ON AN INTEGRAL-TYPE OPERATOR FROM MIXED NORM SPACES TO ZYGMUND-TYPE SPACES

(COMMUNICATED BY PROFESSOR SONGXIAO LI)

YONG REN

Abstract

This paper studies the boundedness and compactness of an integraltype operator from mixed norm spaces to Zygmund-type spaces and little Zygmund-type spaces.

1. Introduction

Let \mathbb{D} denote the open unit disk in the complex plane \mathbb{C} and $H(\mathbb{D})$ the space of all analytic functions in \mathbb{D}. Let $\beta>0$. An $f \in H(\mathbb{D})$ is said to belong to the Zygmund-type space, denoted by \mathcal{Z}_{β}, if $\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|f^{\prime \prime}(z)\right|<\infty$. It is easy to see that \mathcal{Z}_{β} is a Banach space with the norm

$$
\|f\|_{\mathcal{Z}_{\beta}}=|f(0)|+\left|f^{\prime}(0)\right|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|f^{\prime \prime}(z)\right| .
$$

Let $\mathcal{Z}_{\beta, 0}$ denote the subspace of \mathcal{Z}_{β} consisting of those $f \in \mathcal{Z}_{\beta}$ such that $\lim _{|z| \rightarrow 1}(1-$ $\left.|z|^{2}\right)^{\beta}\left|f^{\prime \prime}(z)\right|=0$. We call $\mathcal{Z}_{\beta, 0}$ the little Zygmund-type space. When $\beta=1$, the induced spaces \mathcal{Z}_{1} and $\mathcal{Z}_{1,0}$ becomes the classical Zygmund space and the little Zygmund space respectively (see [2]).

If $0<r<1$ and $f \in H(\mathbb{D})$, we set

$$
M_{q}^{q}(f, r)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{q} d t, 0<q<\infty .
$$

Let ν be a normal function on $[0,1$) (see [7]). For $0<p, q<\infty$, the mixed norm space $H(p, q, \nu)=H(p, q, \nu)(\mathbb{D})$ consists of all $f \in H(\mathbb{D})$ such that

$$
\|f\|_{H(p, q, \nu)}=\left(\int_{0}^{1} M_{q}^{p}(f, r) \frac{\nu^{p}(r)}{1-r} d r\right)^{1 / p}<\infty .
$$

[^0]Let $g \in H(\mathbb{D}), n$ be a nonnegative integer and φ be an analytic self-map of \mathbb{D}. In [11], Zhu defined a new integral-type operator as follows.

$$
\left(C_{\varphi, g}^{n} f\right)(z)=\int_{0}^{z} f^{(n)}(\varphi(\xi)) g(\xi) d \xi, \quad z \in \mathbb{D}, f \in H(\mathbb{D})
$$

When $n=1$, then $C_{\varphi, g}^{1}$ is the generalized composition operator C_{φ}^{g}, which firstly defined and studied in 4]. See some related results about the generalized composition operator C_{φ}^{g} and the operator $C_{\varphi, g}^{n}$ in [3, 4, 5, 6, 8, 9, 10]. The purpose of this paper is to study the operator $C_{\varphi, g}^{n, g}$. The boundedness and compactness of the operator $C_{\varphi, g}^{n}$ from $H(p, q, \nu)$ to Zygmund-type spaces and little Zygmund-type spaces are completely characterized, which generalized the results of [8].

Throughout this paper, constants are denoted by C, they are positive and may differ from one occurrence to the other. The notation $A \asymp B$ means that there is a positive constant C such that $B / C \leq A \leq C B$.

2. Main Results and proofs

In this section we give our main results and proofs. For this purpose, we need some auxiliary results. The following lemma can be proved in a standard way (see, e.g., Proposition 3.11 in [1]).

Lemma 2.1. Assume that $0<p, q, \beta<\infty, \nu$ is a normal function, φ is an analytic self-map of \mathbb{D} and n is a nonnegative integer. Then $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta}$ is compact if and only if $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta}$ is bounded and for any bounded sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$ in $H(p, q, \nu)$ which converges to zero uniformly on compact subsets of \mathbb{D}, we have $\left\|C_{\varphi, g}^{n} f_{k}\right\|_{\mathcal{Z}_{\beta}} \rightarrow 0$ as $k \rightarrow \infty$.

