INTEGRAL TYPE MODIFICATION FOR q-LAGUERRE POLYNOMIALS

(COMMUNICATED BY PROFESSOR F. MARCELLAN)

GÜRHAN İÇÖZ, SERHAN VARMA AND FATMA TAŞDELEN

Abstract

Ozarslan gave the approximation properties of linear positive operators including the q-Laguerre polynomials in 13. In this paper, we will give Kantorovich type generalization for this operator with the help of Riemann type q-integral. We also get approximation properties for the generalized operator with modulus.

1. Introduction

In 1960, The Meyer-König and Zeller operators

$$
M_{n}(f ; x)=\sum_{k=0}^{\infty} f\left(\frac{k}{k+n+1}\right)\binom{n+k}{k} x^{k}(1-x)^{n+1}
$$

$(0 \leq x<1)$ were introduced by Meyer-König and Zeller in [11.
In order to give the monotonicity properties, Cheney and Sharma [1] modified these operators as:

$$
M_{n}^{*}(f ; x)=\sum_{k=0}^{\infty} f\left(\frac{k}{k+n}\right)\binom{n+k}{k} x^{k}(1-x)^{n+1}
$$

$(0 \leq x<1)$.
In [1], they also introduced the operators

$$
P_{n}(f ; x)=\exp \left(\frac{t x}{1-x}\right) \sum_{k=0}^{\infty} f\left(\frac{k}{k+n}\right) L_{k}^{(n)}(t) x^{k}(1-x)^{n+1}
$$

$(0 \leq x<1$ and $-\infty<t \leq 0)$ where $L_{k}^{(n)}(t)$ denotes the Laguerre polynomials. Since $L_{k}^{(n)}(0)=\binom{n+k}{k}$, then $M_{n}^{*}(f ; x)$ is the special case of the operators $P_{n}(f ; x)$.

[^0]The q-type generalization of the linear positive operators was initiated by Phillips in [14]. He introduced the q-type generalization of the classical Bernstein operator and obtained the rate of convergence and the Voronovskaja type asymptotic formula for these operators.
q-Laguerre polynomials were defined by (Hahn [7, p. 29], Jackson [8, p. 57] and Moak [12, p. 21, eq. 23])

$$
L_{n}^{(\alpha)}(x ; q)=\frac{\left(q^{\alpha+1} ; q\right)_{n}}{(q ; q)_{n}} \sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k} q^{\binom{k}{2}}(1-q)^{k}\left(q^{n+\alpha+1} x\right)^{k}}{\left(q^{\alpha+1} ; q\right)_{k}(q ; q)_{k}}
$$

where

$$
(\alpha ; q)_{n}=\left\{\begin{array}{cc}
1 & ; n=0 \\
(1-\alpha)(1-\alpha q) \ldots\left(1-\alpha q^{n-1}\right) & ; n \in \mathbb{N}, \alpha \in \mathbb{C}
\end{array}\right.
$$

Moak gave the following recurrence relation [12, p. 29, eq. 4.14] and generating function [12, p. 29, eq. 4.17] for the q-Laguerre polynomials:

$$
\begin{align*}
t L_{k-1}^{(\alpha+1)}(t ; q)= & {[k+\alpha] q^{-\alpha-k} L_{k-1}^{(\alpha)}(t ; q)-[k] q^{-\alpha-k} L_{k}^{(\alpha)}(t ; q) } \\
& (\operatorname{Re} \alpha>-1, k=1,2, \ldots), \\
F_{\alpha}(x, t)= & \frac{\left(x q^{\alpha+1} ; q\right)_{\infty}}{(x ; q)_{\infty}} \sum_{m=0}^{\infty} \frac{q^{m^{2}+\alpha m}[-(1-q) x t]^{m}}{(q ; q)_{m}\left(x q^{\alpha+1} ; q\right)_{m}} \\
= & \sum_{k=0}^{\infty} L_{k}^{(\alpha)}(t ; q) x^{k} \quad(\operatorname{Re} \alpha>1) \tag{1.1}
\end{align*}
$$

where

$$
(a ; q)_{\infty}=\prod_{j=0}^{\infty}\left(1-a q^{j}\right), \quad(a \in \mathbb{C})
$$

Trif [16] defined the Meyer-König and Zeller operators based on q-integer as follows:

$$
M_{n, q}(f ; x)=\prod_{j=0}^{n}\left(1-q^{j} x\right) \sum_{k=0}^{\infty} f\left(\frac{[k]}{[k+n]}\right)\left[\begin{array}{c}
n+k \\
k
\end{array}\right] x^{k}
$$

