CERTAIN COEFFICIENT INEQUALITIES FOR SAKAGUCHI TYPE FUNCTIONS AND APPLICATIONS TO FRACTIONAL DERIVATIVES

(COMMUNICATED BY R.K. RAINA)
B. SRUTHA KEERTHI, V.G. SHANTHI, B. ADOLF STEPHEN

Abstract

In the present paper, sharp upper bounds of $\left|a_{3}-\mu a_{2}^{2}\right|$ for the functions $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ belonging to a new subclass of Sakaguchi type functions are obtained. Also, application of our results for subclass of functions defined by convolution with a normalized analytic function are given. In particular, Fekete-Szegö inequalities for certain classes of functions defined through fractional derivatives are obtained.

1. Introduction

Let \mathcal{A} be the class of analytic functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

defined on $\Delta:=\{z: z \in C$ and $|z|<1\}$ and \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions.

For two functions $f, g \in \mathcal{A}$, we say that the function $f(z)$ is subordinate to $g(z)$ in Δ and write $f \prec g$ or $f(z) \prec g(z)$, if there exists an anlytic function $\omega(z)$ with $\omega(0)=0$ and $|\omega(z)|<1, \quad(z \in \Delta)$, such that $f(z)=g(\omega(z))$, $(z \in \Delta)$. In particular, if the function g is univalent in Δ, the above subordination is equivalent to $f(0)=g(0)$ and $f(\Delta) \subset g(\Delta)$.

A function $f(z) \in \mathcal{A}$ is said to be in the class $M(\alpha, \lambda, t)$ if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda)\left[\frac{(1-t) z f^{\prime}(z)}{f(z)-f(z t)}\right]+\lambda\left[\frac{(1-t)\left(z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)\right)}{z f^{\prime}(z)-t z f^{\prime}(z t)}\right]\right\}>\alpha \tag{1.2}
\end{equation*}
$$

$|t| \leq 1, t \neq 1,0 \leq \lambda \leq 1$, for some $\alpha \in[0,1)$ and for all $z \in \Delta$.

[^0]For, $\lambda=0$, the function $f(z) \in \mathcal{A}$ reduces to the Sakaguchi type class $S^{*}(\alpha, t)$ which satisfies

$$
\operatorname{Re}\left[\frac{(1-t) z f^{\prime}(z)}{f(z)-f(z t)}\right]>\alpha
$$

$|t| \leq 1, t \neq 1$, for some $\alpha \in[0,1)$ and for all $z \in \Delta$ was introduced and studied by Owa et al. $[6,7]$.

For $\lambda=0, \alpha=0$ and $t=-1$, we get the class $S^{*}(0,-1)$ studied by Sakaguchi [8]. A function $f(z) \in S^{*}(\alpha,-1)$ is called Sakaguchi function of order α.

For, $\lambda=1$, the function $f(z) \in \mathcal{A}$ reduces to the class $T(\alpha, t)$ which satisfies

$$
\operatorname{Re}\left[\frac{(1-t)\left(z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)\right)}{z f^{\prime}(z)-t z f^{\prime}(z t)}\right]>\alpha
$$

$|t| \leq 1, t \neq 1$, for some $\alpha \in[0,1)$ and for all $z \in \Delta$.
In this paper, we define the following class $M(\phi, \lambda, t)$ which is the generalization of the class $M(\alpha, \lambda, t)$.
Definition 1.1. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$ be univalent starlike function with respect to 1 which maps the unit disk Δ onto a region in the right half plane which is symmetric with respect to the real axis, and let $B_{1}>0$. The function $f \in \mathcal{A}$ is in the class $M(\phi, \lambda, t)$ if

$$
\begin{equation*}
(1-\lambda)\left[\frac{(1-t) z f^{\prime}(z)}{f(z)-f(z t)}\right]+\lambda\left[\frac{(1-t)\left(z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)\right)}{z f^{\prime}(z)-t z f^{\prime}(z t)}\right] \prec \phi(z) \tag{1.3}
\end{equation*}
$$

$|t| \leq 1, t \neq 1,0 \leq \lambda \leq 1$.
For $\lambda=0$ and $\lambda=1$ in (1.3) we obtain the classes $S^{*}(\phi, t)$ and $T(\phi, t)$ respectively which were studied by Goyal et al. [1].

In the present paper, we obtain the Fekete-Szegö inequality for the functions in the subclass $M(\phi, \lambda, t)$. We also give application of our results to certain functions defined through convolution (or Hadamard product) and in particular, we consider the class $M^{\gamma}(\phi, \lambda, t)$ defined by fractional derivatives.

