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SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF

APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS

RELATED TO GENERALIZED POWER AND ALTERNATING

SUMS

(COMMUNICATED BY R.K. RAINA)

B.-J. FUGÈRE, S. GABOURY, R. TREMBLAY

Abstract. The purpose of this paper is to obtain several series identities in-

volving some classes of generalized Apostol-Bernoulli and Apostol-Euler poly-
nomials introduced lately by Srivastava et al. in [16, 17] as well as the general-

ized sum of integer powers, the generalized alternating sum and the analogues

of the expansions of the hyperbolic tangent and the hyperbolic cotangent.
The method used is that of generating functions. It can be found that many

identities recently obtained are special cases of our results.

1. Introduction, Definitions and Notations

The generalized Bernoulli polynomials B
(α)
n (x) of order α ∈ C, the generalized

Euler polynomials E
(α)
n (x) of order α ∈ C and the generalized Genocchi polynomials

G
(α)
n (x) of order α ∈ C, each of degree n as well as in α, are defined respectively by

the following generating functions (see,[4, vol.3, p.253 et seq.], [8, Section 2.8] and
[10]): (

t

et − 1

)α
· ext =

∞∑
k=0

B
(α)
k (x)

tk

k!
(|t| < 2π; 1α := 1), (1.1)

(
2

et + 1

)α
· ext =

∞∑
k=0

E
(α)
k (x)

tk

k!
(|t| < π; 1α := 1) (1.2)

and (
2t

et + 1

)α
· ext =

∞∑
k=0

G
(α)
k (x)

tk

k!
(|t| < π; 1α := 1). (1.3)

The literature contains a large number of interesting properties and relationships
involving these polynomials [1, 2, 3, 4, 5, 15]. Q.-M. Luo and Srivastava ([12,

14]) introduced the generalized Apostol-Bernoulli polynomials B
(α)
n (x) of order α,
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Q.-M. Luo [9] investigated the generalized Apostol-Euler polynomials E
(α)
n (x) of

order α and the generalized Apostol-Genocchi polynomials G
(α)
n (x) of order α (see

also,[10, 11, 13]).

The generalized Apostol-Bernoulli polynomials B
(α)
n (x;λ) of order α ∈ C, the

generalized Apostol-Euler polynomials E
(α)
n (x;λ) of order α ∈ C, the generalized

Apostol-Genocchi polynomials G
(α)
n (x;λ) of order α ∈ C are defined respectively

by the following generating functions(
t

λet − 1

)α
· ext =

∞∑
k=0

B
(α)
k (x;λ)

tk

k!
(|t+ lnλ| < 2π; 1α := 1) (1.4)

(
2

λet + 1

)α
· ext =

∞∑
k=0

E
(α)
k (x;λ)

tk

k!
(|t+ lnλ| < π; 1α := 1) (1.5)

and (
2t

λet + 1

)α
· ext =

∞∑
k=0

G
(α)
k (x;λ)

tk

k!
(|t+ lnλ| < π; 1α := 1). (1.6)

It is easy to see that

B
(α)
n (x) = B

(α)
n (x; 1), E

(α)
n (x) = E

(α)
n (x; 1) and G

(α)
n (x) = G

(α)
n (x; 1).

Recently, Srivastava et al. in [16, 17] have investigated some new classes of
Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials with parame-
ters a, b and c defined by the following generating functions.

Definition 1.1. Let a, b, c ∈ R+, (a 6= b) and n ∈ N0. The generalized Apostol-

Bernoulli polynomials B
(α)
n (x;λ; a, b, c) of order α, the generalized Apostol-Euler

polynomials E
(α)
n (x;λ; a, b, c) of order α and the generalized Apostol-Genocchi poly-

nomials G
(α)
n (x;λ; a, b, c) of order α are defined respectively by the following gener-

ating functions(
t

λbt − at

)α
cxt =

∞∑
n=0

B(α)
n (x;λ; a, b, c)

tn

n!
,
(∣∣∣t ln

(a
b

)
+ lnλ

∣∣∣ < 2π; 1α := 1
)

,

(1.7)

(
2

λbt + at

)α
cxt =

∞∑
n=0

E(α)
n (x;λ; a, b, c)

tn

n!
,
(∣∣∣t ln

(a
b

)
+ lnλ

∣∣∣ < π; 1α := 1
)

(1.8)

and(
2t

λbt + at

)α
cxt =

∞∑
n=0

G(α)
n (x;λ; a, b, c)

tn

n!
,
(∣∣∣t ln

(a
b

)
+ lnλ

∣∣∣ < π; 1α := 1
)

.

(1.9)

If we take a = 1, b = c = e in (1.7), (1.8) and (1.9) respectively, we have
(1.4), (1.5) and (1.6). Obviously, when we set λ = 1, α = 1, a = 1, b = c = e in
(1.7), (1.8) and (1.9), we have classical Bernoulli polynomials Bn(x), classical Euler
polynomials En(x) and classical Genocchi polynomials Gn(x).