$(0 \leq x<1)$ where

$$
\begin{gathered}
{[k]=\left\{\begin{array}{cc}
\left(1-q^{k}\right) /(1-q) & ; q \neq 1 \\
1 & ; q=1
\end{array},\right.} \\
{[k]!=\left\{\begin{array}{cc}
{[1][2] \ldots[k]} & ; k \geq 1 \\
1 & ; k=0
\end{array}\right.}
\end{gathered}
$$

and

$$
\left[\begin{array}{c}
n+k \\
k
\end{array}\right]=\frac{[n+k]!}{[n]![k]!}
$$

$(k, n \in \mathbb{N})$ for $q \in(0,1]$.
In [13], Özarslan defined the q-analogue for $P_{n}(f ; x)$ operators as follow:

$$
\begin{equation*}
P_{n, q}(f ; x)=\frac{1}{F_{n}(x, t)} \sum_{k=0}^{\infty} f\left(\frac{[k]}{[k+n]}\right) L_{k}^{(n)}(t ; q) x^{k} \tag{1.2}
\end{equation*}
$$

where $x \in[0,1], t \in(-\infty, 0], q \in(0,1]$ and $\left\{F_{n}(x, t)\right\}_{n \in \mathbb{N}}$ is the generating functions for the q-Laguerre polynomials. Since $L_{k}^{(n)}(0 ; q)=\left[\begin{array}{c}n+k \\ k\end{array}\right]$ and $F_{n}(x, 0)=\prod_{j=0}^{n}\left(1-q^{j} x\right)$, then $M_{n, q}(f ; x)$ is the special case of the operators $P_{n, q}(f ; x)$.

Let us recall the concepts of q -differential, q -derivative and q -integral respectively.

For an arbitrary function $f(x)$, the q-differential is given by

$$
d_{q} f(x)=f(q x)-f(x) .
$$

For an arbitrary function $f(x)$, the q -derivative is defined as

$$
D_{q} f(x)=\frac{d_{q} f(x)}{d_{q} x}=\frac{f(q x)-f(x)}{(q-1) x} .
$$

Now suppose that $0<a<b, 0<q<1$ and f is a real-valued function. The qJackson integral of f over the interval $[0, b]$ and a general interval $[a, b]$ are defined by (see 9)

$$
\int_{0}^{a} f(t) d_{q} t=(1-q) a \sum_{j=0}^{\infty} f\left(q^{j} a\right) q^{j}
$$

and

$$
\int_{a}^{b} f(t) d_{q} t=\int_{0}^{b} f(t) d_{q} t-\int_{0}^{a} f(t) d_{q} t
$$

respectively.
It is clear that q-Jackson integral of f over an interval $[a, b]$ contains two infinite sums, so some problems are encountered in deriving the q-analogues of some wellknown integral inequalities which are used to compute order of approximation of linear positive operators containing q-Jackson integral. In order to overcome these problems Gauchman [5] and Marinković et al. 10] introduced a new type of qintegral. This new q-integral is called as Riemann type q-integral and defined by

$$
\int_{a}^{b} f(t) d_{q}^{R} t=(1-q)(b-a) \sum_{j=0}^{\infty} f\left(a+(b-a) q^{j}\right) q^{j}
$$

where a, b and q are some real numbers such that $0<a<b$ and $0<q<1$. Contrary to the classical definition of q-integral, this definition includes only points within the interval of integration.

Now, we give a Kantorovich type generalization of operators $P_{n}, M_{n}^{*}, M_{n, q}$ and $P_{n, q}$. This Kantorovich type generalization was studied by Dalmanoğlu [3], Radu [15] and etc. We consider the sequence of Kantorovich type linear positive operators as follow:

$$
\begin{equation*}
\left(K_{n, q} f\right)(x, t)=\frac{1}{F_{n, q}(x, t)} \sum_{k=0}^{\infty}\left(\int_{[k] /[n+k]}^{[k+1] /[n+k]} f(t) d_{q}^{R} t\right) q^{-k}[n+k] L_{k}^{(n)}(t ; q) x^{k}, \tag{1.3}
\end{equation*}
$$

where $x \in[0,1], t \in(-\infty, 0], q \in(0,1], n>1$ and $\left\{F_{n}(x, t)\right\}_{n \in \mathbb{N}}$ is the generating functions for the q-Laguerre polynomials which was given in (1.1).

2. Approximation Properties of the $\left(K_{n, q} f\right)(x, t)$ Operators

We have the following theorem for the convergence of $\left(K_{n, q} f\right)(x, t)$ operators.
Theorem 1. Let $q:=q_{n}$ be a sequence satisfying $\lim _{n} q_{n}=1$ and $0<q_{n}<1$. If $f \in C[0,1]$ and $\frac{|t|}{[n]} \rightarrow 0(n \rightarrow \infty)$ then $\left(K_{n, q} f\right)$ converges to f uniformly on $[0, b]$ $(0<b<1)$.
Proof. By Korovkin's theorem, it is sufficient for us to prove that $\left(K_{n, q} f\right)$ is a positive linear operator and that the desired convergence occurs whenever f is a quadratic function. It is obvious that $\left(K_{n, q} f\right)$ is linear and positive operators.

$$
\left(K_{n, q} e_{0}\right)(x, t)=\frac{1}{F_{n, q}(x, t)} \sum_{k=0}^{\infty}\left(\int_{[k] /[n+k]}^{[k+1] /[n+k]} d_{q}^{R} t\right) q^{-k}[n+k] L_{k}^{(n)}(t ; q) x^{k}
$$

