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RATE OF A-STATISTICAL APPROXIMATION OF A MODIFIED

Q-BERNSTEIN OPERATORS

(COMMUNICATED BY PROFESSOR SONGXIAO LI)

SHENGGUI LIU

Abstract. In this paper, we discuss properties of convergence for a modifi-
cation of the q-Bernstein operators. Using the notion of A-statistical approxi-
mation, where A is a nonnegative regular summability matrix, we investigate
the Korovkin type statistical approximation properties of this modification via
A-statistical approximation. For 0 < q ≤ 1, we obtain that the q-Bernstein
operators is A-statistical convergence to f(x), and show that the rate of con-
vergence for the modified q-Bernstein operators is better than the q-Bernstein
operators on interval [0, γn] ⊂ [0, 1] by means of the modulus of continuity.

1. Introduction

Since Bernstein polynomials play an important role in approximation theory and
its applications, their various generalizations have been studied [1, 2, 3, 4]. In re-
cent years, due to the intensive development of q-Calculus, the generalizations of
Bernstein polynomials connected with q-Calculus have emerged.

We first give some notations on q-analysis that need in this paper. Let q > 0,
for each nonnegative integer k, the q-factorical [k]q! are defined by

[k]q! =

{

[k]q[k − 1]q · · · [1]q, k ≥ 1
1, k = 0,

where

[k]q =

{

(1− qk)/(1− q), q 6= 1
k, q = 1.

For the integers n, k, n ≥ k ≥ 0, the q-binomial, or the Gaussian coefficient is de-
fined by

02000 Mathematics Subject Classification: 41A10, 41A36.

Keywords and phrases. Statistical approximation, q-Bernstein operators, Korovkin type approxi-
mation theory, Modulus of continuity.
c© 2012 Universiteti i Prishtinës, Prishtinë, Kosovë.
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[

n
k

]

q

=
[n]q!

[k]q![n− k]q!
.

We also use the following standard notation:

(a; q)0 := 1, (a; q)k :=
k−1
∏

s=0

(1− aqs), (a; q)∞ :=
∞
∏

s=0

(1− aqs).

In [5], Philips introduced the q-Bernstein as follows. For n ∈ N and f ∈ C[0, 1],

Bn(f ; q;x) =
n
∑

k=0

f

(

[k]q
[n]q

)[

n
k

]

q

xk(x; q)n−k. (1.1)

It is obviously, for q = 1, the Bn(f, q;x) is the classical Bernstein polynomial.

Bn(f ;x) =

n
∑

k=0

f

(

k

n

)(

n
k

)

xk(1 − x)n−k.

For its important role in approximation theory, a lot of interesting results related
to the q-Bernstein polynomials have been obtained [5, 6, 7, 8, 9, 10]. In [7], it has
shown that q-Bernstein operator is convexity-preserving. From those known results
we also know that, for q 6= 1, the q-Bernstein polynomials possess many interesting
properties, some of which are distinctly different from the classical Bernstein poly-
nomials [11, 12, 13, 14, 15]. For example, for 0 < q < 1, f ∈ C[0, 1], Bn(f, q;x)
does not converge to f(x) as the classical Bernstein operator does when n → ∞,
but converges to a limit operator which is defined by

B∞(f ; q;x) =

{
∑∞

k=0 f(1− qk)p∞,k(q, x), 0 ≤ x < 1
f(1), x = 1,

here p∞,k(q, x) =
xk

(1−q)k[[k]q !
(x; q)∞ [10]. In [11], Videnskii replaced q in (1.1) by a

sequence qn in the interval (0, 1], and he obtained the following result.

Theory A. For any f ∈ C[0, 1], the following inequality holds

| Bn(f ; qn;x)− f(x) |≤ 2ω

(

f,

√

x(1 − x)

[n]qn

)

. (1.2)

Theorem A shows that for any f ∈ C[0, 1], the sequence Bn(f ; qn;x) convergences
uniformly to f if and only if limn→∞ qn = 1.

Let {xn}n∈N be a sequence of numbers. Then, {xn}n∈N is called statistical
convergence to a number M if, for every ε > 0,

lim
k→∞

♯{n ≤ k :| xn −M |≥ ε}

k
= 0,

where ♯B denote the cardinality of the subset B [10] [18]. We denote this statistical
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limit by

st− lim
n→∞

xn = M.

Let A = (ajn) be an infinite summability matrix. Then, the A-transform of x, de-
noted Ax := (Ax)j , is given by (Ax)j =

∑∞
n=1 ajnxn, provided the series converges

for each j. We say that A is regular if limj→∞(Ax)j = M whenever limj→∞ xj = M
[11]. For example, the Cesàro matrix C1 = (cjn) defined by

cjn =

{ 1
j
, if 1 ≤ n ≤ j

0, otherwise,

is a regular matrix. Assume now that A is a nonnegative regular summability ma-
trix. Freedman and Sember [22] introduced the notion of A-statistical convergence
as the following way, which is a more general method of statistical convergence.
The sequence (xn)n∈N is said to be A-statistically convergent to M if, for every
ε > 0,

lim
j→∞

∑

n:|xn−M|≥ε

ajn = 0

holds. This limit is denoted by

stA − lim
n→∞

xn = M.