Lemma 2.2. ([8) A closed set G in $\mathcal{Z}_{\beta, 0}$ is compact if and only if it is bounded and satisfies

$$
\lim _{|z| \rightarrow 1} \sup _{f \in G}\left(1-|z|^{2}\right)^{\beta}\left|f^{\prime \prime}(z)\right|=0
$$

Lemma 2.3. ([8]) Assume that $0<p, q<\infty$ and ν is a normal function. If $f \in H(p, q, \nu)$, then there is a positive constant C independent of f such that

$$
\begin{equation*}
\left|f^{(n)}(z)\right| \leq C \frac{\|f\|_{H(p, q, \nu)}}{\nu(z)\left(1-|z|^{2}\right)^{\frac{1}{q}+n}}, \quad z \in \mathbb{D} \tag{2.1}
\end{equation*}
$$

Now we are in a position to state and prove the main results of this paper.
Theorem 2.1. Assume that $0<p, q, \beta<\infty, \nu$ is a normal function, φ is an analytic self-map of \mathbb{D} and n is a nonnegative integer. Then $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta}$ is bounded if and only if

$$
\begin{equation*}
M_{1}:=\sup _{z \in \mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n}}<\infty \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{2}:=\sup _{z \in \mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\beta}|g(z)|\left|\varphi^{\prime}(z)\right|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n+1}}<\infty \tag{2.3}
\end{equation*}
$$

Proof. Suppose that (2.2) and (2.3) hold. First it is easy to see that $\left(C_{\varphi, g}^{n} f\right)(0)=$ 0 and $\left(C_{\varphi, g}^{n} f\right)^{\prime}(z)=f^{(n)}(\varphi(z)) g(z)$ for every $f \in H(\mathbb{D})$. For any $z \in \mathbb{D}$ and $f \in H(p, q, \nu)$, by Lemma 2.3 we have

$$
\begin{align*}
& \left(1-|z|^{2}\right)^{\beta}\left|\left(C_{\varphi, g}^{n} f\right)^{\prime \prime}(z)\right|=\left(1-|z|^{2}\right)^{\beta}\left|\left(f^{(n)} \circ \varphi \cdot g\right)^{\prime}(z)\right| \\
\leq & \left(1-|z|^{2}\right)^{\beta}\left|f^{(n+1)}(\varphi(z)) g(z) \varphi^{\prime}(z)\right|+\left(1-|z|^{2}\right)^{\beta}\left|f^{(n)}(\varphi(z)) g^{\prime}(z)\right| \\
\leq & C \frac{\left(1-|z|^{2}\right)^{\beta}\left|g(z)\left\|\varphi^{\prime}(z) \mid\right\| f \|_{H(p, q, \nu)}\right.}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n+1}}+C \frac{\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right|\|f\|_{H(p, q, \nu)}}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n}} .(2 \tag{2.4}
\end{align*}
$$

Moreover $\left|\left(C_{\varphi, g}^{n} f\right)^{\prime}(0)\right| \leq \frac{C|g(0)|\|f\|_{H(p, q, \nu)}}{\nu(\varphi(0))\left(1-\mid \varphi(0)^{2}\right)^{\frac{1}{q}+n}}$. Taking the supremum in (2.4) for $z \in \mathbb{D}$, then employing (2.2) and (2.3) we see that $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta}$ is bounded.

Conversely, suppose that $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta}$ is bounded, i.e., there exists a constant C such that $\left\|C_{\varphi, g}^{n} f\right\|_{\mathcal{Z}_{\beta}} \leq C\|f\|_{H(p, q, \nu)}$ for all $f \in H(p, q, \nu)$. Taking the functions $f(z) \equiv z^{n}$ and $f(z) \equiv z^{n+1}$, which belongs to $H(p, q, \nu)$, we get

$$
\begin{equation*}
M_{3}:=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right|<\infty, M_{4}:=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}|g(z)|\left|\varphi^{\prime}(z)\right|<\infty . \tag{2.5}
\end{equation*}
$$