Since

$$
\int_{[k] /[n+k]}^{[k+1] /[n+k]} d_{q}^{R} t=\frac{q^{k}}{[n+k]}
$$

and from (1.1), we get

$$
\begin{equation*}
\left(K_{n, q} e_{0}\right)(x, t)=1 \tag{2.1}
\end{equation*}
$$

By considering the function $f(s)=e_{1}(s)=s$, we obtain

$$
\left(K_{n, q} e_{1}\right)(x, t)=\frac{1}{F_{n}(x, t)} \sum_{k=0}^{\infty}\left(\int_{[k] /[n+k]}^{[k+1] /[n+k]} t d_{q}^{R} t\right) q^{-k}[n+k] L_{k}^{(n)}(t ; q) x^{k}
$$

One can easily compute that

$$
\int_{[k] /[n+k]}^{[k+1] /[n+k]} t d_{q}^{R} t=\frac{q^{k}}{[n+k]^{2}}\left([k]+\frac{q^{k}}{[2]}\right),
$$

then we have

$$
\left(K_{n, q} e_{1}\right)(x, t)=\frac{1}{F_{n}(x, t)} \sum_{k=0}^{\infty} \frac{1}{[n+k]}\left([k]+\frac{q^{k}}{[2]}\right) L_{k}^{(n)}(t ; q) x^{k}
$$

Since $q^{k}<1$ for $0<q<1$ and $[k+n] \geq[n]$, we can write

$$
\left(K_{n, q} e_{1}\right)(x, t) \leq P_{n, q}\left(e_{1} ; x\right)+\frac{1}{[2][n]} P_{n, q}\left(e_{0} ; x\right)
$$

If we use $P_{n, q}\left(e_{0} ; x\right)=1$ and $P_{n, q}\left(e_{1} ; x\right) \leq x-\frac{t x}{[n]\left(1-b q^{n+1}\right)}$ from [13], then we get

$$
\begin{equation*}
\left(K_{n, q} e_{1}\right)(x, t)-x \leq-\frac{t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]} \tag{2.2}
\end{equation*}
$$

On the other hand, we see

$$
\left(K_{n, q} e_{1}\right)(x, t) \geq P_{n, q}\left(e_{1} ; x\right) .
$$

If we use $P_{n, q}\left(e_{1} ; x\right) \geq x$ from [13, we obtain

$$
\begin{equation*}
\left(K_{n, q} e_{1}\right)(x, t) \geq x \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3), we have

$$
\begin{equation*}
0 \leq\left(K_{n, q} e_{1}\right)(x, t)-x \leq-\frac{t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]} \tag{2.4}
\end{equation*}
$$

From (2.4), it is obvious that

$$
\begin{equation*}
\left\|\left(K_{n, q} e_{1}\right)(x, t)-x\right\|_{C[0, b]} \leq \frac{|t| b}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]} \tag{2.5}
\end{equation*}
$$

We proceed with the consideration of the function $f(s)=e_{2}(s)=s^{2}$.

$$
\left(K_{n, q} e_{2}\right)(x, t)=\frac{1}{F_{n}(x, t)} \sum_{k=0}^{\infty}\left(\int_{[k] /[n+k]}^{[k+1] /[n+k]} t^{2} d_{q}^{R} t\right) q^{-k}[n+k] L_{k}^{(n)}(t ; q) x^{k}
$$

One can easily see that

$$
\int_{[k] /[n+k]}^{[k+1] /[n+k]} t^{2} d_{q}^{R} t=\frac{q^{k}}{[n+k]^{3}}\left([k]^{2}+\frac{2 q^{k}}{[2]}[k]+\frac{q^{2 k}}{[3]}\right) .
$$

So, we acquire

$$
\left(K_{n, q} e_{2}\right)(x, t)=\frac{1}{F_{n}(x, t)} \sum_{k=0}^{\infty} \frac{1}{[n+k]^{2}}\left([k]^{2}+\frac{2 q^{k}}{[2]}[k]+\frac{q^{2 k}}{[3]}\right) L_{k}^{(n)}(t ; q) x^{k} .
$$

Since $q^{k}<1$ for $0<q<1$ and $[k+n] \geq[n]$, we can write

$$
\left(K_{n, q} e_{2}\right)(x, t) \leq P_{n, q}\left(e_{2} ; x\right)+\frac{2}{[2][n]} P_{n, q}\left(e_{1} ; x\right)+\frac{1}{[3][n]^{2}} P_{n, q}\left(e_{0} ; x\right) .
$$

If we use $P_{n, q}\left(e_{0} ; x\right)=1, P_{n, q}\left(e_{1} ; x\right) \leq x-\frac{t x}{[n]\left(1-b q^{n+1}\right)}$ and

$$
P_{n, q}\left(e_{2} ; x\right) \leq x^{2}-\frac{t\left(x^{2}+x\right)}{[n]\left(1-b q^{n+1}\right)}+\frac{x}{[n]},
$$

from [13], then we get

$$
\begin{align*}
\left(K_{n, q} e_{2}\right)(x, t)-x^{2} \leq & -\frac{t\left(x^{2}+x\right)}{[n]\left(1-b q^{n+1}\right)}+\frac{x}{[n]}+\frac{1}{[3][n]^{2}} \\
& +\frac{2}{[2][n]}\left(x-\frac{t x}{[n]\left(1-b q^{n+1}\right)}\right) \tag{2.6}
\end{align*}
$$