78

For each k ∈ N0, Sk(n) defined by

Sk(n) =

n∑
j=0

jk (1.10)

is called the sum of integer powers. The exponential generating function for Sk(n)
is given by [19]

∞∑
k=0

Sk(n)
tk

k!
=

e(n+1)t − 1

et − 1
. (1.11)

We now define the generalized sum of integer powers as follows.

Definition 1.2. For an arbitrary real or complex λ, the generalized sum of integers
powers Sk(n; λ) is defined by the generating relation

∞∑
k=0

Sk(n; λ)
tk

k!
=
λe(n+1)t − 1

λet − 1
. (1.12)

It is obvious that

Sk(n; 1) = Sk(1). (1.13)

For k ∈ N0 and n ∈ N, Tk(n) defined by

Tk(n) =

n−1∑
k=0

(−1)knk (1.14)

is called the alternating sum. The exponential generating function for Tk(n) is
given by

∞∑
k=0

Tk(n)
tk

k!
=

1− (−1)nent

1 + et
. (1.15)

The generalized alternating sum of order α is defined in [7] as follows.

Definition 1.3. For any arbitrary real or complex parameter λ, the generalized

alternating sum of order α, T
(α)
k (n; λ) is defined by the following generating func-

tion:
∞∑
k=0

T
(α)
k (n; λ)

tk

k!
=

(
1− λ(−1)nent

1 + λet

)α
. (1.16)

It is easy to observe that

T
(1)
k (n; 1) = Tk(n). (1.17)

In this paper, we present several series identities involving the generalized Apostol-
Bernoulli and the generalized Apostol-Euler polynomials defined respectively by
(1.7) and (1.8). In Section 2, we obtain several symmetry identities for the gen-
eralized Apostol-Bernoulli polynomials a relation between the these polynomials
and the generalized sum of integer powers (1.12). In Section 3, we prove several
identities involving the generalized Apostol-Euler, the generalized alternating sum
and the analogues of the expansions of the hyperbolic tangent and the hyperbolic
cotangent. Some identities are also obtained by using the relationships between the
generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials.
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2. Symmetry identities for the generalized Apostol-Bernoulli
polynomials

In this section, we establish some symmetry identities involving the generalized

Apostol-Bernoulli polynomials B
(α)
n (x;λ; a, b, c) defined in the first section and the

generalized sum of integer powers defined by (1.12). This is done by using the
method of generating functions. These results provides generalization of known
identities [18, 21, 22, 23]

Theorem 2.1. For all integers µ > 0, ν > 0, α ≥ 1, n ≥ 0, for a, b, c ∈ R+

(a 6= b) and for λ ∈ C, we have the following identity:

n∑
k=0

(
n

k

)
B

(α)
n−k

(
νx+

(µ− 1)ν ln a

µ ln c
; λ; a, b, c

)
µn−k νk+1

×
k∑
i=0

(
k

i

)
Sk−i(µ− 1, λ) B

(α−1)
i (µy; λ; a, b, c)

[
ln

(
b

a

)]k−i
=

n∑
k=0

(
n

k

)
B

(α)
n−k

(
µx+

(ν − 1)µ ln a

ν ln c
; λ; a, b, c

)
νn−k µk+1

×
k∑
i=0

(
k

i

)
Sk−i(ν − 1, λ) B

(α−1)
i (νy; λ; a, b, c)

[
ln

(
b

a

)]k−i
.

(2.1)

Proof. Considering g(t) =
t2α−1c µνxt(λbµνt − aµνt)c µνyt

(λbµt − aµt)α(λbνt − aνt)α
. We have to expand the

last function into series in two way to prove the theorem. We have

g(t) =
t2α−1c µνxt(λbµνt − aµνt)c µνyt

(λbµt − aµt)α(λbνt − aνt)α

=
1

µανα−1

(
µt

λbµt − aµt

)α
c νxµt

(
λbµνt − aµνt

λbνt − aνt

)(
νt

λbνt − aνt

)α−1

c µνyt

=
c

(µ−1)νt ln a
ln c

µανα−1

(
µt

λbµt − aµt

)α
c νxµt

λ
(
bν

aν

)µt
− 1

λ
(
bν

aν

)t − 1

( νt

λbνt − aνt

)α−1

c µνyt

=
1

µανα−1

(
∞∑
n=0

B(α)
n

(
νx+

(µ− 1)ν ln a

µ ln c
; λ; a, b, c

)
(µt)n

n!

)

×

(
∞∑
k=0

Sk(µ− 1, λ)

[
ν ln

(
b

a

)]k
tk

k!

)(
∞∑
i=0

B
(α−1)
i (µy; λ; a, b, c)

(νt)i

i!

)

=
1

µανα

∞∑
n=0

[
n∑
k=0

(
n

k

)
B

(α)
n−k

(
νx+

(µ− 1)ν ln a

µ ln c
; λ; a, b, c

)
µn−k νk+1

×
k∑
i=0

(
k

i

)
Sk−i(µ− 1, λ) B

(α−1)
i (µy; λ; a, b, c)

[
ln

(
b

a

)]k−i ]
tn

n!
.