To prove our main results, we need the following lemmas:
Lemma 1.2. [3] If $p_{1}(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is an analytic function with positive real part in Δ, then

$$
\left|c_{2}-v c_{1}^{2}\right| \leq \begin{cases}-4 v+2 & \text { if } v \leq 0 \\ 2 & \text { if } 0 \leq v \leq 1 \\ 4 v-2 & \text { if } v \geq 1\end{cases}
$$

When $v<0$ or $v>1$, the equality holds if and only if $p_{1}(z)$ is $(1+z) /(1-z)$ or one of its rotations. If $0<v<1$, then equality holds if and only if $p_{1}(z)$ is $\left(1+z^{2}\right) /\left(1-z^{2}\right)$ or one of its rotations. If $v=0$, the equality holds if and only if

$$
p_{1}(z)=\left(\frac{1}{2}+\frac{1}{2} \gamma\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} \gamma\right) \frac{1-z}{1+z} \quad(0 \leq \gamma \leq 1)
$$

or one of its rotations. If $v=1$, the equality holds if and only if $p_{1}(z)$ is the reciprocal of one of the functions such that the equality holds in the case of $v=0$. Also the above upper bound is sharp and it can be improved as follows when $0<v<1$:

$$
\left|c_{2}-v c_{1}^{2}\right|+v\left|c_{1}\right|^{2} \leq 2 \quad(0<v \leq 1 / 2)
$$

and

$$
\left|c_{2}-v c_{1}^{2}\right|+(1-v)\left|c_{1}\right|^{2} \leq 2 \quad(1 / 2<v \leq 1)
$$

Lemma 1.3. [2] If $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is a function with positive real part, then for any complex number μ,

$$
\left|c_{2}-\mu c_{1}^{2}\right| \leq 2 \max \{1,|2 \mu-1|\}
$$

and the result is sharp for the functions given by

$$
p(z)=\frac{1+z^{2}}{1-z^{2}}, \quad p(z)=\frac{1+z}{1-z}
$$

2. Main Results

Our main result is the following:
Theorem 2.1. If $f(z)$ given by (1.1) belongs to $M(\phi, \lambda, t)$, then
$\left|a_{3}-\mu a_{2}^{2}\right|$
$\leq \begin{cases}\frac{1}{(1+2 \lambda)(1-t)(2+t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}-\mu B_{1}^{2}\left(\frac{2+t}{1-t}\right) \frac{(1+2 \lambda)}{(1+\lambda)^{2}}\right] & \text { if } \mu \leq \sigma_{1}, \\ \frac{B_{1}}{(1+2 \lambda)(1-t)(2+t)} & \text { if } \sigma_{1} \leq \mu \leq \sigma_{2}, \\ -\frac{1}{(1+2 \lambda)(1-t)(2+t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}-\mu B_{1}^{2}\left(\frac{2+t}{1-t}\right) \frac{(1+2 \lambda)}{(1+\lambda)^{2}}\right] & \text { if } \mu \geq \sigma_{2}\end{cases}$
where

$$
\sigma_{1}:=\frac{(1-t)(1+\lambda)^{2}}{B_{1}(2+t)(1+2 \lambda)}\left[-1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}\right]
$$

and

$$
\sigma_{2}:=\frac{(1-t)(1+\lambda)^{2}}{B_{1}(2+t)(1+2 \lambda)}\left[1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}\right]
$$

The result is sharp.
Proof. Let $f \in M(\phi, \lambda, t)$. Then there exists a Schwarz function $\omega(z) \in \mathcal{A}$ such that

$$
\begin{equation*}
(1-\lambda)\left[\frac{(1-t) z f^{\prime}(z)}{f(z)-f(z t)}\right]+\lambda\left[\frac{(1-t)\left(z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)\right)}{z f^{\prime}(z)-t z f^{\prime}(z t)}\right]=\phi(\omega(z)) \tag{2.1}
\end{equation*}
$$

$(z \in \Delta ;|t| \leq 1, t \neq 1)$.
If $p_{1}(z)$ is analytic and has positive real part in Δ and $p_{1}(0)=1$, then

$$
\begin{equation*}
p_{1}(z)=\frac{1+\omega(z)}{1-\omega(z)}=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \Delta) \tag{2.2}
\end{equation*}
$$

From (2.2), we obtain

$$
\begin{equation*}
\omega(z)=\frac{c_{1}}{2} z+\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\cdots \tag{2.3}
\end{equation*}
$$