On the other hand, using the equality

$$
s^{2}=(s-x)^{2}+2 x s-x^{2}
$$

we may write

$$
\left(K_{n, q} e_{2}\right)(x, t)-x^{2}=\left(K_{n, q}\left(e_{1}-x\right)^{2}\right)(x, t)+2 x\left(K_{n, q}\left(e_{1}-x\right)\right)(x, t) .
$$

By (2.4) and positivity of $K_{n, q}$, it follows that

$$
\begin{equation*}
\left(K_{n, q} e_{2}\right)(x, t)-x^{2} \geq 0 \tag{2.7}
\end{equation*}
$$

Thus from (2.6) and (2.7), we have

$$
\begin{align*}
& 0 \leq\left(K_{n, q} e_{2}\right)(x, t)-x^{2} \leq-\frac{t\left(x^{2}+x\right)}{[n]\left(1-b q^{n+1}\right)}+\frac{x}{[n]}+\frac{1}{[3][n]^{2}} \\
&+\frac{2}{[2][n]}\left(x-\frac{t x}{[n]\left(1-b q^{n+1}\right)}\right) \tag{2.8}
\end{align*}
$$

From (2.8), it is clear that

$$
\begin{array}{r}
\left\|\left(K_{n, q} e_{2}\right)(x, t)-x^{2}\right\|_{C[0, b]} \leq \frac{|t|\left(b^{2}+b\right)}{[n]\left(1-b q^{n+1}\right)}+\frac{2|t| b}{[2][n]^{2}\left(1-b q^{n+1}\right)} \\
+\left(1+\frac{2}{[2]}\right) \frac{b}{[n]}+\frac{1}{[3][n]^{2}} \tag{2.9}
\end{array}
$$

After replacing q by a sequence q_{n} such that $\lim _{n} q_{n}=1$, we have from (2.1), (2.5) and (2.9) $\left(K_{n, q} e_{i}\right)\left(x, t_{0}\right) \rightrightarrows e_{i}(x)=x^{i}(i=0,1,2$.) on $[0, b]$.

3. Rates of Convergence

In this section, we compute the rates of convergence by means of modulus of continuity, elements of Lipschitz class and second order modulus of smoothness.

Let $f \in C[0, b]$. The modulus of continuity of f denotes by $\omega(f, \delta)$, is defined to be

$$
\omega(f, \delta)=\sup _{\substack{s, x \in[0, b] \\|s-x|<\delta}}|f(s)-f(x)|
$$

It is well known that a necessary and sufficient condition for a function $f \in C[0, b]$ is

$$
\lim _{\delta \rightarrow 0} \omega(f, \delta)=0
$$

It is also well known that for any $\delta>0$ and each $s \in[0, b]$

$$
\begin{equation*}
|f(s)-f(x)| \leq \omega(f, \delta)\left(1+\frac{|s-x|}{\delta}\right) \tag{3.1}
\end{equation*}
$$

Before giving the theorem on the rate of convergence of the operator $K_{n, q} f$, let us first examine its second moment:

$$
\begin{aligned}
&\left(K_{n, q}\left(e_{1}-x\right)^{2}\right)(x, t)=\left(K_{n, q} e_{2}\right)(x, t)-x^{2}-2 x\left[\left(K_{n, q} e_{1}\right)(x, t)-x\right] \\
&\left\|\left(K_{n, q}\left(e_{1}-x\right)^{2}\right)(x, t)\right\|_{C[0, b]} \leq\left\|\left(K_{n, q} e_{2}\right)(x, t)-x^{2}\right\|_{C[0, b]} \\
&+2\|x\|_{C[0, b]}\left\|\left(K_{n, q} e_{1}\right)(x, t)-x\right\|_{C[0, b]} .
\end{aligned}
$$

Using (2.9) and (2.5), we can write

$$
\begin{align*}
\left\|\left(K_{n, q}\left(e_{1}-x\right)^{2}\right)(x, t)\right\|_{C[0, b]} \leq & \frac{|t|\left(3 b^{2}+b\right)}{[n]\left(1-b q^{n+1}\right)}+\frac{2|t| b}{[2][n]^{2}\left(1-b q^{n+1}\right)} \\
& +\left(1+\frac{4}{[2]}\right) \frac{b}{[n]}+\frac{1}{[3][n]^{2}} . \tag{3.2}
\end{align*}
$$

The following theorem gives the rate of convergence of the operator $K_{n, q} f$ to the function f by means of modulus of continuity.

