ON A NEW APPLICATION OF ALMOST INCREASING SEQUENCES

(COMMUNICATED BY H. BOR)
W.T. SULAIMAN

Abstract. A new result concerning absolute summability of infinite series using almost increasing sequence is presented. An application gives some generalization of Bor's result [1].

1. Introduction

Let $\sum a_{n}$ be an infinite series with sequence of partial sums $\left(s_{n}\right)$. By $u_{n}^{\alpha}, t_{n}^{\alpha}$ we denote the nth Cesaro mean of order $\alpha>-1$ of the sequences $\left(s_{n}\right)$, $\left(n a_{n}\right)$ respectively, that is

$$
\begin{align*}
u_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v}, \tag{1.1}\\
t_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} v a_{v} . \tag{1.2}
\end{align*}
$$

The series $\sum a_{n}$ is summable $|C, \alpha|_{k}, k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k} \equiv \sum_{n=1}^{\infty} n^{-1}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{1.3}
\end{equation*}
$$

For $\alpha=1,|C, \alpha|_{k}$ summability reduces to $|C, 1|_{k}$ summability.
Let $\left(p_{n}\right)$ be a sequence of constants such that

$$
P_{n}=p_{0}+p_{1}+\ldots+p_{n} \rightarrow \infty \text { as } n \rightarrow \infty .
$$

The sequence to sequence transformation

$$
\begin{equation*}
\delta_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} \tag{1.4}
\end{equation*}
$$

[^0]defines the sequence $\left(\delta_{n}\right)$ of the Nörlund mean of the sequence $\left(s_{n}\right)$ generated by the sequence of coefficients $\left(p_{n}\right) . \sum a_{n}$ is said to be summable $\left|N, p_{n}\right|_{k}, k \geq 1$, if
\[

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\delta_{n}-\delta_{n-1}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

\]

In the special case when

$$
\begin{equation*}
p_{n}=\frac{\Gamma(n+\alpha)}{\Gamma(\alpha) \Gamma(n+1)}, \quad \alpha \geq 0 \tag{1.6}
\end{equation*}
$$

$\left|N, p_{n}\right|_{k}$ summability reduces to $|C, \alpha|_{k}$ summability.
A positive sequence $\left(b_{n}\right)$ is said to be almost increasing sequence if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants M and N such that $M c_{n} \leq b_{n} \leq N c_{n}$. Every increasing sequence is almost increasing, but the converse need not to be true, see for example when $b_{n}=n e^{(-1)^{n}}$.

The following results are known:
Theorem 1.1. 3] Let $p_{0}>0, p_{n} \geq 0$ and $\left(p_{n}\right)$ be a non-increasing sequence. If $\sum a_{n}$ is summable $|C, 1|_{k}$, then the series $\sum a_{n} P_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|_{k}$, $k \geq 1$.

Theorem 1.2. [1] Let $\left(p_{n}\right)$ be as in Theorem 1.1 and $\left(X_{n}\right)$ be almost increasing sequence. If the conditions

$$
\begin{gather*}
\sum_{n=1}^{\infty} n\left|\Delta^{2} \lambda_{n}\right| X_{n}<\infty \tag{1.7}\\
\left|\lambda_{n}\right| X_{n}=O(1) \text { as } n \rightarrow \infty, \tag{1.8}\\
\sum_{v=1}^{n} \frac{1}{v}\left|t_{v}\right|^{k}=O\left(X_{n}\right), \text { as } \quad n \rightarrow \infty, \tag{1.9}
\end{gather*}
$$

are satisfied, then the series $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|_{k}, k \geq 1$.
Lemma 1.3. 2] Under the conditions (1.7) and (1.8), we have

$$
\begin{gather*}
n X_{n}\left|\Delta \lambda_{n}\right|=O(1), \text { as } n \rightarrow \infty \tag{1.10}\\
\sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|<\infty \tag{1.11}
\end{gather*}
$$

2. Results

We state and prove the following result
Theorem 2.1. Let $\left(p_{n}\right)$ be as in Theorem 1.1 and $\left(X_{n}\right)$ be almost increasing sequence. If the conditions (1.7), (1.8) and

$$
\begin{gather*}
\varphi_{v}=O(1), \quad \text { as } \quad v \rightarrow \infty \tag{2.1}\\
v \Delta \varphi_{v}=O(1), \quad \text { as } \quad v \rightarrow \infty \tag{2.2}\\
\sum_{v=1}^{n} \frac{1}{v X_{v}^{k-1}}\left|t_{v}\right|^{k}=O\left(X_{n}\right), \quad \text { as } \quad n \rightarrow \infty \tag{2.3}
\end{gather*}
$$

are satisfied, then the series $\sum a_{n} \lambda_{n} \varphi_{n}$ is summable $|C, 1|_{k}, k \geq 1$.