Let

$$
\begin{align*}
p(z) & =(1-\lambda)\left[\frac{(1-t) z f^{\prime}(z)}{f(z)-f(z t)}\right]+\lambda\left[\frac{(1-t)\left(z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)\right)}{z f^{\prime}(z)-t z f^{\prime}(z t)}\right] \\
& =1+b_{1} z+b_{2} z^{2}+\cdots \quad(z \in \Delta) \tag{2.4}
\end{align*}
$$

which gives

$$
\begin{equation*}
b_{1}=a_{2}(1-t)(1+\lambda) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{2}=a_{2}^{2}\left(t^{2}-1\right)(1+3 \lambda)+a_{3}\left(2-t-t^{2}\right)(1+2 \lambda) \tag{2.6}
\end{equation*}
$$

Since $\phi(z)$ is univalent and $p \prec \phi$, therefore using (2.3), we obtain

$$
\begin{equation*}
p(z)=\phi(\omega(z))=1+\frac{B_{1} c_{1}}{2} z+\left[\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) B_{1}+\frac{1}{4} c_{1}^{2} B_{2}\right] z^{2}+\cdots \quad(z \in \Delta) \tag{2.7}
\end{equation*}
$$

Now from (2.4), (2.5), (2.6) and (2.7), we have,

$$
\begin{gather*}
a_{2}(1-t)(1+\lambda)=\frac{B_{1} c_{1}}{2} \tag{2.8}\\
a_{2}^{2}\left(t^{2}-1\right)(1+3 \lambda)+a_{3}\left(2-t-t^{2}\right)(1+2 \lambda) \\
=\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) B_{1}+\frac{1}{4} c_{1}^{2} B_{2}, \quad|t| \leq 1, t \neq 1 \tag{2.9}
\end{gather*}
$$

Therefore, we have

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{B_{1}}{2(1+2 \lambda)(1-t)(2+t)}\left[c_{2}-v c_{1}^{2}\right] \tag{2.10}
\end{equation*}
$$

where

$$
v:=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}-B_{1}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}+\mu B_{1}\left(\frac{2+t}{1-t}\right) \frac{(1+2 \lambda)}{(1+\lambda)^{2}}\right]
$$

Our result now follows by an application of Lemma 1.2. To show that these bounds are sharp, we define the functions $K_{\delta}^{\phi}(\delta=2,3, \ldots)$ by

$$
\begin{aligned}
& (1-\lambda)\left[\frac{(1-t) z\left(K_{\delta}^{\phi}(z)\right)^{\prime}}{K_{\delta}^{\phi}(z)-K_{\delta}^{\phi}(z t)}\right]+\lambda\left[\frac{(1-t)\left(z^{2}\left(K_{\delta}^{\phi}(z)\right)^{\prime \prime}+z\left(K_{\delta}^{\phi}(z)\right)^{\prime}\right)}{z\left(K_{\delta}^{\phi}(z)\right)^{\prime}-t z\left(K_{\delta}^{\phi}(z t)\right)^{\prime}}\right] \\
& =\phi\left(z^{\delta-1}\right), \quad K_{\delta}^{\phi}(0)=0=\left(K_{\delta}^{\phi}(0)\right)^{\prime}-1
\end{aligned}
$$

and the function F_{γ} and $G_{\gamma}(0 \leq \gamma \leq 1)$ by

$$
\begin{aligned}
& (1-\lambda)\left[\frac{(1-t) z\left(F_{\gamma}(z)\right)^{\prime}}{F_{\gamma}(z)-F_{\gamma}(z t)}\right]+\lambda\left[\frac{(1-t)\left(z^{2}\left(F_{\gamma}(z)\right)^{\prime \prime}+z\left(F_{\gamma}(z)\right)^{\prime}\right)}{z\left(F_{\gamma}(z)\right)^{\prime}-t z\left(F_{\gamma}(z t)\right)^{\prime}}\right] \\
& =\phi\left(\frac{z(z+\gamma)}{1+\gamma z}\right), \quad F_{\gamma}(0)=0=\left(F_{\gamma}(0)\right)^{\prime}-1
\end{aligned}
$$

and

$$
\begin{aligned}
& (1-\lambda)\left[\frac{(1-t) z\left(G_{\gamma}(z)\right)^{\prime}}{G_{\gamma}(z)-G_{\gamma}(z t)}\right]+\lambda\left[\frac{(1-t)\left(z^{2}\left(G_{\gamma}(z)\right)^{\prime \prime}+z\left(G_{\gamma}(z)\right)^{\prime}\right)}{z\left(G_{\gamma}(z)\right)^{\prime}-t z\left(G_{\gamma}(z t)\right)^{\prime}}\right] \\
& =\phi\left(\frac{-z(z+\gamma)}{1+\gamma z}\right), \quad G_{\gamma}(0)=0=\left(G_{\gamma}(0)\right)^{\prime}-1
\end{aligned}
$$

