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COEFFICIENT ESTIMATES FOR CERTAIN NEW SUBCLASSES
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(COMMUNICATED BY HARI SRIVASTAVA)

HUO TANG, GUAN-TIE DENG, SHU-HAI LI

Abstract. In the present paper, we consider the coefficient estimates for func-
tions in certain new subclasses of starlike and convex functions of complex or-
der γ, which are introduced by means of a generalized differential operator and
non-homogeneous Cauchy-Euler type differential equation. Several corollaries
and consequences of the main results are also obtained.

1. INTRODUCTION AND DEFINITIONS

Let A denote the class of functions of the form

f(z) = z +
∞
∑

k=2

akz
k, (1)

that are analytic in the open unit disc U = {z ∈ C : |z| < 1}.
For two functions f(z) and g(z), analytic in U , we say that f(z) is subordinate to

g(z) in U , and we note f(z) ≺ g(z), (z ∈ U), if there exists a Schwarz function ω(z)
analytic in U with ω(0) = 0 and |ω(z)| < 1 (z ∈ U), such that f(z) = g(ω(z)), (z ∈
U). In particular, if the function g(z) is univalent in U , then the subordination is
equivalent to f(0) = g(0) and f(U) = g(U).

A function f(z) ∈ A is said to be in the S∗(γ) of starlike functions of complex
order γ if it satisfies the following inequality:

Re

{

1 +
1

γ

(

zf ′(z)

f(z)
− 1

)}

> 0 (z ∈ U ; γ ∈ C∗ = C \ {0}). (2)

Furthermore, a function f(z) ∈ A is said to be in the C(γ) of convex functions
of complex order γ if it satisfies the following inequality:

Re

{

1 +
1

γ

(

zf ′′(z)

f ′(z)

)}

> 0 (z ∈ U ; γ ∈ C∗). (3)
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The function classes S∗(γ) and C(γ) were considered earlier by Nasr and Aouf
[1] and Wiatrowshi [2], respectively, and (very recently) by Altintas et al.[3-9], Deng
[10], Murugusundaramoorthy and Srivastava [11], Xu et al.[12], and Srivastava et
al.[13-15].

For a function f(z) ∈ A, Raducanu and Orhan [16] introduced a generalized
differential operator Dn

α,δ as follows:

D0
α,δf(z) = f(z)

D1
α,δf(z) = Dα,δf(z) = αδz2(f(z))′′ + (α− δ)z(f(z))′ + (1 − α+ δ)f(z)

...

Dn
α,δf(z) = Dα,δ(D

n−1
α,δ f(z)), (α ≥ δ ≥ 0, n ∈ N0 = N ∪ {0}). (4)

If f is given by (1), then from the definition of operator Dn
α,δ it is easy to see

that

Dn
α,δf(z) = z +

∞
∑

k=2

Φn
kakz

k, (5)

where Φk = [1 + (αδk + α− δ)(k − 1)], (Φn
k = [Φk]

n); α ≥ δ ≥ 0 and n ∈ N0.

When α = 1 and δ = 0, we get the Salagean differential operator Dnf(z) (see
[18]), and when δ = 0, we obtain the Al-Oboudi differential operator Dn

αf(z) (see
[17]).

Next, by using the differential operator Dn
α,δ, we define new subclasses of func-

tions belonging to the class A.
Definition 1. Let γ 6= 0 be any complex number, α ≥ δ ≥ 0; 0 ≤ λ ≤ 1, n ∈ N0

and for the parameters A and B such that −1 ≤ B < A ≤ 1, we say that a function
f(z) ∈ A is in the class Hn

γ,λ,α,δ(A,B) if it satisfies the following subordination
condition:

1 +
1

γ

(

z(Fn
λ,α,δ(z))

′

Fn
λ,α,δ(z)

− 1

)

≺
1 +Az

1 +Bz
, z ∈ U, (6)

where Fn
λ,α,δ(z) = (1− λ)Dn

α,δf(z) + λDn+1
α,δ f(z).

The special classes H0
1,λ,1,0(1 − 2α,−1) and H0

γ,λ,1,0(A,B) were introduced and

studied by Altintas et al.[4] and Srivastava et al.[14], respectively.
Definition 2. A function f(z) ∈ A is said to be in the class Km,n

γ,λ,α,δ(A,B;µ) if
it satisfies the following non-homogeneous Cauchy-Euler type differential equation
of order m:

zm
dmw

dzm
+

(

m

1

)

(µ+m− 1)zm−1d
m−1w

dzm−1
+ · · ·+

(

m

m

)

w

m−1
∏

i=0

(µ+ i)

= g(z)

m−1
∏

i=0

(µ+ i+ 1), (7)

where w = f(z) ∈ A, g(z) ∈ Hn
γ,λ,α,δ(A,B), µ ∈ R \ (−∞,−1] and m ∈ N∗ =

N \ {1} = {2, 3, · · · }.