Theorem 2. Let $q:=q_{n}$ be a sequence satisfying $\lim _{n} q_{n}=1$ and $0<q_{n}<1$. For all $f \in C[0, b]$ and $\frac{|t|}{[n]} \rightarrow 0(n \rightarrow \infty)$

$$
\begin{equation*}
\left\|\left(K_{n, q} f\right)(x, t)-f(x)\right\|_{C[0, b]} \leq 2 \omega\left(f, \delta_{n}\right) \tag{3.3}
\end{equation*}
$$

where

$$
\delta_{n}=\left[\frac{|t|\left(3 b^{2}+b\right)}{[n]\left(1-b q^{n+1}\right)}+\frac{2|t| b}{[2][n]^{2}\left(1-b q^{n+1}\right)}+\left(1+\frac{4}{[2]}\right) \frac{b}{[n]}+\frac{1}{[3][n]^{2}}\right]^{1 / 2}
$$

Proof. Let $f \in C[0, b]$. By using (3.1), linearity and monotonicity of $K_{n, q} f$, we obtain

$$
\begin{align*}
\left|\left(K_{n, q} f\right)(x, t)-f(x)\right| & \leq\left(K_{n, q}|f(s)-f(x)|\right)(x, t) \\
& \leq \omega(f, \delta)\left(K_{n, q}\left(1+\frac{|s-x|}{\delta}\right)\right)(x, t) \\
& =\omega(f, \delta)\left[1+\frac{1}{\delta}\left(K_{n, q}|s-x|\right)(x, t)\right] . \tag{3.4}
\end{align*}
$$

In [2], Dalmanoğlu and Doğru show that the Riemann type q-integral is a positive operator and it satisfies the following Hölder's inequality:

Let $0<a<b, 0<q<1$ and $\frac{1}{m}+\frac{1}{n}=1$. Then

$$
\begin{equation*}
R_{q}(|f g| ; a ; b) \leq\left(R_{q}\left(|f|^{m} ; a ; b\right)\right)^{1 / m}\left(R_{q}\left(|g|^{n} ; a ; b\right)\right)^{1 / n} \tag{3.5}
\end{equation*}
$$

Therefore, by using the Cauchy-Schwarz inequality for the Riemann type q-integral with $m=2$ and $n=2$ in (3.5), we have

$$
\int_{[k] /[n+k]}^{[k+1] /[n+k]}|t-x| d_{q}^{R} t \leq\left(\int_{[k] /[n+k]}^{[k+1] /[n+k]}(t-x)^{2} d_{q}^{R} t\right)^{1 / 2}\left(\int_{[k] /[n+k]}^{[k+1] /[n+k]} d_{q}^{R} t\right)^{1 / 2}
$$

Now applying the Cauchy-Schwarz inequality for the sum with $p=\frac{1}{2}$ and $q=\frac{1}{2}$ and taking into consideration (3.2), one can write

$$
\begin{align*}
& \left(K_{n, q}|s-x|\right)(x, t) \leq \\
& \\
& \quad\left\{\sum_{k=0}^{\infty} \frac{1}{F_{n, q}(x, t)}\left(\int_{[k] /[n+k]}^{[k+1] /[n+k]}(t-x)^{2} d_{q}^{R} t\right) q^{-k}[n+k] L_{k}^{(n)}(t ; q) x^{k}\right\}^{1 / 2} \\
& \\
& \quad \times\left\{\sum_{k=0}^{\infty} \frac{1}{F_{n, q}(x, t)}\left(\int_{[k] /[n+k]}^{[k+1] /[n+k]} d_{q}^{R} t\right) q^{-k}[n+k] L_{k}^{(n)}(t ; q) x^{k}\right\}^{1 / 2} \tag{3..6}\\
& = \\
& \leq \\
& \leq\left[-\frac{t\left(3 b^{2}+b\right)}{[n]\left(1-b q^{n+1}\right)}-\frac{2 t b}{[2][n]^{2}\left(1-b q^{n+1}\right)}+\left(1+\frac{4}{[2]}\right) \frac{b}{[n]}+\frac{1}{[3][n]^{2}}\right]^{1 / 2}(3 .
\end{align*}
$$

If we write (3.6) in (3.4) and choose $\delta=\delta_{n}$, then we arrive at the desired result.

Next, we compute the approximation order of operator $K_{n, q} f$ in term of the elements of the usual Lipschitz class.

Let $f \in C[0, b]$ and $0<\alpha \leq 1$. We recall that f belongs to $\operatorname{Lip}_{M}(\alpha)$ if the inequality

$$
\begin{equation*}
|f(\zeta)-f(\eta)| \leq M|\zeta-\eta|^{\alpha} ; \zeta, \eta \in[0, b] \tag{3.7}
\end{equation*}
$$

holds.
Theorem 3. Let $q:=q_{n}$ be a sequence satisfying $\lim _{n} q_{n}=1$ and $0<q_{n}<1$. For all $f \in \operatorname{Lip}_{M}(\alpha)$ and $\frac{|t|}{[n]} \rightarrow 0(n \rightarrow \infty)$

$$
\begin{equation*}
\left\|\left(K_{n, q} f\right)(x, t)-f(x)\right\|_{C[0, b]} \leq M \delta_{n}^{\alpha} \tag{3.8}
\end{equation*}
$$

where δ_{n} is the same as in Theorem 2.
Proof. Let $f \in C[0, b]$. By (3.7), linearity and monotonicity of $K_{n, q} f$, we have

$$
\begin{align*}
\left|\left(K_{n, q} f\right)(x, t)-f(x)\right| \leq & \left(K_{n, q}|f(s)-f(x)|\right)(x, t) \\
\leq & \frac{M}{F_{n, q}(x, t)} \\
& \times \sum_{k=0}^{\infty}\left(\int_{[k] /[n+k]}^{[k+1] /[n+k]}|t-x|^{\alpha} d_{q}^{R} t\right) q^{-k}[n+k] L_{k}^{(n)}(t ; q) x^{k} . \tag{3.9}
\end{align*}
$$