(2.2)
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By expanding in a different way, we have

g(t) =
1

ναµα

∞∑
n=0

[
n∑
k=0

(
n

k

)
B

(α)
n−k

(
µx+

(ν − 1)µ ln a

ν ln c
; λ; a, b, c

)
νn−k µk+1

×
k∑
i=0

(
k

i

)
Sk−i(ν − 1, λ) B

(α−1)
i (νy; λ; a, b, c)

[
ln

(
b

a

)]k−i ]
tn

n!
.

(2.3)

�

By setting a = 1, b = c = e in Theorem 1, we obtain one of the results exhibited
by Zhang and Yang [23, Eq. 8]:

Corollary 2.2. For all integers µ > 0, ν > 0, α ≥ 1, n ≥ 0 and for λ ∈ C, we
have

n∑
k=0

(
n

k

)
B

(α)
n−k (νx; λ) µn−k νk+1

k∑
i=0

(
k

i

)
Sk−i(µ− 1, λ) B

(α−1)
i (µy; λ)

=

n∑
k=0

(
n

k

)
B

(α)
n−k (µx; λ) νn−k µk+1

k∑
i=0

(
k

i

)
Sk−i(ν − 1, λ) B

(α−1)
i (νy; λ). (2.4)

Putting x = 0, y = 0 and α = 1 in Theorem 1, we have:

Corollary 2.3. For all integers µ > 0, ν > 0, n ≥ 0 and for a, b, c ∈ R+ (a 6= b)
and λ ∈ C, we have the following relation:

n∑
k=0

(
n

k

)
Bk

(
(µ− 1)ν ln a

µ ln c
;λ; a, b, c

)
µk−1νn−k Sn−k(µ− 1, λ)

[
ln

(
b

a

)]n−k
=

n∑
k=0

(
n

k

)
Bk

(
(ν − 1)µ ln a

ν ln c
;λ; a, b, c

)
νk−1µn−k Sn−k(ν − 1, λ)

[
ln

(
b

a

)]n−k
.

(2.5)

Finally, substituting λ = 1, a = 1, b = c = e in (2.5), we find

n∑
k=0

(
n

k

)
µk−1νn−kBkSn−k(µ− 1) =

n∑
k=0

(
n

k

)
νk−1µn−kBkSn−k(ν − 1) (2.6)

a result given by Tuenter [18].

Theorem 2.4. For all integers µ > 0, ν > 0, α ≥ 1, n ≥ 0, for a, b, c ∈ R+,
(a 6= b) and for λ ∈ C, we have the following identity:

n∑
k=0

(
n

k

)
µ−1∑
i=0

ν−1∑
j=0

λi+jµn−kνkB
(α)
n−k

(
νx+

iν ln
(
b
a

)
+ (2µν − ν − µ) ln a

µ ln c
;λ; a, b, c

)

×B
(α)
k

(
µy +

jµ ln
(
b
a

)
ν ln c

;λ; a, b, c

)

=

n∑
k=0

(
n

k

)
ν−1∑
i=0

µ−1∑
j=0

νn−kµkB
(α)
n−k

(
µx+

iµ ln
(
b
a

)
+ (2µν − ν − µ) ln a

ν ln c
;λ; a, b, c

)

× λi+j B
(α)
k

(
νy +

jν ln
(
b
a

)
µ ln c

;λ; a, b, c

)
.

(2.7)
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Proof. Let the function h(t) be given by

h(t) =
t2αc µνxt(λµbµνt − aµνt)(λνbµνt − aµνt)c µνyt

(λbµt − aµt)α+1(λbνt − aνt)α+1
, (2.8)

which can be expanded as follows:

h(t) =
1

(µν)α

(
µt

λbµt − aµt

)α
c µνxt

(
λµbµνt − aµνt

λbνt − aνt

)(
νt

λbνt − aνt

)α
×
(
λνbµνt − aµνt

λbµt − aµt

)
c µνyt

=
a2µνt−νt−µt

(µν)α

(
µt

λbµt − aµt

)α
c µνxt

(
λµe µνt ln( ba ) − 1

λe νt ln( ba ) − 1

)(
νt

λbνt − aνt

)α
×

(
λνe νµt ln( ba ) − 1

λe µt ln( ba ) − 1

)
c µνyt

=
1

(µν)α
c

(2µν−ν−µ)t ln a
ln c

(
µt

λbµt − aµt

)α
c µνxt

µ−1∑
i=0

λie iνt ln( ba )

×
(

νt

λbνt − aνt

)α ν−1∑
j=0

λje jµt ln( ba )c µνyt

=
1

(µν)α

µ−1∑
i=0

λi
(

µt

λbµt − aµt

)α
c
µνxt+

iνt ln
(
b
a

)
ln c

+
(2µν − ν − µ)t ln a

ln c

×
ν−1∑
j=0

λj
(

νt

λbνt − aνt

)α
c
µνyt+

jµt ln
(
b
a

)
ln c

=
1

(µν)α

µ−1∑
i=0

λi
∞∑
n=0

B(α)
n

(
νx+

iν ln
(
b
a

)
+ (2µν − ν − µ) ln a

µ ln c
;λ; a, b, c

)
(µt)n

n!

