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FIXED POINTS OF MAPPINGS DEFINED ON PROBABILISTIC

MODULAR SPACES

(COMMUNICATED BY LAHCENE MEZRAG)

FATEMEH LAEL1, KOUROSH NOUROUZI2

Abstract. In the present paper we give some results on the fixed points of
mappings defined on probabilistic modular spaces.

1. Introduction and Preliminaries

A reformulation of the notion of a modular space [3, 4, 6] is given in [2] under
the name of “probabilistic modular space” according to Menger’s probabilistic ap-
proach [5] to generalise the notion of distance. As Menger’s interpretation, in this
notion the values of the modulars are probability distribution functions rather than
numbers and therefore a probabilistic modular space is a natural generalisation of
a modular space.

In this paper after introducing the prerequisites we shall present some results on
fixed points of mappings defined between probabilistic modular spaces.

We will denote the set of all non-decreasing functions f : R → R0
+ satisfying

inft∈R f(t) = 0, and supt∈R
f(t) = 1 by ∆. We also denote the function min by ∧.

Definition 1. [2] A probabilistic modular space (briefly, PM-space) is a pair (X,µ)
in which X is a real vector space, µ is a mapping from X into ∆ (for x ∈ X , the
function µ(x) is denoted by µx, and µx(t) is the value µx at t ∈ R) satisfying the
following conditions:

(1) µx(0) = 0,
(2) µx(t) = 1 for all t > 0 iff x = 0,
(3) µ−x(t) = µx(t) for all x ∈ X ,
(4) µαx+βy(s+ t) ≥ µx(s)∧µy(t) for all x, y ∈ X , and α, β, s, t ∈ R0

+, α+β = 1.

A PM-space (X,µ) is said to satisfy ∆2-condition if there is a constant c > 0 such
that µ2x(t) ≥ µx(

t
c
), for all x ∈ X and t > 0.
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A probabilistic modular µ defines a corresponding probabilistic modular vector
space (briefly, PMV-space) Xµ given by

Xµ = {x ∈ X : lim
λ→0

µλx(t) = 1, for all t > 0}.

Definition 2. [2] Let (X,µ) be a PM-space.
1. A sequence {xn} in X is said to be µ-convergent to a point x ∈ X and denoted

by xn → x, if for every t > 0 and r ∈ (0, 1), there exists a positive integer k such
that µxn−x(t) > 1− r for all n ≥ k (This limit is unique [2]).

2. The µ-closure of a subset A of X is denoted by A and defined by the set of
all x ∈ X such that there is a sequence {xn} of elements of A with xn → x. We
say that A is µ-closed if A = A

3. A sequence {xn} in X is said to be µ-Cauchy sequence, if for every t > 0
and r ∈ (0, 1), there exists a positive integer k such that µxn−xm

(t) > 1− r for all
n,m ≥ k.

4. A subset C of X is said to be µ-complete if each µ-Cauchy sequence in C is
µ-convergent to a point of C.

5. The PM- space (X,µ) is said to be sequentially µ-compact if every sequence
in X has a µ-convergent subsequence in X .

Definition 3. [2] A mapping T from (X,µ) to (Y, ν) is said to be sequentially PM-

continuous at x0, if any sequence {xn}, xn ∈ X with xn
µ

−→ x imply T (xn)
ν

−→
T (x). If T is sequentially PM-continuous at each point of X , then T is said to be
sequentially PM-continuous on X .

2. Fixed Points in PM-spaces

Fixed point theory from the probabilistic point of view constitutes a part of
probabilistic analysis [1]. In this section, we shall give a probabilistic modular
version of some fixed point theorems.

Definition 4. Let C be a subset of a PM-space (X,µ). A mapping T : C → C is
said to be µ-Lipschitzian if there exist constants k, l > 0 such that

µT (x)−T (y)(t) ≥ µl(x−y)(
t

k
),

for every x, y ∈ X , and t ∈ R.

If k, l ∈ (0, 1), we say that T is a µ-contraction, whereas if k = l = 1, we say
that T is µ-nonexpansive. It can be easily seen that every µ-contraction map is
sequentially PM-continuous.

Our first result is the probabilistic modular formulation of well known Banach
contraction principle.

