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ON A NEW APPLICATION OF ALMOST INCREASING

SEQUENCES

(COMMUNICATED BY H. BOR)

W.T. SULAIMAN

Abstract. A new result concerning absolute summability of infinite series
using almost increasing sequence is presented. An application gives some gen-
eralization of Bor’s result [1].

1. Introduction

Let
∑

an be an infinite series with sequence of partial sums (sn). By uα
n, t

α
n

we denote the nth Cesaro mean of order α > −1 of the sequences (sn), (nan)
respectively, that is

uα
n =

1

Aα
n

n
∑

v=0

Aα−1
n−vsv, (1.1)

tαn =
1

Aα
n

n
∑

v=0

Aα−1
n−vvav. (1.2)

The series
∑

an is summable |C,α|k , k ≥ 1, if

∞
∑

n=1

nk−1
∣

∣uα
n − uα

n−1

∣

∣

k
≡

∞
∑

n=1

n−1 |tαn|
k
< ∞. (1.3)

For α = 1, |C,α|k summability reduces to |C, 1|k summability.
Let (pn) be a sequence of constants such that

Pn = p0 + p1 + ...+ pn → ∞ as n → ∞.

The sequence to sequence transformation

δn =
1

Pn

n
∑

v=0

pn−vsv (1.4)
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defines the sequence (δn) of the Nörlund mean of the sequence (sn) generated by
the sequence of coefficients (pn).

∑

an is said to be summable |N, pn|k , k ≥ 1, if

∞
∑

n=1

nk−1 |δn − δn−1|
k
< ∞ (1.5)

In the special case when

pn =
Γ(n+ α)

Γ(α)Γ(n + 1)
, α ≥ 0, (1.6)

|N, pn|k summability reduces to |C,α|k summability.
A positive sequence (bn) is said to be almost increasing sequence if there exists

a positive increasing sequence (cn) and two positive constants M and N such that
Mcn ≤ bn ≤ Ncn. Every increasing sequence is almost increasing, but the converse
need not to be true, see for example when bn = ne(−1)n .

The following results are known:

Theorem 1.1. [3] Let p0 > 0, pn ≥ 0 and (pn) be a non-increasing sequence. If
∑

an is summable |C, 1|k , then the series
∑

anPn(n+ 1)−1 is summable |N, pn|k ,
k ≥ 1.

Theorem 1.2. [1] Let (pn) be as in Theorem 1.1 and (Xn) be almost increasing
sequence. If the conditions

∞
∑

n=1

n
∣

∣∆2λn

∣

∣Xn < ∞, (1.7)

|λn|Xn = O(1) as n → ∞, (1.8)
n
∑

v=1

1

v
|tv|

k = O(Xn), as n → ∞, (1.9)

are satisfied, then the series
∑

anPnλn(n+ 1)−1 is summable |N, pn|k , k ≥ 1.

Lemma 1.3. [2] Under the conditions (1.7) and (1.8), we have

nXn |∆λn| = O(1), as n → ∞, (1.10)

∞
∑

n=1

Xn |∆λn| < ∞. (1.11)

2. Results

We state and prove the following result

Theorem 2.1. Let (pn) be as in Theorem 1.1 and (Xn) be almost increasing se-
quence. If the conditions (1.7), (1.8) and

ϕv = O(1), as v → ∞, (2.1)

v∆ϕv = O(1), as v → ∞, (2.2)
n
∑

v=1

1

vXk−1
v

|tv|
k
= O(Xn), as n → ∞, (2.3)

are satisfied, then the series
∑

anλnϕn is summable |C, 1|k , k ≥ 1.
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Proof. Let Tn be the nth (C, 1) mean of the sequence (nanλnϕn). Therefore

Tn =
1

n+ 1

n
∑

v=1

vavλvϕv.

Abel’s transformation gives

Tn =
1

n+ 1

(

n−1
∑

v=1

∆(λvϕv)

v
∑

r=1

rar + λnϕn

n
∑

v=1

vav

)

=
1

n+ 1

(

n−1
∑

v=1

(v + 1)tv∆ϕvλv +

n−1
∑

v=1

(v + 1)tvϕv+1∆λv

)

+ tnϕnλn

= Tn1 + Tn2 + Tn3.

In order to complete the proof, by Minkowski’s inequality, it is sufficient to show
that

∞
∑

n=1

1

n
|Tnj |

k
< ∞, j = 1, 2, 3.