×
ν−1∑
j=0

λj
∞∑
k=0

B
(α)
k

(
µy +

jµ ln
(
b
a

)
ν ln c

;λ; a, b, c

)
(νt)k

k!

=
1

(µν)α

∞∑
n=0

[
n∑
k=0

(
n

k

) µ−1∑
i=0

ν−1∑
j=0

λi+jµn−kνkB
(α)
k

(
µy +

jµ ln
(
b
a

)
ν ln c

;λ; a, b, c

)

×B
(α)
n−k

(
νx+

iν ln
(
b
a

)
+ (2µν − ν − µ) ln a

µ ln c
;λ; a, b, c

)]
tn

n!
.

(2.9)

Since h(t) is symmetric in µ and ν, we can also expand h(t) as follows:

h(t) =
1

(µν)α

∞∑
n=0

[
n∑
k=0

(
n

k

)
ν−1∑
i=0

µ−1∑
j=0

λi+jνn−kµkB
(α)
k

(
νy +

jν ln
(
b
a

)
µ ln c

;λ; a, b, c

)

×B
(α)
n−k

(
µx+

iµ ln
(
b
a

)
+ (2µν − ν − µ) ln a

ν ln c
;λ; a, b, c

)]
tn

n!
.

(2.10)
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By equating the coefficient of t
n

n! on the right-hand sides of these last two (2.9) and
(2.10), we get the identity (2.7). �

Setting a = 1, b = c = e in Theorem 2 yields a result given recently by Zhang
and Yang [23, Eq. 18] :

Corollary 2.5. For all integers µ > 0, ν > 0, α ≥ 1, n ≥ 0 and for λ ∈ C, we
have

n∑
k=0

(
n

k

)
µ−1∑
i=0

ν−1∑
j=0

λi+j µn−k νk B
(α)
n−k

(
νx+

iν

µ
;λ

)
B

(α)
k

(
µy +

jµ

ν
;λ

)

=

n∑
k=0

(
n

k

)
ν−1∑
i=0

µ−1∑
j=0

λi+j νn−k µkB
(α)
n−k

(
µx+

iµ

ν
;λ

)
B

(α)
k

(
νy +

jν

µ
;λ

)
.

(2.11)

Putting ν = 1 and y = 0 in Theorem 2 gives the next corollary:

Corollary 2.6. For all integers µ > 0, α ≥ 1, n ≥ 0, for a, b, c ∈ R+, (a 6= b) and
for λ ∈ C, we have the following identity:

n∑
k=0

(
n

k

)
µ−1∑
i=0

λiµn−kB
(α)
n−k

(
x+

i ln
(
b
a

)
+ (µ− 1) ln a

µ ln c
;λ; a, b, c

)
B

(α)
k (0;λ; a, b, c)

=

n∑
k=0

(
n

k

)
µ−1∑
j=0

λjµkB
(α)
n−k

(
µx+

(µ− 1) ln a

ν ln c
;λ; a, b, c

)
B

(α)
k

(
j ln

(
b
a

)
µ ln c

;λ; a, b, c

)
.

(2.12)

Theorem 2.7. For all integers µ > 0, ν > 0, α ≥ 1, n ≥ 0, for a, b, c ∈ R+,
(a 6= b) and for λ ∈ C, we have the following identity:

n∑
k=0

(
n

k

)
µ−1∑
i=0

ν−1∑
j=0

λi+j µn−k νk B
(α)
k (µy;λ; a, b, c)

×B
(α)
n−k

(
νx+

iν ln
(
b
a

)
+ (2µν − ν − µ) ln a+ jµ ln

(
b
a

)
µ ln c

;λ; a, b, c

)

=

n∑
k=0

(
n

k

)
ν−1∑
i=0

µ−1∑
j=0

λi+j νn−k µk B
(α)
k (νy;λ; a, b, c)

×B
(α)
n−k

(
µx+

iµ ln
(
b
a

)
+ (2µν − ν − µ) ln a+ jν ln

(
b
a

)
ν ln c

;λ; a, b, c

)
.