Proof. Let T_{n} be the nth $(C, 1)$ mean of the sequence $\left(n a_{n} \lambda_{n} \varphi_{n}\right)$. Therefore

$$
T_{n}=\frac{1}{n+1} \sum_{v=1}^{n} v a_{v} \lambda_{v} \varphi_{v}
$$

Abel's transformation gives

$$
\begin{aligned}
T_{n} & =\frac{1}{n+1}\left(\sum_{v=1}^{n-1} \Delta\left(\lambda_{v} \varphi_{v}\right) \sum_{r=1}^{v} r a_{r}+\lambda_{n} \varphi_{n} \sum_{v=1}^{n} v a_{v}\right) \\
& =\frac{1}{n+1}\left(\sum_{v=1}^{n-1}(v+1) t_{v} \Delta \varphi_{v} \lambda_{v}+\sum_{v=1}^{n-1}(v+1) t_{v} \varphi_{v+1} \Delta \lambda_{v}\right)+t_{n} \varphi_{n} \lambda_{n} \\
& =T_{n 1}+T_{n 2}+T_{n 3}
\end{aligned}
$$

In order to complete the proof, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left|T_{n j}\right|^{k}<\infty, \quad j=1,2,3
$$

Applying Hölder's inequality, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n}\left|T_{n 1}\right|^{k} & =\sum_{n=2}^{m+1} \frac{1}{n}\left|\frac{1}{n+1} \sum_{v=1}^{n-1}(v+1) t_{v} \Delta \varphi_{v} \lambda_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{k+1}} \sum_{v=1}^{n-1} v^{k}\left|t_{v}\right|^{k}\left|\Delta \varphi_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\left(\sum_{v=1}^{n-1} 1\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{2}} \sum_{v=1}^{n-1} v^{k}\left|t_{v}\right|^{k}\left|\Delta \varphi_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} v^{k}\left|t_{v}\right|^{k}\left|\Delta \varphi_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{2}} \\
& =O(1) \sum_{v=1}^{m} v^{-1}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}\left|\lambda_{v}\right|} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| \sum_{r=1}^{v} \frac{\left|t_{r}\right|^{k}}{r X_{r}^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} X_{v}\left|\Delta \lambda_{v}\right|+O(1) X_{m}\left|\lambda_{m}\right|=O(1)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \frac{1}{n}\left|T_{n 2}\right|^{k}= \sum_{n=2}^{m+1} \frac{1}{n}\left|\frac{1}{n+1} \sum_{v=1}^{n-1}(v+1) t_{v} \varphi_{v+1} \Delta \lambda_{v}\right|^{k} \\
&= O(1) \sum_{n=2}^{m+1} \frac{1}{n^{k+1}} \sum_{v=1}^{n-1} v^{k} \frac{\left|t_{v}\right|^{k}\left|\varphi_{v+1}\right|^{k}\left|\Delta \lambda_{v}\right|}{X_{v}^{k-1}}\left(\sum_{v=1}^{n-1} X_{v}\left|\Delta \lambda_{v}\right|\right)^{k-1} \\
&= O(1) \sum_{v=1}^{m} v^{k} \frac{\left|t_{v}\right|^{k}\left|\Delta \lambda_{v}\right|}{X_{v}^{k-1}} \sum_{n=v+1}^{m+1} \frac{1}{n^{k+1}} \\
&= O(1) \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1} v\left|\Delta \lambda_{v}\right|} \\
&= O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|\Delta \lambda_{v}\right|\right)\right| \sum_{r=1}^{v} \frac{\left|t_{r}\right|^{k}}{r X_{r}^{k-1}}+O(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k}\left|\Delta \lambda_{v}\right|}{v X_{v}^{k-1}} \\
&= O(1) \sum_{v=1}^{m-1} v\left|\Delta^{2} \lambda_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} X_{v}\left|\Delta \lambda_{v}\right|+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
&= O(1) . \\
& \sum_{n=1}^{m} \frac{1}{n}\left|T_{n 3}\right|^{k}=\sum_{n=1}^{m} \frac{1}{n}\left|t_{n} \varphi_{n} \lambda_{n}\right|^{k} \\
&=O(1) \sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}}\left|\lambda_{n}\right| \\
&=O(1), \text { as in the case of } T_{n 1} .
\end{aligned}
$$