For $a \in \mathbb{D}$, set $f_{a}(z)=\frac{\left(1-|a|^{2}\right)^{t+1}}{\nu(a)(1-\bar{a} z)^{\frac{1}{q}+t+1}}$. From [8] we see that $f_{a} \in H(p, q, \nu)$. Moreover there is a positive constant C such that $\sup _{a \in \mathbb{D}}\left\|f_{a}\right\|_{H(p, q, \nu)} \leq C$,

$$
\left|f_{a}^{(n)}(a)\right|=\frac{\prod_{k=1}^{n}\left(\frac{1}{q}+t+k\right)|a|^{n}}{\nu(a)\left(1-|a|^{2}\right)^{\frac{1}{q}+n}},\left|f_{a}^{(n+1)}(a)\right|=\frac{\prod_{k=1}^{n+1}\left(\frac{1}{q}+t+k\right)|a|^{n+1}}{\nu(a)\left(1-|a|^{2}\right)^{\frac{1}{q}+n+1}} .
$$

Hence,

$$
\begin{align*}
\infty>\left\|C_{\varphi, g}^{n} f_{\varphi(\lambda)}\right\|_{\mathcal{Z}_{\beta}} \geq & \frac{\prod_{k=1}^{n}\left(\frac{1}{q}+t+k\right)\left(1-|\lambda|^{2}\right)^{\beta}\left|g^{\prime}(\lambda) \| \varphi(\lambda)\right|^{n}}{\nu(\varphi(\lambda))\left(1-|\varphi(\lambda)|^{2}\right)^{\frac{1}{q}+n}}- \\
& \frac{\prod_{k=1}^{n+1}\left(\frac{1}{q}+t+k\right)\left(1-|\lambda|^{2}\right)^{\beta}\left|g(\lambda)\left\|\varphi^{\prime}(\lambda)\right\| \varphi(\lambda)\right|^{n+1}}{\nu(\varphi(\lambda))\left(1-|\varphi(\lambda)|^{2}\right)^{\frac{1}{q}+n+1}}(2 \tag{2.6}
\end{align*}
$$

for each $\lambda \in \mathbb{D}$.
For $a \in \mathbb{D}$, set

$$
h_{a}(z)=\frac{\left(1-|a|^{2}\right)^{t+1}}{\nu(a)(1-\bar{a} z)^{\frac{1}{q}+t+1}}-\frac{\frac{1}{q}+t+1}{\frac{1}{q}+t+n+1} \frac{\left(1-|a|^{2}\right)^{t+2}}{\nu(a)(1-\bar{a} z)^{\frac{1}{q}+t+2}}
$$

Then

$$
\sup _{a \in \mathbb{D}}\left\|h_{a}\right\|_{H(p, q, \nu)} \leq C,\left|h_{a}^{(n)}(a)\right|=0,\left|h_{a}^{(n+1)}(a)\right|=\frac{\prod_{k=1}^{n}\left(\frac{1}{q}+t+k\right)|a|^{n+1}}{\nu(a)\left(1-|a|^{2}\right)^{\frac{1}{q}+n+1}} .
$$

Hence,

$$
\begin{equation*}
\infty>\left\|C_{\varphi, g}^{n} h_{\varphi(\lambda)}\right\|_{\mathcal{Z}_{\beta}} \geq \frac{\prod_{k=1}^{n}\left(\frac{1}{q}+t+k\right)\left(1-|\lambda|^{2}\right)^{\beta}\left|g(\lambda)\left\|\varphi^{\prime}(\lambda)\right\| \varphi(\lambda)\right|^{n+1}}{\nu(\varphi(\lambda))\left(1-|\varphi(\lambda)|^{2}\right)^{\frac{1}{q}+n+1}} \tag{2.7}
\end{equation*}
$$

for each $\lambda \in \mathbb{D}$. Therefore, we obtain

$$
\begin{equation*}
\sup _{\lambda \in \mathbb{D}} \frac{\left(1-|\lambda|^{2}\right)^{\beta}|g(\lambda)|\left|\varphi^{\prime}(\lambda) \| \varphi(\lambda)\right|^{n+1}}{\nu(\varphi(\lambda))\left(1-|\varphi(\lambda)|^{2}\right)^{\frac{1}{q}+n+1}} \leq C\left\|C_{\varphi, g}^{n}\right\|_{H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta}}<\infty \tag{2.8}
\end{equation*}
$$

From (2.8), we have

$$
\begin{align*}
& \sup _{|\varphi(\lambda)|>\frac{1}{2}} \frac{\left(1-|\lambda|^{2}\right)^{\beta}|g(\lambda)|\left|\varphi^{\prime}(\lambda)\right|}{\nu(\varphi(\lambda))\left(1-|\varphi(\lambda)|^{2}\right)^{\frac{1}{q}+n+1}} \\
< & \sup _{|\varphi(\lambda)|>\frac{1}{2}} \frac{2^{n+1}\left(1-|\lambda|^{2}\right)^{\beta}|g(\lambda)|\left|\varphi^{\prime}(\lambda)\right||\varphi(\lambda)|^{n+1}}{\nu(\varphi(\lambda))\left(1-|\varphi(\lambda)|^{2}\right)^{\frac{1}{q}+n+1}}<\infty . \tag{2.9}
\end{align*}
$$