(2.13)

Proof. The proof of Theorem 3 is similar to that of Theorems 1 and 2. In the
proof of Theorem 3, we first make use of (1.7) in order to expand the function h(t)
defined by (2.8) and then apply the symmetry of h(t) in µ and ν to obtain a second
expansion of h(t). The details involved are straightforward and we leave them as
an exercise. �

If we set a = 1, b = c = e in Theorem 3, we recover a result given recently by
Zhang and Yang [23, Eq. 23] :
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Corollary 2.8. For all integers µ > 0, ν > 0, α ≥ 1, n ≥ 0 and for λ ∈ C, we
have

n∑
k=0

(
n

k

)
µ−1∑
i=0

ν−1∑
j=0

λi+j µn−k νk B
(α)
n−k

(
νx+

ν

µ
i+ j;λ

)
B

(α)
k (µy;λ)

=

n∑
k=0

(
n

k

)
ν−1∑
i=0

µ−1∑
j=0

λi+j νn−k µk B
(α)
n−k

(
µx+

µ

ν
i+ j;λ

)
B

(α)
k (νy;λ) .

(2.14)

Putting ν = 1 and y = 0 in Theorem 3 gives the next corollary:

Corollary 2.9. For all integers µ > 0, α ≥ 1, n ≥ 0, for a, b, c ∈ R+, (a 6= b) and
for λ ∈ C, we have the following identity:

n∑
k=0

(
n

k

)
µ−1∑
i=0

λiµn−kB
(α)
n−k

(
x+

i ln
(
b
a

)
+ (µ− 1) ln a

µ ln c
;λ; a, b, c

)
B

(α)
k (0;λ; a, b, c)

=

n∑
k=0

(
n

k

)
µ−1∑
j=0

λjµkB
(α)
n−k

(
µx+

(µ− 1) ln a+ j ln
(
b
a

)
ln c

;λ; a, b, c

)
B

(α)
k (0;λ; a, b, c) .

(2.15)

3. Some identities related to generalized Apostol-Euler polynomials

In this section, we derive some identities concerning the generalized Apostol-

Euler polynomials E
(α)
n (x;λ; a, b, c) defined by (1.8), the generalized alternating

sum (1.16) and the analogues of the expansions of hyperbolic cotangent and hy-
perbolic tangent introduced in [20]. These results extend some known formulas
[6, 7, 21]. We conclude this section by giving some identities based on relation-

ships between the generalized Apostol-Euler polynomials E
(α)
n (x;λ; a, b, c) and the

generalized Apostol-Bernoulli polynomials B
(α)
n (x;λ; a, b, c) and between the gener-

alized Apostol-Bernoulli polynomials B
(α)
n (x;λ; a, b, c) and the generalized Apostol-

Genocchi polynomials G
(α)
n (x;λ; a, b, c) defined by (1.9).

Theorem 3.1. For n ∈ N0, µ, ν ∈ N, α ≥ 1, a, b, c ∈ R+, (a 6= b) and for λ ∈ C.
If µ and ν have the same parity, then the following identity holds true:

n∑
k=0

(
n

k

)
µn−kνk

(
ln

(
b

a

))k
E
(α)
n−k

(
νx− αν ln a

µ ln c
; λ; a, b, c

)
T

(α)
k (µ;λ)

=

n∑
k=0

(
n

k

)
νn−kµk

(
ln

(
b

a

))k
E
(α)
n−k

(
µx− αµ ln a

ν ln c
; λ; a, b, c

)
T

(α)
k (ν;λ).

(3.1)

Proof. Let the function g(t) be given by

g(t) =
c µνxt

(
1− λ(−1)µeµνt ln( ba )

)α
(λbµt + aµt)

α
(λbνt + aνt)

α (3.2)
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Making use of (1.8) and (1.16) to expand g(t) to obtain first:

g(t) =
1

2α
c
−ανt ln a

ln c

(
2

λbµt + aµt

)α
c νxµt

(
1− λ(−1)µeµνt ln(

b
a )

λeνt ln(
b
a ) + 1

)α

=
1

2α

∞∑
n=0

E(α)
n

(
νx− αν ln a

µ ln c
; λ; a, b, c

)
(µt)n

n!

∞∑
k=0

T
(α)
k (µ;λ)

(
νt ln

(
b
a

))k
k!

=
1

2α

∞∑
n=0

n∑
k=0

(
n

k

)
µn−kνk

(
ln

(
b

a

))k
E
(α)
n−k

(
νx− αν ln a

µ ln c
;λ; a, b, c

)
T

(α)
k (µ;λ)

tn

n!
.

(3.3)
Now, since µ and ν have the same parity, then the function g(t) is symmetric in µ
and ν. Therefore, we can expand g(t) as follows:

g(t) =
1

2α

∞∑
n=0

n∑
k=0

(
n

k

)
νn−kµk

(
ln

(
b

a

))k
E
(α)
n−k

(
µx− αµ ln a

ν ln c
;λ; a, b, c

)
T

(α)
k (ν;λ)

tn

n!
.

(3.4)

By equating the coefficient of tn

n! on the right-hand side of the last two equations
(3.3) and (3.4), we thus recover the identity (3.1) asserted by Theorem 4. �

As a special case, if we set a = 1, b = c = e in Theorem 4, we obtain the following
corollary given recently by Lu and Srivastava in [7, Eq. 30].