Applying Hölder’s inequality, we have

m+1
∑

n=2

1

n
|Tn1|

k
=

m+1
∑

n=2

1

n

∣

∣

∣

∣

∣

1

n+ 1

n−1
∑

v=1

(v + 1)tv∆ϕvλv

∣

∣

∣

∣

∣

k

= O(1)
m+1
∑

n=2

1

nk+1

n−1
∑

v=1

vk |tv|
k |∆ϕv|

k |λv|
k

(

n−1
∑

v=1

1

)k−1

= O(1)
m+1
∑

n=2

1

n2

n−1
∑

v=1

vk |tv|
k |∆ϕv|

k |λv|
k

= O(1)
m
∑

v=1

vk |tv|
k |∆ϕv|

k |λv|
k

m+1
∑

n=v+1

1

n2

= O(1)

m
∑

v=1

v−1 |tv|
k
|λv|

k

= O(1)

m
∑

v=1

|tv|
k

vXk−1
v

|λv|

= O(1)

m−1
∑

v=1

|∆λv|

v
∑

r=1

|tr|
k

rXk−1
r

+O(1) |λm|

m
∑

v=1

|tv|
k

vXk−1
v

= O(1)

m−1
∑

v=1

Xv |∆λv|+ O(1)Xm |λm| = O(1).
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m+1
∑

n=2

1

n
|Tn2|

k =
m+1
∑

n=2

1

n

∣

∣

∣

∣

∣

1

n+ 1

n−1
∑

v=1

(v + 1)tvϕv+1∆λv

∣

∣

∣

∣

∣

k

= O(1)

m+1
∑

n=2

1

nk+1

n−1
∑

v=1

vk
|tv|

k
|ϕv+1|

k
|∆λv|

Xk−1
v

(

n−1
∑

v=1

Xv |∆λv|

)k−1

= O(1)

m
∑

v=1

vk
|tv|

k
|∆λv|

Xk−1
v

m+1
∑

n=v+1

1

nk+1

= O(1)

m
∑

v=1

|tv|
k

vXk−1
v

v |∆λv|

= O(1)

m−1
∑

v=1

|∆(v |∆λv|)|

v
∑

r=1

|tr|
k

rXk−1
r

+O(1)m |∆λm|

m
∑

v=1

|tv|
k
|∆λv|

vXk−1
v

= O(1)

m−1
∑

v=1

v
∣

∣∆2λv

∣

∣Xv +O(1)

m−1
∑

v=1

Xv |∆λv|+O(1)m |∆λm|Xm

= O(1).

m
∑

n=1

1

n
|Tn3|

k
=

m
∑

n=1

1

n
|tnϕnλn|

k

= O(1)

m
∑

n=1

|tn|
k

nXk−1
n

|λn|

= O(1), as in the case of Tn1.

�

3. Remarks

Remark 3.1. (a) It may be mentioned that condition (2.3)is weaker than (1.9). In
fact is (1.9) is satisfied, then

m
∑

n=1

|tn|
k

nXk−1
n

= O

(

1

Xk−1
1

) m
∑

n=1

1

n
|tn|

k
= O(Xm),
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while if (2.3) is satisfied then,
m
∑

n=1

1

n
|tn|

k
=

m
∑

n=1

1

nXk−1
n

|tn|
k
Xk−1

n

=

m−1
∑

n=1

(

n
∑

v=1

|tv|
k

vXk−1
v

)

∆Xk−1
n +

(

m
∑

n=1

|tn|
k

nXk−1
n

)

Xk−1
m

= O(1)

m−1
∑

n=1

Xn

∣

∣∆Xk−1
n

∣

∣+O(Xm)Xk−1
m

= O(Xm−1)

m−1
∑

n=1

(

Xk−1
n+1 −Xk−1

n

)

+O(Xk
m)

= O(Xm−1)
(

Xk−1
m −Xk−1

1

)

+O(Xk
m)

= O(Xk
m).

or we can deal with this case as follows
m
∑

n=1

1

n
|tn|

k
=

m
∑

n=1

1

nXk−1
n

|tn|
k
Xk−1

n = O(Xk−1
m )

m
∑

n=1

1

nXk−1
n

|tn|
k
= O(Xk

m).

Therefore (1.9) implies (2.3) but not conversely.
(b) The other advantage of condition (2.3) is that this condition leave no losing

through estimation concerning powers of |λn| . As an example through the proof of

Theorem 1.2, ıt has been substituted |λn|
k
= |λn|

k−1
|λn| = O(|λn|), which implies

that |λn|
k−1 has been lost.

Remark 3.2. By putting ϕn = Pn/(n+ 1) in Theorem 2.1, we obtain Theorem 1.2
via Theorem 1.1, as follows:

As (pn) is non-increasing, then Pn ≤ (n+ 1)p0 which implies ϕn = O(1). Also

n∆ϕn = n

(

Pn

n+ 1
−

Pn+1

n+ 2

)

= n

(

Pn

n+ 1
−

Pn

n+ 2
−

Pn+1

n+ 2

)

= n
Pn

(n+ 1) (n+ 2)
− n

Pn+1

n+ 2

= O

(

Pn

n+ 1

)

+O(pn+1) = O(1).
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