The special cases of the class K
2,0
1,λ,1,0(A,B;µ) and K

3,0
1,λ,1,0(A,B;µ) were also

introduced and studied by Altintas et al.[4]. The object of the present paper is
to derive the coefficient estimates for functions in the classes Hn

γ,λ,α,δ(A,B) and

K
m,n
γ,λ,α,δ(A,B;µ) employing the techniques used earlier by Srivastava et al.[14].
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2. MAIN RESULTS

The first property for f(z) ∈ Hn
γ,λ,α,δ(A,B) is contained in

Theorem 1. Let the function f(z) given by (1) be in the class Hn
γ,λ,α,δ(A,B).

Then

|ak| ≤

∏k−2

j=0

(

j + 2|γ|A−B
1−B

)

(k − 1)!Φn
k [1 + λ(Φk − 1)]

, (8)

where Φk = [1 + (αδk + α− δ)(k − 1)], k ∈ N∗ and n ∈ N0.

Proof. By the definitions of Dn
α,δf(z) and Fn

λ,α,δ(z), we can write

Fn
λ,α,δ(z) = z +

∞
∑

k=2

Akz
k (z ∈ U), (9)

in which
Ak = Φn

k [1 + λ(Φk − 1)]ak (k ∈ N∗). (10)

Then, clearly, Fn
λ,α,δ(z) is analytic in U with

Fn
λ,α,δ(0) = (Fn

λ,α,δ)
′(0)− 1 = 0. (11)

Thus, by virtue of the subordination condition in equation (6) of Definition 1, we
have

1 +
1

γ

(

z(Fn
λ,α,δ(z))

′

Fn
λ,α,δ(z)

− 1

)

⊂ g(U), (12)

where the function g(z) is given by

g(z) =
1 +Az

1 +Bz
(z ∈ U, −1 ≤ B < A ≤ 1). (13)

By setting

h(z) = 1 +
1

γ

(

z(Fn
λ,α,δ(z))

′

Fn
λ,α,δ(z)

− 1

)

, (14)

we deduce also that h(0) = g(0) = 1 and h(U) ⊂ g(U) (z ∈ U) for the the function
g(z) given by (13). Therefore, we have

h(z) =
1 + Aω(z)

1 +Bω(z)
(ω(0) = 0, |ω(z)| < 1) (15)

and

|ω(z)| =

∣

∣

∣

∣

h(z)− 1

A−Bh(z)

∣

∣

∣

∣

< 1, h(z) = u+ iv. (16)

Now, by using of (16), we obtain that

2u(1−AB) > 1−A2 + (1−B2)(u2 + v2).

Also, since (Re(h(z)))2 ≤ |h(z)|2, we have (1−B2)u2 − 2u(1−AB) + 1−A2 < 0,
which implies that

1−A

1−B
< u = Re(h(z)) <

1 +A

1 +B
. (17)

If

Re(h(z)) >
1−A

1−B
, h(z) = 1 + p1z + p2z

2 + · · · ∈ P, (18)

then we have that

|pk| ≤ 2

(

A−B

1−B

)

. (19)
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By (14), we have

z(Fn
λ,α,δ(z))

′ − Fn
λ,α,δ(z) = γ(h(z)− 1)Fn

λ,α,δ(z). (20)

Then, from (9) and (18), equating the coefficient of zk in (20), we obtain that

(k − 1)Ak = γ(pk−1 + pk−2A2 + · · ·+ p1Ak−1). (21)

In particular, when n = 2, 3, 4, (21) yields

|A2| ≤ 2|γ|
A−B

1−B
, |A3| ≤

2|γ|A−B
1−B

(

1 + 2|γ|A−B
1−B

)

2!
,

and

|A4| ≤
2|γ|A−B

1−B

(

1 + 2|γ|A−B
1−B

)(

2 + 2|γ|A−B
1−B

)

3!
,

respectively. Thus, by using the principle of mathematical induction, we have

|Ak| ≤

∏k−2

j=0

(

j + 2|γ|A−B
1−B

)

(k − 1)!
. (22)

Also, since Ak = Φn
k [1 + λ(Φk − 1)]ak (k ∈ N∗). Then, by (22), we have that

inequality (8). This completes the proof of Theorem 1.
Corollary 1. Let the function f(z) ∈ A be given by (1). If f(z) ∈ Hn

γ,λ,1,0(A,B),
then

|ak| ≤

∏k−2

j=0

(

j + 2|γ|A−B
1−B

)

(k − 1)!kn[1 + λ(k − 1)]
(k ∈ N∗).

Corollary 2 ([14]). Let the function f(z) ∈ A be given by (1). If f(z) ∈
H0

γ,λ,1,0(A,B) ≡ S(λ, γ,A,B), then

|ak| ≤

∏k−2

j=0

(

j + 2|γ|A−B
1−B

)

(k − 1)![1 + λ(k − 1)]
(k ∈ N∗).