Obviously, the functions $K_{\delta}^{\phi}, F_{\gamma}, G_{\gamma} \in M(\phi, \lambda, t)$. Also, we write $K^{\phi}:=K_{2}^{\phi}$. If $\mu<\sigma_{1}$ or $\mu>\sigma_{2}$, then equality holds if and only if f is K^{ϕ} or one of its rotations. When $\sigma_{1}<\mu<\sigma_{2}$, then equality holds if and only if f is K_{3}^{ϕ} or one of its rotations. If $\mu=\sigma_{1}$, then equality holds if and only if f is F_{γ} or one of its rotations. If $\mu=\sigma_{2}$, then equality holds if and only if f is G_{γ} or one of its rotations.

If $\sigma_{1} \leq \mu \leq \sigma_{2}$, in view of Lemma 1.2, Theorem 2.1 can be improved.

Let $f(z)$ given by (1.1) belongs to $M(\phi, \lambda, t)$ and σ_{3} be given by

$$
\sigma_{3}:=\frac{(1-t)(1+\lambda)^{2}}{B_{1}(2+t)(1+2 \lambda)}\left[\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}\right]
$$

If $\sigma_{1}<\mu \leq \sigma_{3}$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \\
& +\frac{1}{B_{1}^{2}}\left[\left(B_{1}-B_{2}\right)\left(\frac{1-t}{2+t}\right) \frac{(1+\lambda)^{2}}{(1+2 \lambda)}-B_{1}^{2}\left(\frac{1+t}{2+t}\right) \frac{(1+3 \lambda)}{(1+2 \lambda)}+\mu B_{1}^{2}\right]\left|a_{2}\right|^{2} \\
& \\
& \quad \leq \frac{B_{1}}{(1+2 \lambda)(1-t)(2+t)} .
\end{aligned}
$$

If $\sigma_{3}<\mu \leq \sigma_{2}$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \\
& +\frac{1}{B_{1}^{2}}\left[\left(B_{1}+B_{2}\right)\left(\frac{1-t}{2+t}\right) \frac{(1+\lambda)^{2}}{(1+2 \lambda)}+B_{1}^{2}\left(\frac{1+t}{2+t}\right) \frac{(1+3 \lambda)}{(1+2 \lambda)}-\mu B_{1}^{2}\right]\left|a_{2}\right|^{2} \\
& \quad \leq \frac{B_{1}}{(1+2 \lambda)(1-t)(2+t)} .
\end{aligned}
$$

Corollary 2.2. For $\lambda=1$ in Theorem 2.1, $f(z)$ given by (1.1) belongs to $T(\phi, t)$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \\
& \quad \leq \begin{cases}\frac{1}{3(1-t)(2+t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right)-\frac{3}{4} \mu B_{1}^{2}\left(\frac{2+t}{1-t}\right)\right] & \text { if } \mu \leq \sigma_{1}, \\
\frac{B_{1}}{3(1-t)(2+t)} & \text { if } \sigma_{1} \leq \mu \leq \sigma_{2}, \\
-\frac{1}{3(1-t)(2+t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right)-\frac{3}{4} \mu B_{1}^{2}\left(\frac{2+t}{1-t}\right)\right] & \text { if } \mu \geq \sigma_{2}\end{cases}
\end{aligned}
$$

where

$$
\sigma_{1}:=\frac{4(1-t)}{3 B_{1}(2+t)}\left[-1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)\right]
$$

and

$$
\sigma_{2}:=\frac{4(1-t)}{3 B_{1}(2+t)}\left[1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)\right]
$$

The result is sharp.
Also σ_{3} is given by

$$
\sigma_{3}:=\frac{4(1-t)}{3 B_{1}(2+t)}\left[\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)\right]
$$

If $\sigma_{1}<\mu \leq \sigma_{3}$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \\
& \quad+\frac{1}{B_{1}^{2}}\left[\left(B_{1}-B_{2}\right) \frac{4}{3}\left(\frac{1-t}{2+t}\right)-B_{1}^{2} \frac{4}{3}\left(\frac{1+t}{2+t}\right)+\mu B_{1}^{2}\right]\left|a_{2}\right|^{2} \\
& \quad \leq \frac{B_{1}}{3(1-t)(2+t)} .
\end{aligned}
$$

If $\sigma_{3}<\mu \leq \sigma_{2}$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \\
& \quad+\frac{1}{B_{1}^{2}}\left[\left(B_{1}+B_{2}\right) \frac{4}{3}\left(\frac{1-t}{2+t}\right)+B_{1}^{2} \frac{4}{3}\left(\frac{1+t}{2+t}\right)-\mu B_{1}^{2}\right]\left|a_{2}\right|^{2} \\
& \quad \leq \frac{B_{1}}{3(1-t)(2+t)} .
\end{aligned}
$$

Remark 2.3. When $\lambda=0$ in Theorem 2.1, $f(z)$ given by (1.1) belongs to $S^{*}(\phi, t)$ and the result coincides with a recent result of Goyal et al. [1].