Inequality (2.5) and the normality of ν give

$$
\begin{equation*}
\sup _{|\varphi(\lambda)| \leq \frac{1}{2}} \frac{\left(1-|\lambda|^{2}\right)^{\beta}|g(\lambda)|\left|\varphi^{\prime}(\lambda)\right|}{\nu(\varphi(\lambda))\left(1-|\varphi(\lambda)|^{2}\right)^{\frac{1}{q}+n+1}} \leq \frac{C M_{4}}{\nu\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)^{\frac{1}{q}+n+1}}<\infty . \tag{2.10}
\end{equation*}
$$

Therefore, (2.3) follows from (2.9) and (2.10). From (2.6) and (2.7), we obtain

$$
\begin{equation*}
\sup _{\lambda \in \mathbb{D}} \frac{\left(1-|\lambda|^{2}\right)^{\beta}\left|g^{\prime}(\lambda)\right||\varphi(\lambda)|^{n}}{\nu(\varphi(\lambda))\left(1-|\varphi(\lambda)|^{2}\right)^{\frac{1}{q}+n}}<\infty \tag{2.11}
\end{equation*}
$$

Using (2.5) and (2.11), similarly to the above proof we obtain that (2.2) holds. The proof is completed.

Theorem 2.2. Assume that $0<p, q, \beta<\infty, \nu$ is a normal function, φ is an analytic self-map of \mathbb{D} and n is a nonnegative integer. Then $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta}$ is compact if and only if $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta}$ is bounded and

$$
\begin{equation*}
\lim _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n}}=\lim _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)^{\beta}|g(z)|\left|\varphi^{\prime}(z)\right|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n+1}}=0 .(\tag{2.12}
\end{equation*}
$$

Proof. Suppose that $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta}$ is bounded and (2.12) hold. Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $H(p, q, \nu)$ such that $\sup _{k \in \mathbb{N}}\left\|f_{k}\right\|_{H(p, q, \nu)} \leq C$ and f_{k} converges to 0 uniformly on compact subsets of \mathbb{D} as $k \rightarrow \infty$. By the assumption, for any $\varepsilon>0$, there exists a $\delta \in(0,1)$ such that

$$
\begin{equation*}
\frac{\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n}}<\varepsilon, \frac{\left(1-|z|^{2}\right)^{\beta}|g(z)|\left|\varphi^{\prime}(z)\right|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n+1}}<\varepsilon \tag{2.13}
\end{equation*}
$$

when $\delta<|\varphi(z)|<1$. Since $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta}$ is bounded, then from the proof of Theorem 2.1 we have $M_{3}<\infty, M_{4}<\infty$. Let $K=\{z \in \mathbb{D}:|\varphi(z)| \leq \delta\}$. Then, by $M_{3}<\infty, M_{4}<\infty$ and (2.13) we have

$$
\begin{aligned}
& \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|\left(C_{\varphi, g}^{n} f_{k}\right)^{\prime \prime}(z)\right| \\
\leq & \sup _{K}\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right|\left|f_{k}^{(n)}(\varphi(z))\right|+\sup _{K}\left(1-|z|^{2}\right)^{\beta}\left|g(z)\left\|\varphi^{\prime}(z)\right\| f_{k}^{(n+1)}(\varphi(z))\right| \\
+ & C \sup _{\mathbb{D} \backslash K} \frac{\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right|\left\|f_{k}\right\|_{H(p, q, \nu)}}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n}}+C \sup _{\mathbb{D} \backslash K} \frac{\left(1-|z|^{2}\right)^{\beta}\left|g(z)\left\|\varphi^{\prime}(z) \mid\right\| f_{k} \|_{H(p, q, \nu)}\right.}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n+1}} \\
\leq & M_{3} \sup _{|w| \leq \delta}\left|f_{k}^{(n)}(w)\right|+M_{4} \sup _{|w| \leq \delta}\left|f_{k}^{(n+1)}(w)\right|+C \varepsilon\left\|f_{k}\right\|_{H(p, q, \nu)},
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& \left\|C_{\varphi, g}^{n} f_{k}\right\|_{\mathcal{Z}_{\beta}}=\left|f_{k}^{(n)}(\varphi(0)) g(0)\right|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|\left(C_{\varphi, g}^{n} f_{k}\right)^{\prime \prime}(z)\right| \\
\leq & \left|f_{k}^{(n)}(\varphi(0)) g(0)\right|+M_{3} \sup _{|w| \leq \delta}\left|f_{k}^{(n)}(w)\right|+M_{4} \sup _{|w| \leq \delta}\left|f_{k}^{(n+1)}(w)\right|+C \varepsilon\left\|f_{k}\right\|_{H(p, q, \nu)}
\end{aligned}
$$