3. Remarks

Remark 3.1. (a) It may be mentioned that condition (2.3) is weaker than (1.9). In fact is (1.9) is satisfied, then

$$
\sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(\frac{1}{X_{1}^{k-1}}\right) \sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k}=O\left(X_{m}\right)
$$

while if (2.3) is satisfied then,

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k} & =\sum_{n=1}^{m} \frac{1}{n X_{n}^{k-1}}\left|t_{n}\right|^{k} X_{n}^{k-1} \\
& =\sum_{n=1}^{m-1}\left(\sum_{v=1}^{n} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}}\right) \Delta X_{n}^{k-1}+\left(\sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}}\right) X_{m}^{k-1} \\
& =O(1) \sum_{n=1}^{m-1} X_{n}\left|\Delta X_{n}^{k-1}\right|+O\left(X_{m}\right) X_{m}^{k-1} \\
& =O\left(X_{m-1}\right) \sum_{n=1}^{m-1}\left(X_{n+1}^{k-1}-X_{n}^{k-1}\right)+O\left(X_{m}^{k}\right) \\
& =O\left(X_{m-1}\right)\left(X_{m}^{k-1}-X_{1}^{k-1}\right)+O\left(X_{m}^{k}\right) \\
& =O\left(X_{m}^{k}\right)
\end{aligned}
$$

or we can deal with this case as follows

$$
\sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k}=\sum_{n=1}^{m} \frac{1}{n X_{n}^{k-1}}\left|t_{n}\right|^{k} X_{n}^{k-1}=O\left(X_{m}^{k-1}\right) \sum_{n=1}^{m} \frac{1}{n X_{n}^{k-1}}\left|t_{n}\right|^{k}=O\left(X_{m}^{k}\right)
$$

Therefore (1.9) implies (2.3) but not conversely.
(b) The other advantage of condition (2.3) is that this condition leave no losing through estimation concerning powers of $\left|\lambda_{n}\right|$. As an example through the proof of Theorem 1.2, it has been substituted $\left|\lambda_{n}\right|^{k}=\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|=O\left(\left|\lambda_{n}\right|\right)$, which implies that $\left|\lambda_{n}\right|^{k-1}$ has been lost.

Remark 3.2. By putting $\varphi_{n}=P_{n} /(n+1)$ in Theorem 2.1, we obtain Theorem 1.2 via Theorem 1.1, as follows:

As $\left(p_{n}\right)$ is non-increasing, then $P_{n} \leq(n+1) p_{0}$ which implies $\varphi_{n}=O(1)$. Also

$$
\begin{aligned}
n \Delta \varphi_{n} & =n\left(\frac{P_{n}}{n+1}-\frac{P_{n+1}}{n+2}\right)=n\left(\frac{P_{n}}{n+1}-\frac{P_{n}}{n+2}-\frac{P_{n+1}}{n+2}\right)=n \frac{P_{n}}{(n+1)(n+2)}-n \frac{P_{n+1}}{n+2} \\
& =O\left(\frac{P_{n}}{n+1}\right)+O\left(p_{n+1}\right)=O(1)
\end{aligned}
$$

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

[1] H. Bor, On a new application of almost increasing sequences,,to be published in Mathem and Computer Modelling, 35 (2011),230-233.
[2] S. M. Mazhar, Absolute summability factors of infinite series, Kyungpook Math. J., 39 (1999), 67-73.
[3] R. S. Varma, On the absolute Nörlund summability factors, Riv. Mat. Univ. Parma (4), 3(1977)27-33.

Waad Sulaiman, Department of Computer Engineering, College of Engineering, University of Mosul, Iraq.

E-mail address: waadsulaiman@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 40D15, 40F05, 40G05.
 Key words and phrases. Almost increasing sequence, Nörlund summability, absolute summability.
 (C)2012 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted March 1, 2012. Published July 15, 2012.