Theorem 2.4. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$. If $f(z)$ given by (1.1) belongs to $M(\phi, \lambda, t)$, then

$$
\begin{align*}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{(1+2 \lambda)(1-t)(2+t)} \\
& \quad \max \left\{1,\left|\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}-\mu B_{1}\left(\frac{2+t}{1-t}\right) \frac{(1+2 \lambda)}{(1+\lambda)^{2}}\right|\right\} \tag{2.11}
\end{align*}
$$

This result is sharp.
Proof. By applying Lemma 1.3 in (2.10), we obtain the result (2.11).
The result (2.11) is sharp for the function defined by

$$
(1-\lambda)\left[\frac{(1-t) z f^{\prime}(z)}{f(z)-f(z t)}\right]+\lambda\left[\frac{(1-t)\left(z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)\right)}{z f^{\prime}(z)-t z f^{\prime}(z t)}\right]=\phi\left(z^{2}\right)
$$

and

$$
(1-\lambda)\left[\frac{(1-t) z f^{\prime}(z)}{f(z)-f(z t)}\right]+\lambda\left[\frac{(1-t)\left(z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)\right)}{z f^{\prime}(z)-t z f^{\prime}(z t)}\right]=\phi(z)
$$

Corollary 2.5. Let $\lambda=0$ in Theorem 2.4, $f(z)$ given by (1.1) belongs to $S^{*}(\phi, t)$. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{(1-t)(2+t)} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)-\mu B_{1}\left(\frac{2+t}{1-t}\right)\right|\right\}
$$

This result is sharp.
Corollary 2.6. Let $\lambda=1$ in Theorem 2.4. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$ and $f(z)$ given by (1.1) belongs to $T(\phi, t)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{3(1-t)(2+t)} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)-\mu B_{1} \frac{3}{4}\left(\frac{2+t}{1-t}\right)\right|\right\}
$$

This result is sharp.

3. Applications to Functions defined by
 Fractional Derivatives

For two analytic functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n}$, their convolution (or Hadamard product) is defined to be the function $(f * g) z=z+\sum_{n=2}^{\infty} a_{n} g_{n} z^{n}$. For a fixed $g \in \mathcal{A}$, let $M^{g}(\phi, \lambda, t), S^{g}(\phi, t), T^{g}(\phi, t)$
be the classes of functions $f \in \mathcal{A}$ for which $f * g$ belongs to $M(\phi, \lambda, t), S^{*}(\phi, t)$ and $T(\phi, t)$ respectively.

Definition 3.1. Let $f(z)$ be analytic in a simply connected region of the z-plane containing the origin. The fractional derivative of f of order γ is defined by

$$
\begin{equation*}
D_{z}^{\gamma} f(z)=\frac{1}{\Gamma(1-\gamma)} \frac{d}{d z} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{\gamma}} d \zeta \quad(0 \leq \gamma<1) \tag{3.1}
\end{equation*}
$$

where the multiplicity of $(z-\zeta)^{-\gamma}$ is removed by requiring that $\log (z-\zeta)$ is real for $(z-\zeta)>0$.

Using definition 3.1, Owa and Srivastava (see [4, 5]; see also [9, 10]) introduced a fractional derivative operator $\Omega^{\gamma}: \mathcal{A} \rightarrow \mathcal{A}$ defined by $\left(\Omega^{\gamma} f\right)(z)=\Gamma(2-\gamma) z^{\gamma} D_{z}^{\gamma} f(z),(\gamma \neq 2,3,4, \ldots)$. The classes $M^{\gamma}(\phi, \lambda, t), S^{\gamma}(\phi, t)$, $T^{\gamma}(\phi, t)$ consists of functions $f \in \mathcal{A}$ for which $\Omega^{\gamma} f$ belongs to $M(\phi, \lambda, t), S^{*}(\phi, t)$ and $T(\phi, t)$ respectively. The classes $M^{\gamma}(\phi, \lambda, t), S^{\gamma}(\phi, t), T^{\gamma}(\phi, t)$ is a special case of the classes $M^{g}(\phi, \lambda, t), \quad S^{g}(\phi, t)$ and $T^{g}(\phi, t)$ respectively, when

$$
g(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\gamma)}{\Gamma(n+1-\gamma)} z^{n} \quad(z \in \Delta)
$$