From Cauchy's estimate and the assumption that $f_{k} \rightarrow 0$ as $k \rightarrow \infty$ on compact subsets of \mathbb{D}, we see that $f_{k}^{(n)} \rightarrow 0$ as $k \rightarrow \infty$ on compact subsets of \mathbb{D}. Letting $k \rightarrow$ ∞ in the last inequality and using the fact that ε is an arbitrary positive number, we obtain $\lim _{k \rightarrow \infty}\left\|C_{\varphi, g}^{n} f_{k}\right\|_{\mathcal{Z}_{\beta}}=0$. Applying Lemma 2.1, the result follows.

Conversely, suppose that $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta}$ is compact. Then it is clear that $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta}$ is bounded. Let $\left(z_{k}\right)_{k \in \mathbb{N}}$ be a sequence in \mathbb{D} such that $\left|\varphi\left(z_{k}\right)\right| \rightarrow 1$ as $k \rightarrow \infty$ (if such a sequence does not exist then conditions in (2.12) are vacuously satisfied). Let
$h_{k}(z)=\frac{\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{t+1}}{\nu\left(\varphi\left(z_{k}\right)\right)\left(1-\overline{\varphi\left(z_{k}\right)} z\right)^{\frac{1}{q}+t+1}}-\frac{\frac{1}{q}+t+1}{\frac{1}{q}+t+n+1} \frac{\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{t+1}}{\nu\left(\varphi\left(z_{k}\right)\right)\left(1-\overline{\varphi\left(z_{k}\right)} z\right)^{\frac{1}{q}+t+1}}$.
Then

$$
\sup _{k \in \mathbb{N}}\left\|h_{k}\right\|_{H(p, q, \nu)}<\infty, h_{k}^{(n+1)}\left(\varphi\left(z_{k}\right)\right)=\frac{\prod_{j=1}^{n}\left(\frac{1}{q}+t+j\right)\left|\varphi\left(z_{k}\right)\right|^{n+1}}{\nu\left(\varphi\left(z_{k}\right)\right)\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{\frac{1}{q}+n+1}}
$$

and h_{k} converges to 0 uniformly on compact subsets of \mathbb{D} as $k \rightarrow \infty$. Since $C_{\varphi, g}^{n}$: $H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta}$ is compact, by Lemma 2.1 we have $\lim _{k \rightarrow \infty}\left\|C_{\varphi, g}^{n} h_{k}\right\|_{\mathcal{Z}_{\beta}}=0$. On the other hand, we have

$$
\left\|C_{\varphi, g}^{n} h_{k}\right\|_{\mathcal{Z}_{\beta}} \geq \frac{\prod_{j=1}^{n}\left(\frac{1}{q}+t+j\right)\left(1-\left|z_{k}\right|^{2}\right)^{\beta}\left|g\left(z_{k}\right)\left\|\varphi^{\prime}\left(z_{k}\right)\right\| \varphi\left(z_{k}\right)\right|^{n+1}}{\nu\left(\varphi\left(z_{k}\right)\right)\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{\frac{1}{q}+n+1}}
$$

which together with $\lim _{k \rightarrow \infty}\left\|C_{\varphi, g}^{n} h_{k}\right\|_{\mathcal{Z}_{\beta}}=0$ implies that

$$
\begin{equation*}
\lim _{\left|\varphi\left(z_{k}\right)\right| \rightarrow 1} \frac{\left(1-\left|z_{k}\right|^{2}\right)^{\beta}\left|g\left(z_{k}\right)\right|\left|\varphi^{\prime}\left(z_{k}\right)\right|}{\nu\left(\varphi\left(z_{k}\right)\right)\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{\frac{1}{q}+n+1}}=0 \tag{2.14}
\end{equation*}
$$