On the other hand, by using the Hölder inequality for the Riemann type q-integral with $m=\frac{2}{\alpha}$ and $n=\frac{2}{2-\alpha}$, we have

$$
\int_{[k] /[n+k]}^{[k+1] /[n+k]}|t-x|^{\alpha} d_{q}^{R} t \leq\left(\int_{[k] /[n+k]}^{[k+1] /[n+k]}(t-x)^{2} d_{q}^{R} t\right)^{\alpha / 2}\left(\int_{[k] /[n+k]}^{[k+1] /[n+k]} d_{q}^{R} t\right)^{(2-\alpha) / 2}
$$

If we write above inequality in (3.9) and then apply the Hölder inequality for the sum with $p=\frac{2}{\alpha}$ and $q=\frac{2}{2-\alpha}$, we get

$$
\begin{aligned}
& \left|\left(K_{n, q} f\right)(x, t)-f(x)\right| \leq \\
& \quad M\left[\sum_{k=0}^{\infty} \frac{1}{F_{n, q}(x, t)}\left(\int_{[k] /[n+k]}^{[k+1] /[n+k]}(t-x)^{2} d_{q}^{R} t\right) q^{-k}[n+k] L_{k}^{(n)}(t ; q) x^{k}\right]^{\alpha / 2} \\
& \quad \times\left[\sum_{k=0}^{\infty} \frac{1}{F_{n, q}(x, t)}\left(\int_{[k] /[n+k]}^{[k+1] /[n+k]} d_{q}^{R} t\right) q^{-k}[n+k] L_{k}^{(n)}(t ; q) x^{k}\right]^{(2-\alpha) / 2}
\end{aligned}
$$

and so we have

$$
\left|\left(K_{n, q} f\right)(x, t)-f(x)\right| \leq M\left(\left(K_{n, q}\left(e_{1}-x\right)^{2}\right)(x, t)\right)^{\alpha / 2}
$$

If we use (3.2) and choose $\delta=\delta_{n}$, then the proof is completed.

Finally, we establish a local approximation theorem for the operator $K_{n, q} f$.
Let $\Omega^{2}:=\left\{g \in C[0, b]: g^{\prime}, g^{\prime \prime} \in C[0, b]\right\}$. For any $\delta>0$, the Peetre's Kfunctional is defined by

$$
K_{2}(\varphi ; \delta)=\inf _{g \in \Omega^{2}}\left\{\|\varphi-g\|+\delta\left\|g^{\prime \prime}\right\|\right\}
$$

where $\|$.$\| is the uniform norm on C[0, b]$ (see [6]). From [4](p.177, Theorem 2.4), there exists an absolute constant $C>0$ such that

$$
\begin{equation*}
K_{2}(f ; \delta) \leq C \omega_{2}(f ; \sqrt{\delta}) \tag{3.10}
\end{equation*}
$$

where the second order modulus of smoothness of $f \in C[0, b]$ is denoted by

$$
\omega_{2}(f ; \sqrt{\delta})=\sup _{0<h \leq \sqrt{\delta}} \sup _{x, x+2 h \in[0, b]}|f(x+2 h)-2 f(x+h)+f(x)|
$$

We recall the usual modulus of continuity of $f \in C[0, b]$ by

$$
\omega(f ; \sqrt{\delta})=\sup _{0<h \leq \sqrt{\delta}} \sup _{x, x+h \in[0, b]}|f(x+h)-f(x)| .
$$

Now consider the following operator

$$
\begin{equation*}
\left(L_{n, q} f\right)(x, t)=\left(K_{n, q} f\right)(x, t)-f\left(x-\frac{t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}\right)+f(x) \tag{3.11}
\end{equation*}
$$

for $x \in[0,1]$.
Lemma 4. Let $g \in \Omega^{2}$. Then we have

$$
\begin{align*}
\left|\left(L_{n, q} g\right)(x, t)-g(x)\right| \leq & \left\{\frac{-t\left(3 x^{2}+x\right)}{[n]\left(1-b q^{n+1}\right)}-\frac{2 t x}{[2][n]^{2}\left(1-b q^{n+1}\right)}+\left(1+\frac{4}{[2]}\right) \frac{x}{[n]}\right. \\
& \left.+\frac{1}{[3][n]^{2}}+\left(\frac{-t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}\right)^{2}\right\}\left\|g^{\prime \prime}\right\| . \tag{3.12}
\end{align*}
$$