The classes $S^{g}(\phi, t)$ and $S^{\gamma}(\phi, t)$ were studied by Goyal et al. [1].
Now applying Theorem 2.1 for the function $(f * g)(z)=z+a_{2} g_{2} z^{2}+a_{3} g_{3} z^{3}+\cdots$ we get the following theorem after an obvious change of the parameter μ :

Theorem 3.2. Let $g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n} \quad\left(g_{n}>0\right)$. If $f(z)$ given by (1.1) belongs to $M^{g}(\phi, \lambda, t)$, then,
$\left|a_{3}-\mu a_{2}^{2}\right|$

$$
\leq \begin{cases}\frac{1}{g_{3}(1+2 \lambda)(1-t)(2+t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}-\mu B_{1}^{2} \frac{g_{3}}{g_{2}^{2}}\left(\frac{2+t}{1-t}\right) \frac{(1+2 \lambda)}{(1+\lambda)^{2}}\right] & \text { if } \mu \leq \eta_{1} \\ \frac{B_{1}}{g_{3}(1+2 \lambda)(1-t)(2+t)} & \text { if } \eta_{1} \leq \mu \leq \eta_{2} \\ -\frac{1}{g_{3}(1+2 \lambda)(1-t)(2+t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}-\mu B_{1}^{2} \frac{g_{3}}{g_{2}^{2}}\left(\frac{2+t}{1-t}\right) \frac{(1+2 \lambda)}{(1+\lambda)^{2}}\right] & \text { if } \mu \geq \eta_{2}\end{cases}
$$

where

$$
\eta_{1}:=\frac{g_{2}^{2}(1-t)(1+\lambda)^{2}}{g_{3} B_{1}(2+t)(1+2 \lambda)}\left[-1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}\right]
$$

and

$$
\eta_{2}:=\frac{g_{2}^{2}(1-t)(1+\lambda)^{2}}{g_{3} B_{1}(2+t)(1+2 \lambda)}\left[1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}\right]
$$

The result is sharp.

$$
\text { Since } \Omega^{\gamma} f(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\gamma)}{\Gamma(n+1-\gamma)} z^{n}
$$

we have

$$
\begin{equation*}
g_{2}:=\frac{\Gamma(3) \Gamma(2-\gamma)}{\Gamma(3-\gamma)}=\frac{2}{2-\gamma} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{3}:=\frac{\Gamma(4) \Gamma(2-\gamma)}{\Gamma(4-\gamma)}=\frac{6}{(2-\gamma)(3-\gamma)} \tag{3.3}
\end{equation*}
$$

For g_{2}, g_{3} given by (3.2) and (3.3) respectively, Theorem 3.2 reduces to the following:

Theorem 3.3. Let $\gamma<2$. If $f(z)$ given by (1.1) belongs to $M^{\gamma}(\phi, \lambda, t)$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \\
& \leq \begin{cases}\frac{(2-\gamma)(3-\gamma)}{6(1+2 \lambda)(1-t)(2+t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}-\frac{3}{2} \mu B_{1}^{2} \frac{(2-\gamma)}{(3-\gamma)}\left(\frac{2+t}{1-t}\right) \frac{(1+2 \lambda)}{(1+\lambda)^{2}}\right] & \text { if } \mu \leq \eta_{1}^{*}, \\
\frac{B_{1}(2-\gamma)(3-\gamma)}{6(1+2 \lambda)(1-t)(2+t)} & \text { if } \eta_{1}^{*} \leq \mu \leq \eta_{2}^{*}, \\
-\frac{(2-\gamma)(3-\gamma)}{6(1+2 \lambda)(1-t)(2+t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}-\frac{3}{2} \mu B_{1}^{2} \frac{(2-\gamma)}{(3-\gamma)}\left(\frac{2+t}{1-t}\right) \frac{(1+2 \lambda)}{(1+\lambda)^{2}}\right] & \text { if } \mu \geq \eta_{2}^{*},\end{cases}
\end{aligned}
$$

where

$$
\eta_{1}^{*}:=\frac{2(3-\gamma)(1-t)(1+\lambda)^{2}}{3(2-\gamma) B_{1}(2+t)(1+2 \lambda)}\left[-1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}\right]
$$

and

$$
\eta_{2}^{*}:=\frac{2(3-\gamma)(1-t)(1+\lambda)^{2}}{3(2-\gamma) B_{1}(2+t)(1+2 \lambda)}\left[1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}\right]
$$