Lemma 1. Let C be a µ-complete subset of (X,µ), µ satisfy ∆2-condition, and

T : C → C be a µ-contraction with µ-Lipschitzian constants k, l. Then T has a

unique fixed point z ∈ C and lim
n→∞

T n(x) = z, for every x ∈ C.

Proof. Choose x ∈ C arbitrarily. The sequence {T n(x)} is a µ-Cauchy sequence.
In fact, for t > 0 and p = 1, 2, 3, . . . we have

µTn(x)−Tn+p(x)(t) ≥ µl(Tn−1(x)−Tn+p−1(x))(
t

k
) ≥ . . . ≥ µl(x−Tp(x))(

t

kn
).

Let l + 1/α = 1. Moreover



FIXED POINTS IN PM-SPACE 25

µl(x−Tp(x))(
t
kn ) = µl(x−T (x))+l(T (x)−Tp(x))(

t
kn ),

= µαl
α
(x−T (x))+l(T (x)−Tp(x))(

kt+(1−k)t
kn ),

≥ µαl(x−T (x))(
(1−k)t

kn ) ∧ µT (x)−Tp(x)(
kt
kn ),

≥ µαl(x−T (x))(
(1−k)t

kn ) ∧ µl(x−Tp−1(x))(
t
kn ).

By induction, we have

µl(x−Tp(x))(
t

kn
) ≥ µαl(x−T (x))(

(1− k)t

kn
) ∧ . . . ∧ µαl(x−T (x))(

(1− k)t

kn
),

and therefore lim
n→∞

µTn(x)−Tn+p(x)(t) = 1. SinceX is µ-complete, there exists z ∈ X

with lim
n→∞

T n(x) = z. Moreover the µ-contractivity of T yields sequentially PM-

continuity. Therefore z = lim
n→∞

T n+1(x) = lim
n→∞

T (T n(x)) = T (z), that is z is a

fixed point of T .
To see the uniqueness, suppose on the contrary that there exist distinct elements

z, y ∈ C with z = T (z) and y = T (y). Thus, for each n, T n(z) = z and T n(y) = y,
and there exists s > 0 such that µy−z(s) = a ∈ [0, 1). Then for every n ∈ N,

a = µy−z(s) = µTn(y)−Tn(z)(s) ≥ µy−z(
s

kn
),

and when n → ∞ we obtain a = 1 which contradicts a < 1. Therefore z = y. �

In Lemma 1, as its classical form, the µ-contractivity is essential. Indeed, any
(nonlinear) affine function defined on PM-space (R, t

t+|x|) which is µ-nonexpansive

has no fixed point. Also, a µ-contraction T from an incomplete subset C of PM-
space X into itself need not have a fixed point. In light of Lemma 1, this can be
easily seen via removing the only fixed point from the domain. Furthermore, a µ-
contraction map defined on an incomplete PM-space need not have any fixed point.
To see this, consider the real vector space ℓ0 consisting of all infinite sequences of
real numbers which have only finitely many non-zero terms. By the modular µ
which defined as

µx(t) =







1 t > sup |xn| : n ∈ N
1
2 sup{|xn

n
| : n ∈ N} < t ≤ sup{|xn| : n ∈ N}

0 t ≤ sup{|xn

n
| : n ∈ N},

for any x = (x1, · · · , xn, · · · ) ∈ ℓ0, the µ-contraction mapping T : ℓ0 → ℓ0 defined
by T (x) = 1

2 (1, x1, x2, . . . , xn, . . .) has no fixed point.
A PM-space (X,µ) possesses Fatou’s property if for any sequence {xn} of X

converging to x, we have
µx(t) ≥ lim sup

n≥1
µxn

(t),

for each t > 0.