Corollary 3.2. For n ∈ N0, µ, ν ∈ N, α ≥ 1 and for λ ∈ C. If µ and ν have the
same parity, then the following identity holds true:

n∑
k=0

(
n

k

)
µn−kνkE

(α)
n−k (νx ;λ) T

(α)
k (µ;λ) =

n∑
k=0

(
n

k

)
νn−kµkE

(α)
n−k (µx; λ) T

(α)
k (ν;λ).

(3.5)

Now, letting α = λ = 1, we recover the result given by Yang and Qiao in [21,
Eq. 18]:

Corollary 3.3. For n ∈ N0 and µ, ν ∈ N. If µ and ν have the same parity, then
we have

n∑
k=0

(
n

k

)
µn−kνkEn−k (νx) Tk(µ) =

n∑
k=0

(
n

k

)
νn−kµkEn−k (µx) Tk(ν). (3.6)

Theorem 3.4. For n ∈ N0, µ, ν ∈ N, α ≥ 1, a, b, c ∈ R+, (a 6= b) and for λ ∈ C.
If µ and ν have the same parity, then the following identity holds true:

n∑
k=0

(
n

k

)
µ−1∑
i=0

ν−1∑
j=0

(−λ)i+jµn−kνkE(α)
n−k

(
νx+

(iν + jµ) ln
(
b
a

)
− (µ+ ν) ln a

µ ln c
;λ; a, b, c

)
× E

(α)
k (µy;λ; a, b, c)

=

n∑
k=0

(
n

k

)
ν−1∑
i=0

µ−1∑
j=0

(−λ)i+jνn−kµkE(α)
n−k

(
µx+

(iµ+ jν) ln
(
b
a

)
− (µ+ ν) ln a

ν ln c
;λ; a, b, c

)
× E

(α)
k (νy;λ; a, b, c).

(3.7)
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Proof. Let the function g(t) be given by

g(t) =
cµνxtcµνyt

[
1−

(
−λ
(
b
a

)νt)µ] [
1−

(
−λ
(
b
a

)µt)ν]
(λbµt + aµt)

α+1
(λbνt + aνt)

α+1 (3.8)

which can be expanded, with the help of (1.8), as follows:

g(t) =
1

22α

(
2

λbµt + aµt

)α
cµνxt

1

aνt

1−
(
−λ
(
b
a

)νt)µ
λ
(
b
a

)νt
+ 1


× 1

aµt

1−
(
−λ
(
b
a

)µt)ν
λ
(
b
a

)µt
+ 1

( 2

λbνt + aνt

)α
cµνyt

=
a−(µ+ν)t

22α

(
2

λbµt + aµt

)α
cµνxt

(
µ−1∑
i=0

(−λ)i
(
b

a

)iνt)

×

(
ν−1∑
j=0

(−λ)j
(
b

a

)jµt)(
2

λbνt + aνt

)α
cµνyt

=
1

22α

µ−1∑
i=0

ν−1∑
j=0

(λ)i+j
(

2

λbµt + aµt

)α
c
µνxt+

iνt ln
(
b
a

)
ln c

+
jµt ln

(
b
a

)
ln c

− (µ+ ν)t ln a

ln c

×
(

2

λbνt + aνt

)α
cµνyt

=
1

22α

µ−1∑
i=0

ν−1∑
j=0

(λ)i+j
∞∑
n=0

E(α)
n

(
νx+

(iν + µj) ln
(
b
a

)
− (µ+ ν) ln a

µ ln c
;λ; a, b, c

)
(µt)n

n!

×
∞∑
k=0

E
(α)
k (µy;λ; a, b, c)

(νt)k

k!

=
1

22α

∞∑
n=0

[
n∑
k=0

(
n

k

)
µ−1∑
i=0

ν−1∑
j=0

(−λ)i+jµn−kνkE(α)
k (µy;λ; a, b, c)

× E
(α)
n−k

(
νx+

(iν + µj) ln
(
b
a

)
− (µ+ ν) ln a

µ ln c
;λ; a, b, c

)]
tn

n!
.

Using the fact that g(t) is symmetric since µ and ν have the same parity, we can
also expand g(t) in the following the way:

g(t) =
1

22α

∞∑
n=0

[
n∑
k=0

(
n

k

)
ν−1∑
i=0

µ−1∑
j=0

(−λ)i+jνn−kµkE(α)
k (νy;λ; a, b, c)

×E
(α)
n−k

(
µx+

(iµ+ νj) ln
(
b
a

)
− (µ+ ν) ln a

ν ln c
;λ; a, b, c

)]
tn

n!
.

