c_j = 0$ in Corollary 2.3, we get **Corollary 2.5**. If $f_j(z) \in M_p^*(n, \alpha_j, c)$ for each j = 1, 2, ..., m then $(B_1 * B_2 * B_m)(z) \in M_p^*(n, \beta, c)$ with

$$\beta = 1 - \frac{n \prod_{j=1}^{m} (1 - \alpha_j)}{(n+1)^{(m-1)c+m} \prod_{j=1}^{m} (n+1 - \alpha_j) - \prod_{j=1}^{m} (1 - \alpha_j)}$$

Remark. All results due to Nishiwaki and Owa [7] can be deduced as special cases if we put c = 0 and c = 1 in Theorem 2 and Corollaries 2.2-2.5.

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

- J.W.Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. 17 (1915), 12-22.
- [2] J.H.Choi, Y.C.Kim and S.Owa, Generalizations of Hadmard products of functions with negative coefficients, J. Math. Anal. Appl. 199 (1996),495-501.
- [3] P.L.Duren, "Comprehensive Studies in Mathematics" 259, Springer-verlag, New York-Berlin-Heiderberg-Tokyo, Univalent Functions (1983).
- [4] M.E.Gordji, D.Alimohammadi, A.Ebadian, Some applications of the generalized Bernardi-Libera- Livingston integral operator on univalent functions, Jour. Inequal. Pure and Appl. Math.(JIPAM) 10 (2009) Issue 4, Article 100, 12 pp.

S.P. GOYAL, ONKAR SINGH

- [5] R.J.Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
- [6] J.Nishiwaki and S.Owa, An application of Hölder's inequality for convolutions, Jour. Inequal. Pure Appl. Math.(JIPAM) 10 (2009), Issue 4, Article 98, 7 pp.
- [7] J.Nishiwaki and S.Owa, An application of convolutions integral, Fractional Calculus and Appl. Anal. 13 (2010), 395-402.
- [8] J.Nishiwaki, S.Owa and H.M.Srivastava, Convolution and Hölder-type inequalities for a certain class of analytic functions, Math. Inequal. Appl. 11 (2008),717-727.
- [9] S.Owa, On certain classes of p-valent functions with negative coefficients, Simon. Stevin 59 (1985), 385-402.
- [10] H.Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975),109-116.
- [11] H.M.Srivastava, S.Owa and S.K.Chatterjea, A note on certain classes of starlike functions, Rend. Sem. Mat. Univ. Padova 77 (1987), 115-124.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF RAJASTHAN, JAIPUR-302055, INDIA. *E-mail address:* somprg@gmail.com *E-mail address:* onkarbhati@gmail.com