Theorem 1. Let (X,µ) be a µ-complete PM-space having Fatou’s property and

satisfying ∆2-condition with ∆2-constant c. Let A = {x ∈ X : µx−x0
(t0) ≥ 1−r0},

where x0 ∈ X and r0, t0 > 0. Suppose T : A → X is a µ-contraction with µ-
Lipschitzian constant L and

µT (x0)−x0
((
1

c
− L)t0) > 1− r0,

for all x, y ∈ A. Then T has a unique fixed point in A.
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Proof. We see that A is µ-closed. In fact, if y ∈ A, then by Fatou’s property

µy−x0
(t0) ≥ lim sup

n
µxn−x0

(t0) ≥ 1− r0,

therefore A is µ-closed. Now if x ∈ A, then

µT (x)−x0
(t0) ≥ µT (x)−T (x0)+T (x0)−x0

(t0),

≥ µx−x0
(t0) ∧ µT (x0)−x0

((1
c
− L)t0),

≥ 1− r0 ∧ 1− r0,

≥ 1− r0.

It follows that T (A) ⊆ A. We can now apply Lemma 1 to deduce that T has a
unique fixed point in A. �

Let (X,µ) be a PM-space. For x ∈ X , t > 0, and 0 < r < 1, we suppose that

B(x, r, t) = {y ∈ X : µx−y(t) > 1− r}.

Theorem 2. Let C be a µ-complete subset of PM-space(X,µ) satisfying ∆2-

condition with constant c and T : C → C a map. Suppose further that for each ǫ > 0
and t > 0 there is a δ > 0 such that if µx−T (x)(t) > δ, then T (B(x, t, ǫ)) ⊆ B(x, t, ǫ).
If for some u ∈ X we have lim

n→∞
µTn(u)−Tn+1(u)(t) = 1 for all t > 0, then the se-

quence {T n(u)} converges to a fixed point of T .

Proof. Consider u as lim
n→∞

µTn(u)−Tn+1(u)(t) = 1, for all t > 0 and let T n(u) = un.

The sequence {un} is µ-Cauchy. Since if ǫ > 0 and t0 > 0 are given, for the
corresponding δ(ǫ, t0

2c
), we can choose N large enough so that µun−un+1

( t02c ) > δ, for

all n ≥ N . Because µun−T (un)(
t0
2c ) > δ, by assumption we get

T (B(uN ,
t0
2c

, ǫ)) ⊆ B(uN ,
t0
2c

, ǫ),

and so T (uN) = uN+1 ∈ B(uN , t0
2c , ǫ). Now by induction

T k(uN) = uN+k ∈ B(uN ,
t0
2c

, ǫ),

for all k ∈ {0, 1, . . .}. Thus

µuk−ul
(t0) ≥ µuk−uN

(
t0
2c

) ∧ µuN−ul
(
t0
2c

) > 1− ǫ,

for all k, l ≥ N . Therefore {un} is a µ-Cauchy sequence and so there exists y ∈ C
with lim

n→∞
un = y. This y, in fact, is a fixed point of T . Otherwise, µy−T (y)(t1) =

γ < 1 for some t1 > 0. We can now choose a un ∈ B(y, t1
2c , 1−γ′) where γ < γ′ < 1

with

µun−un+1
(
t1
2c

) > δ(1−γ′,
t1
2c

).

Again by assumption, we have

T (B(un,
t1
2c

, 1− γ′)) ⊆ B(un,
t1
2c

, 1− γ′),

and consequently

T (y) ∈ B(un,
t1
2c

, 1− γ′).
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This is a contradiction since

µy−T (y)(t1) ≥ µy−un
(
t1
2c

) ∧ µun−T (y)(
t1
2c

) ≥ γ′ > γ.

�

Definition 5. Let (X,µ) and (Y, ν) be two PM-spaces. A mapping T : (X,µ) →
(Y, ν) is said to be µ-compact if T (X) is contained in a µ-compact subset of Y .

Let D be a subset of a PM-space X and T : D → X a map. Given ǫ > 0 and
λ ∈ (0, 1), a point d ∈ D with µd−T (d)(ǫ) > 1 − λ is called an (ǫ, λ)-fixed point of
T .

Theorem 3. Let (X,µ) be a PM-space satisfying ∆2-condition, D a µ-closed
subset of X, and T : D → X be a µ-compact, sequentially PM-continuous map.

Then T has a fixed point if and only if T has an (ǫ, λ)-fixed point for each ǫ > 0
and λ ∈ (0, 1).