(3.9)

Equating coefficients of t
n

n! in the right-hand side of the last two equations gives the
identity of the Theorem 5. �

Letting a = 1, b = c = e in Theorem 5, we find the following corollary given
recently by Lu and Srivastava in [7, Eq. 43].
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Corollary 3.5. For n ∈ N0, µ, ν ∈ N, α ≥ 1 and for λ ∈ C. If µ and ν have the
same parity, then the following identity holds true:

n∑
k=0

(
n

k

)
µ−1∑
i=0

ν−1∑
j=0

(−λ)i+jµn−kνkE(α)
n−k

(
νx+

ν

µ
i+ j; λ

)
E
(α)
k (µy; λ)

=

n∑
k=0

(
n

k

)
ν−1∑
i=0

µ−1∑
j=0

(−λ)i+jνn−kµkE(α)
n−k

(
µx+

µ

ν
i+ j; λ

)
E
(α)
k (νy; λ).

(3.10)

According to [20], we have the following analogues of the expansions of hyperbolic
cotangent and hyperbolic tangent, respectively:

λe2z + 1

λe2z − 1
=

∞∑
n=0

Bn(0;λ) + λBn(1;λ)

n!
(2z)n−1, (3.11)

λe2z − 1

λe2z + 1
= −

∞∑
n=0

En(0;λ)
(2z)n

n!
+ 1. (3.12)

From (3.11), we can obtain the following theorem.

Theorem 3.6. For n ∈ N0, µ, ν ∈ N, α ≥ 1, a, b, c ∈ R+, (a 6= b) and for λ ∈ C.
Let δi,j denotes the Kronecker delta defined by δi,i = 1 and δi,j = 0 for i 6= j. If µ
is odd and ν is even then the following identity holds true:

−
n+1∑
k=0

(
n+ 1

k

)
[δn+1−k,1 + 2Bn+1−k(0;λ)]

n+ 1
µn−k

k∑
i=0

(
k

i

)
µiνn−i

×E
(α)
k−i

(
µx− µ ln a

ν ln c
;λ; a, b, c

) i∑
j=0

(
i

j

)[
ln

(
b

a

)]n−k+i−j
T

(1)
i−j(ν;λ)E

(α−1)
j (νy;λ; a, b, c)

=

n∑
k=0

(
n

k

)
µn−kνkE

(α)
n−k

(
νx− ν ln a

µ ln c
; λ; a, b, c

) k∑
i=0

(
k

i

)[
ln

(
b

a

)]k−i
T

(1)
k−i(µ;λ)

× E
(α−1)
i (µy; λ; a, b, c).

(3.13)

Proof. When µ is odd and ν is even, the function g(t), given below, is not symmetric
in µ and ν, so we have on the one hand

g(t) =
1

22α−1

(
2

λbνt + aνt

)α
cµνxt

(
1− λ(−1)νeµνt ln(

b
a )

λbµt + aµt

)(
1− λ(−1)µeµνt ln(

b
a )

1− λ(−1)νeµνt ln(
b
a )

)

×
(

2

λbµt + aµt

)α−1

cµνyt

=
1

22α−1

(
1− λ(−1)µeµνt ln(

b
a )

1− λ(−1)νeµνt ln(
b
a )

)(
2

λbνt + aνt

)α
c
µνxt− µt ln a

ln c

×

(
1− λ(−1)νeµνt ln(

b
a )

λeµt ln(
b
a ) + 1

)(
2

λbµt + aµt

)α−1

cµνyt

=
−1

22α−1

(
∞∑
n=0

Bn(0;λ) + λBn(1;λ)

n!

(
µνt ln

(
b

a

))n−1
)

×

(
∞∑
k=0

E
(α)
k

(
µx− µ ln a

ν ln c
; λ; a, b, c

)
(νt)k

k!

)
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×

(
∞∑
i=0

T
(1)
i (ν ;λ)

(
µt ln

(
b
a

))i
i!

)(
∞∑
j=0

E
(α−1)
j (νy;λ; a, b, c)

(µt)j

j!

)

=
−1

22α−1

∞∑
n=0

[
n∑
k=0

(
n

k

)
[Bn−k(0;λ) + λBn−k(1;λ)]µ

n−1−k

×
k∑
i=0

(
k

i

)
µiνn−1−i E

(α)
k−i

(
µx− µ ln a

ν ln c
; λ; a, b, c

)

×
i∑

j=0

(
i

j

)[
ln

(
b

a

)]n−1−k+i−j

T
(1)
i−j(ν;λ)E

(α−1)
j (νy; λ; a, b, c)

]
tn−1

n!
. (3.14)

On the other other hand, we can also expand g(t) as follows:

g(t) =
1

22α−1

(
2

λbµt + aµt

)α
c µνxt

(
1− λ(−1)µeµνt ln(

b
a )

λbνt + aνt

)

×
(

2

λbνt + aνt

)α−1

c µνyt

=
1

22α−1

(
2

λbµt + aµt

)α
c
µνxt− νt ln a

ln c

(
1− λ(−1)µeµνt ln(

b
a )

1 + λeνt ln(
b
a )

)

×
(

2

λbνt + aνt

)α−1

c µνyt

=
1

22α−1

(
∞∑
n=0

E(α)
n

(
νx− ν ln a

µ ln c
; λ; a, b, c

)
(µt)n

n!