Then the second equality of (2.12) follows.
Let

$$
f_{k}(z)=\frac{\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{t+1}}{\nu\left(\varphi\left(z_{k}\right)\right)\left(1-\overline{\varphi\left(z_{k}\right)} z\right)^{\frac{1}{q}+t+1}}
$$

Then $f_{k} \in H(p, q, \nu)$ and f_{k} converges to 0 uniformly on compact subsets of \mathbb{D} as $k \rightarrow \infty$. Since $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta}$ is compact, by Lemma 2.1 we have $\lim _{k \rightarrow \infty}\left\|C_{\varphi, g}^{n} f_{k}\right\|_{\mathcal{Z}_{\beta}}=0$. On the other hand, we have

$$
\begin{align*}
\left\|C_{\varphi, g}^{n} f_{k}\right\|_{\mathcal{Z}_{\beta}} \geq & \frac{\prod_{j=1}^{n}\left(\frac{1}{q}+t+j\right)\left(1-\left|z_{k}\right|^{2}\right)^{\beta}\left|g^{\prime}\left(z_{k}\right) \| \varphi\left(z_{k}\right)\right|^{n}}{\nu\left(\varphi\left(z_{k}\right)\right)\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{\frac{1}{q}+n}}- \\
& \frac{\prod_{j=1}^{n+1}\left(\frac{1}{q}+t+j\right)\left(1-\left|z_{k}\right|^{2}\right)^{\beta}\left|g\left(z_{k}\right)\right|\left|\varphi^{\prime}\left(z_{k}\right) \| \varphi\left(z_{k}\right)\right|^{n+1}}{\nu\left(\varphi\left(z_{k}\right)\right)\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{\frac{1}{q}+n+1}} . \tag{2.15}
\end{align*}
$$

Therefore, by (2.14) and (2.15) we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left(1-\left|z_{k}\right|^{2}\right)^{\beta}\left|g^{\prime}\left(z_{k}\right)\right|\left|\varphi\left(z_{k}\right)\right|^{n}}{\nu\left(\varphi\left(z_{k}\right)\right)\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{\frac{1}{q}+n}}=0 \tag{2.16}
\end{equation*}
$$

Then the first equality of (2.12) follows from (2.16).
Using the condition that polynomials is dense in $H(p, q, \nu)$ and similarly to the proof of Theorem 9 of [4, we get the following result. We omit the details.

Theorem 2.3. Assume that $0<p, q<\infty, \nu$ is a normal function, φ is an analytic self-map of \mathbb{D} and n is a nonnegative integer. Then $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta, 0}$ is bounded if and only if $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta}$ is bounded,

$$
\begin{equation*}
\lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right|=\lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)^{\beta}|g(z)|\left|\varphi^{\prime}(z)\right|=0 . \tag{2.17}
\end{equation*}
$$

Theorem 2.4. Assume that $0<p, q<\infty, \nu$ is a normal function, φ is an analytic self-map of \mathbb{D} and n is a nonnegative integer. Then $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta, 0}$ is compact if and only if

$$
\begin{equation*}
\lim _{|z| \rightarrow 1} \frac{\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n}}=\lim _{|z| \rightarrow 1} \frac{\left(1-|z|^{2}\right)^{\beta}|g(z)|\left|\varphi^{\prime}(z)\right|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n+1}}=0 . \tag{2.18}
\end{equation*}
$$

Proof. Assume that (2.18) holds. Let $f \in H(p, q, \nu)$. By the proof of Theorem 2.1 we have

$$
\begin{align*}
& \left(1-|z|^{2}\right)^{\beta}\left|\left(C_{\varphi, g}^{n} f\right)^{\prime \prime}(z)\right| \\
\leq & \frac{C\left(1-|z|^{2}\right)^{\beta}|g(z)|\left|\varphi^{\prime}(z)\right|\|f\|_{H(p, q, \nu)}}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n+1}}+\frac{C\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right|\|f\|_{H(p, q, \nu)}}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n}}(2 .
\end{align*}
$$

Taking the supremum in (2.19) over all $f \in H(p, q, \nu)$ such that $\|f\|_{H(p, q, \nu)} \leq 1$, then letting $|z| \rightarrow 1$, we get

$$
\lim _{|z| \rightarrow 1} \sup _{\|f\|_{H(p, q, \nu)} \leq 1}\left(1-|z|^{2}\right)^{\beta}\left|\left(C_{\varphi, g}^{n} f\right)^{\prime \prime}(z)\right|=0
$$