The result is sharp.
Corollary 3.4. For $\lambda=1$ in Theorem 3.2, $f(z)$ given by (1.1) belongs to $T^{g}(\phi, t)$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \\
& \leq \begin{cases}\frac{1}{3 g_{3}(1-t)(2+t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right)-\frac{3}{4} \mu B_{1}^{2} \frac{g_{3}}{g_{2}^{2}}\left(\frac{2+t}{1-t}\right)\right] & \text { if } \mu \leq \eta_{1}, \\
\frac{B_{1}}{3 g_{3}(1-t)(2+t)} & \text { if } \eta_{1} \leq \mu \leq \eta_{2}, \\
-\frac{1}{3 g_{3}(1-t)(2+t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right)-\frac{3}{4} \mu B_{1}^{2} \frac{g_{3}}{g_{2}^{2}}\left(\frac{2+t}{1-t}\right)\right] & \text { if } \mu \geq \eta_{2},\end{cases}
\end{aligned}
$$

where

$$
\eta_{1}:=\frac{4 g_{2}^{2}(1-t)}{3 g_{3} B_{1}(2+t)}\left[-1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)\right]
$$

and

$$
\eta_{2}:=\frac{4 g_{2}^{2}(1-t)}{3 g_{3} B_{1}(2+t)}\left[1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)\right]
$$

The result is sharp.
Remark 3.5. When $\lambda=0$ in Theorem 3.2, $f(z)$ given by (1.1) belongs to $S^{g}(\phi, t)$ and the result coincides with a result of Goyal et al. [1].

Corollary 3.6. For $\lambda=1$ in Theorem 3.3, $f(z)$ given by (1.1) belongs to $T^{\gamma}(\phi, t)$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \\
& \leq \begin{cases}\frac{(2-\gamma)(3-\gamma)}{18(1-t)(2+t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right)-\frac{9}{8} \mu B_{1}^{2} \frac{(2-\gamma)}{(3-\gamma)}\left(\frac{2+t}{1-t}\right)\right] & \text { if } \mu \leq \eta_{1}^{*}, \\
\frac{B_{1}(2-\gamma)(3-\gamma)}{18(1-t)(2+t)} & \text { if } \eta_{1}^{*} \leq \mu \leq \eta_{2}^{*}, \\
-\frac{(2-\gamma)(3-\gamma)}{18(1-t)(2+t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right)-\frac{9}{8} \mu B_{1}^{2} \frac{(2-\gamma)}{(3-\gamma)}\left(\frac{2+t}{1-t}\right)\right] & \text { if } \mu \geq \eta_{2}^{*},\end{cases}
\end{aligned}
$$

where

$$
\eta_{1}^{*}:=\frac{8}{9}\left(\frac{3-\gamma}{2-\gamma}\right) \frac{(1-t)}{B_{1}(2+t)}\left[-1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)\right]
$$

and

$$
\eta_{2}^{*}:=\frac{8}{9}\left(\frac{3-\gamma}{2-\gamma}\right) \frac{(1-t)}{B_{1}(2+t)}\left[1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)\right]
$$

The result is sharp.
Remark 3.7. For $\lambda=0$ in Theorem 3.3, $f(z)$ given by (1.1) belongs to $S^{\gamma}(\phi, t)$ and the result coincides with a result of Goyal et al. [1].
Theorem 3.8. Let $g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n} \quad\left(g_{n}>0\right)$ and let the function $\phi(z)$ be given by $\phi(z)=1+\sum_{n=1}^{\infty} B_{n} z^{n}$. If $f(z)$ given by (1.1) belongs to $M^{g}(\phi, \lambda, t)$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{g_{3}(1+2 \lambda)(1-t)(2+t)} \\
& \quad \max \left\{1,\left|\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}-\mu B_{1} \frac{g_{3}}{g_{2}^{2}}\left(\frac{2+t}{1-t}\right) \frac{(1+2 \lambda)}{(1+\lambda)^{2}}\right|\right\}
\end{aligned}
$$

The proof of Theorem 3.8 is similar to Theorem 2.4, so the details are omitted.
Corollary 3.9. Let $\lambda=0$ in Theorem 3.8, $f(z)$ given by (1.1) belongs to $S^{g}(\phi, t)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{g_{3}(1-t)(2+t)} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)-\mu B_{1} \frac{g_{3}}{g_{2}^{2}}\left(\frac{2+t}{1-t}\right)\right|\right\}
$$