Corollary 3. Let the function f(z) ∈ A be given by (1). If f(z) ∈ Hn
γ,λ,1,0(1−

2α,−1), then

|ak| ≤

∏k−2

j=0 (j + 2|γ|(1− α))

(k − 1)!kn[1 + λ(k − 1)]
(k ∈ N∗).

Corollary 4 ([10]). Let the function f(z) ∈ A be given by (1). If f(z) ∈
H0

γ,λ,1,0(1− 2α,−1) ≡ B(0, λ, α, b), then

|ak| ≤

∏k−2

j=0 (j + 2|b|(1− α))

(k − 1)![1 + λ(k − 1)]
(k ∈ N∗).

Corollary 5. Let the function f(z) ∈ A be given by (1). If f(z) ∈ Hn
γ,λ,α,0(A,B),

then

|ak| ≤

∏k−2

j=0

(

j + 2|γ|A−B
1−B

)

(k − 1)![1 + α(k − 1)]n[1 + λα(k − 1)]
(k ∈ N∗).

Corollary 6. Let the function f(z) ∈ A be given by (1). If f(z) ∈ Hn
γ,λ,α,0(1−

2α,−1), then

|ak| ≤

∏k−2

j=0 (j + 2|γ|(1− α))

(k − 1)![1 + α(k − 1)]n[1 + λα(k − 1)]
(k ∈ N∗).
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Theorem 2. Let the function f(z) ∈ A be given by (1). If f(z) ∈ K
m,n
γ,λ,α,δ(A,B;µ),

then

|ak| ≤

∏k−2

j=0

(

j + 2|γ|A−B
1−B

)

∏m−1

i=0 (µ+ i+ 1)

(k − 1)!Φn
k [1 + λ(Φk − 1)]

∏m−1

i=0 (µ+ i+ k)
(k,m ∈ N∗; n ∈ N0), (23)

(0 ≤ λ ≤ 1; γ ∈ C∗;−1 ≤ B < A ≤ 1;µ ∈ R \ (−∞,−1]).

Proof. Suppose that the function f(z) ∈ A be given by (1). Let

g(z) = z +

∞
∑

k=2

bkz
k ∈ Hn

γ,λ,α,δ(A,B).

By Theorem 1, we have

|bk| ≤

∏k−2

j=0

(

j + 2|γ|A−B
1−B

)

(k − 1)!Φn
k [1 + λ(Φk − 1)]

(k ∈ N∗, n ∈ N0). (24)

Then we deduce from (7) that

ak =

(

∏m−1

i=0 (µ+ i+ 1)
∏m−1

i=0 (µ+ i+ k)

)

bk (k,m ∈ N∗; µ ∈ R \ (−∞,−1]). (25)

Using (24) and (25), we have the assertion (23) of Theorem 2. This completes the
proof.

Corollary 7. Let the function f(z) ∈ A be given by (1). If f(z) ∈ K
m,n
γ,λ,α,0(A,B;µ),

then

|ak| ≤

∏k−2

j=0

(

j + 2|γ|A−B
1−B

)

∏m−1

i=0 (µ+ i+ 1)

(k − 1)![1 + α(k − 1)]n[1 + λα(k − 1)]
∏m−1

i=0 (µ+ i + k)
(k,m ∈ N∗).

Corollary 8 ([14]). Let the function f(z) ∈ A be given by (1). If f(z) ∈

K
m,0
γ,λ,1,0(A,B;µ) ≡ K(λ, γ,A,B,m;µ), then

|ak| ≤

∏k−2

j=0

(

j + 2|γ|A−B
1−B

)

∏m−1

i=0 (µ+ i+ 1)

(k − 1)![1 + λ(k − 1)]
∏m−1

i=0 (µ+ i+ k)
(k,m ∈ N∗).

Corollary 9. Let the function f(z) ∈ A be given by (1). If f(z) ∈ K
m,n
γ,λ,α,0(1−

2α,−1;µ), then

|ak| ≤

∏k−2

j=0 (j + 2|γ|(1− α))
∏m−1

i=0 (µ+ i+ 1)

(k − 1)![1 + α(k − 1)]n[1 + λα(k − 1)]
∏m−1

i=0 (µ+ i + k)
(k,m ∈ N∗).

Corollary 10 ([13]). Let the function f(z) ∈ A be given by (1). If f(z) ∈

K
2,0
γ,λ,1,0(1 − 2α,−1;µ) ≡ T (0, λ, α, b;µ), then

|ak| ≤
(1 + µ)(2 + µ)

∏k−2

j=0 (j + 2|b|(1− α))

(k − 1)!(k + µ)(k + µ+ 1)[1 + λ(k − 1)]
(k ∈ N∗).
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