Replacing the matrix A by the identity matrix, A-statistical convergence reduces
to the ordinary convergence. And it is not hard to see that if we take A = C1, then
C1-statistical convergence also coincides with the statistical convergence mentioned
above, i.e.,

stC1
− lim

n→∞
xn = st− lim

n→∞
xn.

Here we should remark that every convergent sequence is A-statistically convergent
to the same value for any nonnegative regular matrix A, but its converse is not
valid. In particular, Kolk proved that A-statistical convergence is stronger than
ordinary convergence whenever the non-negative regular matrix A = (ajn) satisfies
limn max{ajn} = 0 [23].

Recently, statistical convergence of functions by means of linear operators were
introduced [16, 17, 18, 19]. Using the concept of statistical convergence in the
approximation theory provides us with many advantages. In particular, the ma-
trix summability methods of Cesàro type are strong enough to correct the lack of
convergence of various sequences of linear operators such as the interpolation op-
erator of Hermite-Fejér, because these types of operators do not converge at points
of simple discontinuity [20, 21]. A-statistical convergence has been shown to be
quite effective in summing non-convergent sequences of positive linear operators
[17, 18, 19].

In this paper, a new modification of q-Bernstein operators will be defined as follows.
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For 0 < q ≤ 1, f ∈ C[0, 1],

Ln(f ; q;x) =
n
∑

k=0

f

(

qn
[k]q
[n]q

)[

n
k

]

q

xk(x; q)n−k. (1.3)

And we will study the A-statistical convergence for this operators. Furthermore,
the rate of A-statistical convergence of the Ln(f, q;x) by means of the modulus
continuity was computed, and we prove that this modification provides a better
estimation than the operators Bn(f ; q;x) on the interval [0, γn], where γn = 1

1+[n]q
.

2. Main results

In this section, we will state and prove our main results in this paper. In order
to prove our main results, we need the following two lemmas.

Lemma 2.1. For all n ∈ N and 0 < q ≤ 1, f ∈ C[0, 1],

Ln(e0; q;x) = 1, (2.1)

Ln(e1; q;x) = qnx, (2.2)

Ln(e2; q;x) = q2nx2 +
x(1 − x)

[n]q
q2n, (2.3)

where ei(t) = ti for i = 0, 1, 2.

Proof. It is proved in [1, 4] that Bn(f ; q;x) reproduce linear functions, that is,

Bn(at+ b; q;x) = ax+ b. (2.4)

It follows from (2.4) that (2.1) and (2.2) are correct. Using the following formula

[k]q = q[k − 1]q + 1,

we get

Ln(e2; q;x) =
n
∑

k=0

q2n
[k]2q
[n]2q

xk

n−k−1
∏

s=0

[n]q!

[k]q![n− k]q!
(1− qsx)

=
q2n

[n]q

n
∑

k=1

(q[k − 1]q + 1)
[n− 1]q!

[k − 1]q![n− k]q!
xk

n−k−1
∏

s=0

(1 − qsx)

=
q2n

[n]q

n−1
∑

k=0

[n− 1]q!

[k − 1]q![n− k]q!
xk+1

n−k−2
∏

s=0

(1 − qsx)

+
q2n+1

[n]q
[n− 1]q

n
∑

k=2

[n− 2]q!

[k − 2]q![n− k]q!
xk

n−k−1
∏

s=0

(1− qsx)

=
q2n

[n]q
x+

q2n+1[n− 1]q
[n]q

n−2
∑

k=0

[n− 2]q!

[k]q![n− k − 2]q!
xk+2

(n−2)−k−1
∏

s=0

(1− qsx)

= q2nx2 +
x(1 − x)

[n]q
q2n,

as desired.
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Lemma 2.2. [17] Let A = (ajn) be a non-negative regular summability matrix. If

the sequence of positive linear operators Ln from C[a, b] into C[a, b] satisfies the

conditions

stA − lim
n→∞

‖ Ln(ei;x)− ei ‖= 0 with ei(t
i) = ti for i = 0, 1, 2

then, for all f ∈ C[a, b], we have

stA − lim
n→∞

‖ Ln(f ;x)− f ‖= 0.

Theorem 2.1. Let A = (ajn) be a non-negative regular summability matrix and

let {qn} be a sequence in the interval (0, 1] which satisfies

stA − lim
n→∞

qnn = 1 and stA − lim
n→∞

1

[n]qn
= 0. (2.5)

Then for all f ∈ C[0, 1],

stA − lim
n→∞

‖ Ln(f ; qn;x)− f ‖= 0.

Proof. By (2.1) and (2.2), it is clear that

stA − lim
n→∞

‖ Ln(e0; qn;x)− e0 ‖= 0, (2.6)

‖ Ln(e1; qn;x)− e1 ‖≤ 1− qn. (2.7)

For a given ε > 0, we define the following sets:

S = {n :‖ Ln(e1; qn;x)− e1 ‖≥ ε} and S∗ = {n :‖ 1− qn ‖≥ ε}.