Proof. By definition of the operator $L_{n, q} f$, (2.1) and (2.4), it is seen that

$$
\begin{align*}
\left(L_{n, q}(s-x)\right)(x, t) & =\left(K_{n, q}(s-x)\right)(x, t)+\frac{t x}{[n]\left(1-b q^{n+1}\right)}-\frac{1}{[2][n]} \\
& =0 . \tag{3.13}
\end{align*}
$$

Let $x \in[0,1]$ and $g \in \Omega^{2}$. Then by using the Taylor formula

$$
g(s)-g(x)=(s-x) g^{\prime}(x)+\int_{x}^{s}(s-u) g^{\prime \prime}(u) d u
$$

and (3.13), we have

$$
\begin{aligned}
& \left(L_{n, q} g\right)(x, t)-g(x)= \\
& \quad g^{\prime}(x)\left(L_{n, q}(s-x)\right)(x, t)+\left(L_{n, q}\left(\int_{x}^{s}(s-u) g^{\prime \prime}(u) d u\right)\right)(x, t) \\
& \leq \quad\left(L_{n, q}\left(\int_{x}^{s}(s-u) g^{\prime \prime}(u) d u\right)\right)(x, t) \\
& =\quad\left(K_{n, q}\left(\int_{x}^{s}(s-u) g^{\prime \prime}(u) d u\right)\right)(x, t) \\
& \quad-\quad \int_{x-\frac{t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}}^{\int_{x}^{s}}\left(x-\frac{t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}-u\right) g^{\prime \prime}(u) d u .
\end{aligned}
$$

The monotonicity of $K_{n, q} f$ gives

$$
\left|\left(L_{n, q} g\right)(x, t)-g(x)\right| \leq
$$

$$
\begin{align*}
& \left|\int_{x}^{x-\frac{t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}}\left(x-\frac{t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}-u\right) g^{\prime \prime}(u) d u\right| \\
& +\left(K_{n, q}\left|\int_{x}^{s}(s-u) g^{\prime \prime}(u) d u\right|\right)(x, t) \tag{3.14}
\end{align*}
$$

On the other hand, it is clear that

$$
\begin{equation*}
\left|\int_{x}^{s}(s-u) g^{\prime \prime}(u) d u\right| \leq(s-x)^{2}\left\|g^{\prime \prime}\right\| \tag{3.15}
\end{equation*}
$$

Now let

$$
\int_{x}^{x-\frac{t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}}\left(x-\frac{t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}-u\right) g^{\prime \prime}(u) d u
$$

Then we may write

$$
\begin{equation*}
I \leq\left(-\frac{t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}\right)^{2}\left\|g^{\prime \prime}\right\| \tag{3.16}
\end{equation*}
$$

Substituting (3.15) and (3.16) into (3.14), we have

$$
\begin{align*}
\left|\left(L_{n, q} g\right)(x, t)-g(x)\right| \leq & \left\{\left(K_{n, q}(s-x)^{2}\right)(x, t)\right. \\
& \left.+\left(-\frac{t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}\right)^{2}\right\}\left\|g^{\prime \prime}\right\| \tag{3.17}
\end{align*}
$$

Using (3.2) in (3.17), it follows that

$$
\begin{aligned}
\left|\left(L_{n, q} g\right)(x, t)-g(x)\right| \leq & \left\{\frac{-t\left(3 x^{2}+x\right)}{[n]\left(1-b q^{n+1}\right)}-\frac{2 t x}{[2][n]^{2}\left(1-b q^{n+1}\right)}\right. \\
& +\frac{1}{[3][n]^{2}}+\left(1+\frac{4}{[2]}\right) \frac{x}{[n]} \\
& \left.+\left(\frac{-t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}\right)^{2}\right\}\left\|g^{\prime \prime}\right\| .
\end{aligned}
$$

This completes the proof.
Theorem 5. Let $q:=q_{n}$ be a sequence satisfying $\lim _{n} q_{n}=1$ and $0<q_{n}<1$. For each $f \in C[0,1]$ and $x \in[0,1]$, we have

$$
\left|\left(K_{n, q} f\right)(x, t)-f(x)\right| \leq C \omega_{2}\left(f ; \sqrt{\delta_{n}(x)}\right)+\omega\left(f ;\left|\frac{-t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}\right|\right)
$$

where

$$
\begin{aligned}
\delta_{n}(x)= & \frac{-t\left(3 x^{2}+x\right)}{[n]\left(1-b q^{n+1}\right)}-\frac{2 t x}{[2][n]^{2}\left(1-b q^{n+1}\right)}+\left(1+\frac{4}{[2]}\right) \frac{x}{[n]} \\
& +\frac{1}{[3][n]^{2}}+\left(\frac{-t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}\right)^{2}
\end{aligned}
$$

and C is a positive constant.
Proof. From (3.11), we have

$$
\begin{equation*}
\left|\left(L_{n, q} f\right)(x, t)\right| \leq 3\|f\| \tag{3.18}
\end{equation*}
$$