From which by Lemma 2.2 we see that $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta, 0}$ is compact.
Conversely, suppose that $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta, 0}$ is compact. Then $C_{\varphi, g}^{n}$: $H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta, 0}$ is bounded and by Theorem 2.3 we get

$$
\begin{equation*}
\lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right|=\lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)^{\beta}\left|g(z) \| \varphi^{\prime}(z)\right|=0 \tag{2.20}
\end{equation*}
$$

If $\|\varphi\|_{\infty}<1$, from (2.20), we obtain that

$$
\lim _{|z| \rightarrow 1} \frac{\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n}} \leq \frac{C \lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right|}{\nu\left(\|\varphi\|_{\infty}\right)\left(1-\|\varphi\|_{\infty}^{2}\right)^{\frac{1}{q}+n}}=0
$$

and

$$
\lim _{|z| \rightarrow 1} \frac{\left(1-|z|^{2}\right)^{\beta}\left|g(z) \| \varphi^{\prime}(z)\right|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n+1}} \leq \frac{C \lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)^{\beta}\left|g(z) \| \varphi^{\prime}(z)\right|}{\nu\left(\|\varphi\|_{\infty}\right)\left(1-\|\varphi\|_{\infty}^{2}\right)^{\frac{1}{q}+n+1}}=0
$$

from which the result follows in this case.
Now we assume that $\|\varphi\|_{\infty}=1$. Let $\left(\varphi\left(z_{k}\right)\right)_{k \in \mathbb{N}}$ be a sequence such that $\lim _{k \rightarrow \infty}\left|\varphi\left(z_{k}\right)\right|=1$. From the compactness of $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta, 0}$ we see that the operator $C_{\varphi, g}^{n}: H(p, q, \nu) \rightarrow \mathcal{Z}_{\beta}$ is compact. From Theorem 2.2 we get

$$
\begin{equation*}
\lim _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n}}=\lim _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)^{\beta}|g(z)|\left|\varphi^{\prime}(z)\right|}{\nu(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{\frac{1}{q}+n+1}}=0 . \tag{2.21}
\end{equation*}
$$

Using (2.20) and (2.21) we easily get the desired result. The proof is completed.

References

[1] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1995.
[2] P. L. Duren, Theory of H^{p} Spaces, Academic press, New York, 1970.
[3] $\mathrm{S} . \mathrm{Li}$, On an integral-type operator from the Bloch space into the $\mathcal{Q}_{K}(p, q)$ space, Filomat, 26 (2012), 331-339.
[4] S. Li and S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl. 338 (2008), 1282-1295.
[5] M. Lindström and A. Sanatpour, Derivative-free characterizations of compact generalized composition operators between Zygmund type spaces, Bull. Austra. Math. Soc. 81 (2010), 398-408.
[6] C. Pan, On an integral-type operator from $\mathcal{Q}_{K}(p, q)$ spaces to α-Bloch space, Filomat, 25 (2011), 163-173.
[7] A. Shields and D. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
[8] S. Stević, Generalized composition operators between mixed-norm and some weighted spaces, Numer. Funct. Anal. Opt. 29 (2008), 959-978.
[9] S. Stević, Generalized composition operators from logarithmic Bloch spaces to mixed-norm spaces, Util. Math. 77 (2008), 167-172.
[10] F. Zhang and Y. Liu, Generalized composition operators from Bloch type spaces to \mathcal{Q}_{K} type spaces, J. Funct. Space Appl. 8 (2010), 55-66.
[11] Xiangling Zhu, An integral-type operator from H^{∞} to Zygmund-type spaces, Bull. Malays. Math. Sci. Soc. 35 (2012), 679-686.

Yong Ren
College of Computer Science and Technology, Hunan International Economics University, 410205 , Changsha, HuNan, China.

E-mail address: hieurenyong@163.com

[^0]: ${ }^{0} 2000$ Mathematics Subject Classification: 47B38, 32A37.
 Keywords and phrases. Mixed norm space, Zygmund-type space, integral-type operator. (C) 2012 Universiteti i Prishtinës, Prishtinë, Kosovë. Submitted 31 May, 2012. Accepted July 17, 2012.