From (2.7) we can see that S ⊆ S∗ and then, for each j ∈ N , that

0 ≤
∑

n∈S

ajn ≤
∑

n∈S∗

ajn. (2.8)

Letting j → ∞ in (2.8) and using (2.5) we conclude that

lim
j→∞

∑

n∈S

ajn = 0.

We obtain

stA − lim
n→∞

‖ Ln(e1; qn;x)− e1 ‖= 0. (2.9)

Finally, by (2.3), we get

‖Ln(e2; qn;x)− e2‖ ≤ 1− q2nn +
q2n

4[n]qn
.

Using the same method as in the proof of (2.9), we can obtain

stA − lim
n→∞

‖Ln(e2; qn;x)− e2‖ = 0. (2.10)
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By lemma 2.2, and using (2.7), (2.9) and (2.10), we get the desired result. The
proof is completed.

Remark 1. In fact, we can construct a sequence qn satisfying (2.5). For ex-
ample, take

ajn =















1, n = j and j 6= m2 (m = 1, 2, 3 . . .)
1
j
, j = n = m2

j−1
j
, j = m2 and n = (m− 1)2

0, otherwise.

It is clear that A = (ajn) is a regular matrix. For α > 1, we define the sequence
{qn} by

qn =

{

0, n = m2 (m = 1, 2, 3 . . .)
1− ( 1

n
)α, n 6= m2.

We can say that stA − limn q
n
n = 1, but that the sequence {qnn} is non-convergence

in the ordinary sense. On the other hand, if n 6= m2, then it is not hard to obtain

stA − lim
n→∞

1

[n]qn
= 0.

Now, we are ready to compute the rate of A-statistical convergence of the operators
Ln(f ; qn;x) by means of the modulus of continuity. Let f ∈ C[0, 1]. The modulus
of continuity of f , denoted as ω(f, δ), is defined to be

ω(f, δ) = sup
|t−x|≤δ

|f(t)− f(x)|.

Then it is known that limδ→0 ω(f, δ) = 0. Also, for any δ > 0 and each t, x ∈ [0, 1],
using the property of modulus of continuity ω(f, λt) ≤ (1 + λ)ω(f, t), λ > 0, we
obtain

|f(t)− f(x)| ≤ ω(f, δ)

(

|t− x|

δ
+ 1

)

. (2.11)

Theorem 2.2. Let n ∈ N , f ∈ C[0, 1] and {qn} be a sequence such that 0 < qn ≤ 1.
Then

| Ln(f ; qn;x)− f(x) |≤ 2ω(f, δ∗n),

where

δ∗n =

√

x2

(

1− 2qnn + q2nn −
q2nn
[n]qn

)

+
xq2nn
[n]qn

. (2.12)

Proof. Since the operators Ln(f ; qn;x) are linear and positive, for all f ∈ [0, 1],
we get

| Ln(f ; qn;x)− f(x) |≤ Ln(| f(t)− f(x) |; qn;x).
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Using (2.11), we have, for any δ > 0,

| Ln(f ; qn;x)− f(x) | ≤ Ln(| f(t)− f(x) |; qn;x)

≤ Ln(ω(f, δ)

(

|t− x|

δ
+ 1); qn;x

)

= ω(f, δ)Ln

(

(
|t− x|

δ
+ 1); qn;x

)

= ω(f, δ)

(

1 +
1

δ
Ln(|t− x|; qn;x)

)

.

Using the Cauchy-Schwarz inequality for positive linear operators, we get

|Ln(f ; qn;x)− f(x)|

≤ ω(f, δ)

(

1 +
1

δ

√

Ln(|t− x|2; qn;x)

)

= ω(f, δ)

(

1 +
1

δ

√

x2Ln(e0; qn;x)− 2xLn(e1; qn;x) + Ln(e2; qn;x)

)

≤ ω(f, δ)

(

1 +
1

δ

√

q2nn x2 +
x(1 − x)

[n]qn
q2nn − 2x2qnn + x2

)

.

Choosing δ = δ∗n as in (2.12) it follows that the proof is completed.

Remark 2. If {qn} satisfies(2.5), it yields that stA− limn→∞ ω(f, δ∗n) = 0. So The-
orem 4 shows the rate of A-statistical approximation of the operators Ln(f ; qn;x)
to f(x).

Remark 3. Let γn = 1
1+[n]qn

, for x ∈ [0, γn], theorem 2.2 show that this

modification provides a better estimation than the operators Bn(f ; qn;x) on the
interval [0, γn].

Indeed, in (1.2), let

δn =

√

x(1 − x)

[n]qn
.

Then we get

(δn)
2 − (δ∗n)

2 =
x(1 − x)

[n]qn
(1− q2nn )− q2nn x2 + 2x2qnn − x2

= x(1 − qnn)

(

(1 − x)(1 + qnn)

[n]qn
− x(1− qnn)

)

≥ x(1 − qnn)

(

1− x

[n]qn
− x

)

≥ 0,
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as desired.
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