In view of (3.12) and (3.18), the equality (3.11) implies that

$$
\begin{aligned}
\left|\left(K_{n, q} f\right)(x, t)-f(x)\right| \leq & \left|\left(L_{n, q}(f-g)\right)(x, t)\right|+|(f-g)(x)|+\left|\left(L_{n, q} g-g(x)\right)(x, t)\right| \\
& +\left|f\left(x-\frac{t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}\right)-f(x)\right| \\
\leq & 4\|f-g\|+\left|\left(L_{n, q} g\right)(x, t)-g(x)\right| \\
& +\omega\left(f ;\left|-\frac{t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}\right|\right) \\
\leq & 4\|f-g\|+\left\{\frac{-t\left(3 x^{2}+x\right)}{[n]\left(1-b q^{n+1}\right)}-\frac{2 t x}{[2][n]^{2}\left(1-b q^{n+1}\right)}\right. \\
& +\left(1+\frac{4}{[2]}\right) \frac{x}{[n]}+\frac{1}{[3][n]^{2}} \\
& \left.+\left(\frac{-t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}\right)^{2}\right\}\left\|g^{\prime \prime}\right\| \\
& +\omega\left(f ;\left|-\frac{t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}\right|\right) \\
\leq & 4\|f-g\|+4 \delta_{n}(x)\left\|g^{\prime \prime}\right\|+\omega\left(f ;\left|\frac{-t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}\right|\right) .
\end{aligned}
$$

Hence taking infimum on two-hand side of above inequality over all $g \in \Omega^{2}$ and considering (3.10), we get

$$
\begin{aligned}
\left|\left(K_{n, q} f\right)\left(x, t_{0}\right)-f(x)\right| & \leq 4 K_{2}\left(f ; \delta_{n}(x)\right)+\omega\left(f ;\left|\frac{-t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}\right|\right) \\
& \leq C \omega_{2}\left(f ; \sqrt{\delta_{n}(x)}\right)+\omega\left(f ;\left|\frac{-t x}{[n]\left(1-b q^{n+1}\right)}+\frac{1}{[2][n]}\right|\right)
\end{aligned}
$$

which is the desired result.

References

[1] Cheney, E.W. and Sharma, A., Bernstein Power series, Canad. J. Math., 16(1964), 241-252.
[2] Dalmanoğlu, Ö. and Doğru, O., Statistical approximation properties of Kantorovich type q-MKZ operators, Creative Math.\&Inf., 1(19)(2010), 15-24.
[3] Dalmanoğlu, Ö. and Doğru, O., On statistical approximation properties of Kantorovich type q-Bernstein operators, Math. Comput. Modelling, 52(2010), 760-771.
[4] DeVore, R.A. and Lorentz, G.G., Constructive Approximation, Springer-Verlag, Berlin, 1993.
[5] Gauchman, H., Integral inequalities in q-calculus, Comput. Math. Appl., 47(2004), 281-300.
[6] Gupta, V. and Finta, Z., On certain q-Durrmeyer type operators, Appl. Math. Comput., 209(2009), 415-420.
[7] Hahn, W., Über orthogonal polynome, die q-differenzengleichungen genügen, Math. Nach., 2(1949), 4-34.
[8] Jackson, F.H., Basic double hypergeometric functions (II), Quart. J. Math. Oxford, 15(1944), 49-51.
[9] Kac, V.G. and Cheung, P., Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.
[10] Marinković, S., Rajković, P. and Stanković, M., The inequalities for some types of q-integrals, Comput. Math. Appl., 56(2008), 2490-2498.
[11] Meyer-König, W. and Zeller, K., Bernsteinsche potenzreihen, Studia Math., 19(1960), 89-94.
[12] Moak, D.S., The q-analogue of the Laguerre polynomials, J. Math. Anal. Appl., 81(1981), 20-47.
[13] Özarslan, M.A., q-Laguerre type linear positive operators, Studia Sci. Math. Hungarica, 44(1)(2007), 65-80.
[14] Phillips, G.M., On generalized Bernstein polynomials, G. A Watson (eds.), Numerical Analysis: A. R. Mitchell 75th Birthday Volume, World Science, Singapore (1996), 263-269.
[15] Radu C., Statistical approximation properties of Kantorovich operators based on q-integers, Creative Math. and Inf., 17(2008), No.2, 75-84.
[16] Trif, T., Meyer-König and Zeller operators based on the q-integers, Rev. Anal. Numer. Theor. Approx., 2(29)(2000), 221-229.

GÜRHAN İÇÖZ
Gazi University, Faculty of Science, Department of Mathematics, Teknikokullar 06500, Ankara, Turkey.

E-mail address: gurhanicoz@gazi.edu.tr
Serhan VARMA
Ankara University, Faculty of Science, Department of Mathematics, Tandoğan 06100, Ankara, Turkey.

E-mail address: svarma@science.ankara.edu.tr
FAtma TAŞDELEN
Ankara University, Faculty of Science, Department of Mathematics, Tandoğan 06100, Ankara, Turkey.

E-mail address: tasdelen@science.ankara.edu.tr

[^0]: ${ }^{0} 2010$ Mathematics Subject Classification: 41A25, 41A30, 41A35.
 Keywords and phrases. q-Laguerre polynomials, generating functions, Riemann type q-integral, second order modulus of smoothness.
 (C) 2012 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted May 9, 2012. Accepted August 16, 2012.