Corollary 3.10. Let $\lambda=1$ in Theorem 3.8, $f(z)$ given by (1.1) belongs to $T^{g}(\phi, t)$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{3 g_{3}(1-t)(2+t)} \\
& \quad \max \left\{1,\left|\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)-\frac{3}{4} \mu B_{1} \frac{g_{3}}{g_{2}^{2}}\left(\frac{2+t}{1-t}\right)\right|\right\}
\end{aligned}
$$

For g_{2}, g_{3} given by (3.2) and (3.3) respectively, Theorem 3.8 reduces to the following:

Theorem 3.11. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$. If $f(z)$ given by (1.1) belongs to $M^{\gamma}(\phi, \lambda, t)$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}(2-\gamma)(3-\gamma)}{6(1+2 \lambda)(1-t)(2+t)} \\
& \quad \max \left\{1,\left|\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right) \frac{(1+3 \lambda)}{(1+\lambda)^{2}}-\frac{3}{2} \mu B_{1}\left(\frac{2-\gamma}{3-\gamma}\right)\left(\frac{2+t}{1-t}\right) \frac{(1+2 \lambda)}{(1+\lambda)^{2}}\right|\right\}
\end{aligned}
$$

The result is sharp.
Corollary 3.12. Let $\lambda=0$ in Theorem 3.11, $f(z)$ given by (1.1) belongs to $S^{\gamma}(\phi, t)$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}(2-\gamma)(3-\gamma)}{6(1-t)(2+t)} \\
& \quad \max \left\{1,\left|\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)-\frac{3}{2} \mu B_{1}\left(\frac{2-\gamma}{3-\gamma}\right)\left(\frac{2+t}{1-t}\right)\right|\right\}
\end{aligned}
$$

Corollary 3.13. Let $\lambda=1$ in Theorem 3.11, $f(z)$ given by (1.1) belongs to $T^{\gamma}(\phi, t)$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}(2-\gamma)(3-\gamma)}{18(1-t)(2+t)} \\
& \quad \max \left\{1,\left|\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)-\frac{9}{8} \mu B_{1}\left(\frac{2-\gamma}{3-\gamma}\right)\left(\frac{2+t}{1-t}\right)\right|\right\}
\end{aligned}
$$

Acknowledgement:
The first author thanks the support provided by Science and Engineering Research Board, New Delhi - 110 016.Project no:SR/S4/MS:716/10 with titled "On Classes of Certain Analytic Univalent Functions and Sakaguchi Type Functions".

References

[1] S.P. Goyal, Pranay Goswami, Certain Coefficient Inequalities for Sakaguchi Type Functions and Applications to Fractional Derivative Operator, Acta Universitatis Apulensis, No. 19 (2009), 159-166.
[2] F.R. Keogh and E.P. Merkes, A coefficient Inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
[3] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in : Proceedings of the Conference on Complex Analysis, (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA (1994).
[4] S. Owa, On distortion theorems I, Kyunpook Math. J., 18(1) (1978), 53-59.
[5] S. Owa and H.M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39(5) (1987), 1057-1077.
[6] S. Owa, T. Sekine and R. Yamakawa, Notes on Sakaguchi type functions, RIMS Kokyuroku, 1414 (2005), 76-82.
[7] S. Owa, T. Sekine and R. Yamakawa, On Sakaguchi type functions, Appl. Math. Comput., 187 (2007), 356-361.
[8] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc., Japan, 11 (1959), 72-75.
[9] H.M. Srivastava and S. Owa, An application of fractional derivative, Math. Japon., 29(3) (1984), 383-389.
[10] H.M. Srivastava and S. Owa, Univalent Functions, Fractional Calculus and Their Applications, Halsted Press / John Wiley and Sons, Chichester / New York, 1989.
B. Srutha Keerthi

Department of Applied Mathematics, Sri Venkateswara College of Engineering, Sriperumbudur, Chennai - 602 105, India

E-mail address: sruthilaya06@yahoo.co.in
V.G. Shanthi

Department of Mathematics, S.D.n.B. Vaishnav College for Women, Chromepet, Chennai - 600 044, India

E-mail address: vg.shanthi1@gmail.com
B. Adolf Stephen

Department of Mathematics, Madras Christian College, Tambaram, Chennai - 600059
E-mail address: adolfmcc2003@yahoo.co.in

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Sakaguchi functions, Analytic functions, Subordination, Fekete-Szegö inequality, Fractional derivatives.
 © 2012 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted November 2, 2011. Published March 21, 2012.