Proof. Assume that T has an (ǫ, λ)-fixed point for each ǫ > 0 and λ ∈ (0, 1). Now
for each n > 1, let dn be a ( 1

n
, 1
n
)-fixed point of T , that is,

µdn−T (dn)(
1

n
) > 1−

1

n
.

Since T is µ-compact, T (D) is contained in a µ-compact subsetK ofX and therefore
there exists a subsequence S of integers and x ∈ K such that T (dn) → x ∈ K, as
n → ∞ in S. Now, if c is ∆2-constant and t > 0, then the inequality above implies
that

µdn−x(t) ≥ µdn−T (dn)(
t

2c
) ∧ µT (dn)−x(

t

2c
) > 1−

1

n
,

for all large n. Therefore dn → x as n → ∞ in S and since D is µ-closed we have
that x ∈ D. Now the sequentially continuity of T implies that T (dn) → T (x) in S
and this together with the uniqueness of µ-limit implies T (x) = x. �

Lemma 2. Let Xµ be a PMV-space, A ⊆ Xµ and Ā be sequentially µ-compact. If

λk → 0, as k → ∞ and {xk} ⊆ A, then µλkxk
(t) → 1, for all t > 0.

Proof. Let {kn} be any increasing sequence of indices. There exists x ∈ Xµ and a
subsequence {kni

} of {kn} such that µxkni
−x(t) → 1 as i → ∞. Taking i so large

that 2λkni
< 1 and t > 0, we obtain

µλnki
xnki

(t) ≥ µ2λnki
(xnki

−x)(
t
2 ) ∧ µ2λnki

x(
t
2 ),

≥ µxnki
−x(

t
2 ) ∧ µ2λnki

x(
t
2 ),

> 1− λ.

for λ ∈ (0, 1). This implies that each subsequence of {λkxk} has a subsequence
which is µ-converges to 0. Thus lim

k→∞
λkxk = 0. �

Definition 6. A P-modular µ is said to satisfy regular increasing condition if for
all k ∈ [0, 1),

Wµ(k) = inf{L > 0 : µkx(t) ≥ µx(
t

L
), x ∈ Xµ, t > 0} < 1.

Lemma 3. [2] Let (X,µ) be a PM-space satisfying ∆2-condition. If {xn} is a
µ-Cauchy sequence having a µ-convergent subsequence, then {xn} is µ-convergent.
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A subset B of vector space X is said to be star-shaped if there exists z ∈ B such
that for all x ∈ B, αz+βx ∈ B, whenever α, β ∈ R

+ with α+β = 1. Such a point
z is called a center of B.

Theorem 4. Let Xµ be a PMV-space satisfying ∆2 and the regular increasing

conditions. Then every µ-compact, µ-nonexpansive map T on a star-shaped subset

C of Xµ has at least one fixed point.

Proof. Let x0 ∈ C be a center of C. For n = 2, 3, . . . , define

Tn = (1−
1

n
)T +

1

n
x0.

Since C is star-shaped, we see that Tn : C → C. Let λ ∈ (1, 1
1− 1

n

). Because

Wµ(λ(1−
1
n
)) < 1, there exists L < 1 such that for all x, y ∈ C and t > 0,

µλ(Tn(x)−Tn(y))(t) = µλ(1− 1
n
)(T (x)−T (y))(t),

≥ µT (x)−T (y)(
t
L
),

≥ µx−y(
t
L
),

Without less of generality we can assume

µTn(x)−Tn(y)(t) ≥ µ 1
λ
(x−y)(

t

L
)

Hence Tn : C → C is a µ-contraction for all n ∈ N. Since Tn(C) is µ-compact
for all n, Lemma 1 implies that they are also µ-complete. By Lemma1 we conclude
that each operator Tn : Tn(C) → Tn(C) has a unique fixed point, that is,

xn = (1−
1

n
)T (xn) +

1

n
x0.

Therefore
µT (xn)−xn

(t) = µT (xn)−
1
n
x0−(1− 1

n
)T (xn)(t),

≥ µ 2
n
T (xn)(

t
2 ) ∧ µ 2

n
x0
( t
2 ).

Lemma 2 implies that for all t > 0, we have µT (xn)−xn
(t) → 1 as n → ∞. And an

application of Theorem 3 says that T has a fixed point. �
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