)(
∞∑
k=0

T
(1)
k (µ;λ)

[
νt ln

(
b
a

)]k
k!

)

×

(
∞∑
i=0

E
(α−1)
i (µy; λ; a, b, c)

(νt)i

i!

)

=
1

22α−1

∞∑
n=0

[
n∑
k=0

(
n

k

)
µn−kνkE

(α)
n−k

(
νx− ν ln a

µ ln c
; λ; a, b, c

)

×
k∑
i=0

(
k

i

)[
ln

(
b

a

)]k−i
T

(1)
k−i(µ;λ)E

(α−1)
i (µy; λ; a, b, c)

]
tn

n!
.

Since λBn(x+ 1;λ)−Bn(x;λ) = nxn−1 (see [14]) then

Bn(0;λ) + λBn(1;λ) = δn,1 + 2Bn(0;λ). (3.15)

Making use of this last relation (3.15) involving the Apostol-Bernoulli polynomials

and numbers and equating the coefficients of tn

n! in (3.14) and (3.15), we obtain
(3.13). �

Substituting a = 1, b = c = e in Theorem 6 furnishes the following corollary.

Corollary 3.7. For n ∈ N0, µ, ν ∈ N, α ≥ 1 and for λ ∈ C. Let δi,j denotes the
Kronecker delta defined by δi,i = 1 and δi,j = 0 for i 6= j. If µ is odd and ν is even
then the following identity holds true:

−
n+1∑
k=0

(
n+ 1

k

)
[δn+1−k,1 + 2Bn+1−k(0;λ)]

n+ 1
µn−k

k∑
i=0

(
k

i

)
µiνn−iE

(α)
k−i (µx;λ)

×
i∑

j=0

(
i

j

)
T

(1)
i−j(ν;λ)E

(α−1)
j (νy;λ)
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=

n∑
k=0

(
n

k

)
µn−kνkE

(α)
n−k (νx; λ)

k∑
i=0

(
k

i

)
T

(1)
k−i(µ;λ)E

(α−1)
i (µy; λ). (3.16)

Letting λ = 1 in (3.16), we get the result obtained by Liu and Wang in [6,
Theorem 2.4].

Corollary 3.8. For n ∈ N0, µ, ν ∈ N, α ≥ 1. If µ is odd and ν is even then the
following identity holds true:

−2

n+1∑
k=0
k 6=n

(
n+ 1

k

)
Bn+1−k(0)

n+ 1
µn−k

k∑
i=0

(
k

i

)
µiνn−iE

(α)
k−i (µx)

i∑
j=0

(
i

j

)
T

(1)
i−j(ν)E

(α−1)
j (νy)

=

n∑
k=0

(
n

k

)
µn−kνkE

(α)
n−k (νx)

k∑
i=0

(
k

i

)
T

(1)
k−i(µ)E

(α−1)
i (µy). (3.17)

We can proceed similarly to Theorem 3.6, but using this time (3.12) to establish
the next result.

Theorem 3.9. For n ≥ 1, µ, ν ∈ N, α ≥ 1, a, b, c ∈ R+, (a 6= b) and for λ ∈ C.
If µ is even and ν is odd then the following identity holds true:

n∑
k=0

(
n

k

)
En−k(0;λ)µ

n−k
k∑
i=0

(
k

i

)
µiνn−iE

(α)
k−i

(
µx− µ ln a

ν ln c
;λ; a, b, c

)

×
i∑

j=0

(
i

j

)[
ln

(
b

a

)]n−k+i−j
T

(1)
i−j(ν;λ)E

(α−1)
j (νy;λ; a, b, c)

−
n∑
k=0

(
n

k

)
νn−kµkE

(α)
n−k

(
µx− µ ln a

ν ln c
;λ; a, b, c

)

×
k∑
i=0

(
k

i

)[
ln

(
b

a

)]k−i
T

(1)
k−i(ν;λ)E

(α−1)
i (νy;λ; a, b, c)

=

n∑
k=0

(
n

k

)
µn−kνkE

(α)
n−k

(
νx− ν ln a

µ ln c
; λ; a, b, c

)

×
k∑
i=0

(
k

i

)[
ln

(
b

a

)]k−i
T

(1)
k−i(µ;λ)E

(α−1)
i (µy; λ; a, b, c).

(3.18)

An interesting special case of Theorem 7 is obtained by setting a = 1, b = c = e
and λ = 1 in (3.18).

Corollary 3.10. For n ≥ 1, µ, ν ∈ N, α ≥ 1. If µ is even and ν is odd then the
following identity holds true:

n−1∑
k=0

(
n

k

)
En−k(0)µ

n−k
k∑
i=0

(
k

i

)
µiνn−iE

(α)
k−i (µx)

i∑
j=0

(
i

j

)
T

(1)
i−j(ν)E

(α−1)
j (νy)

=

n∑
k=0

(
n

k

)
µn−kνkE

(α)
n−k (νx)

k∑
i=0

(
k

i

)
T

(1)
k−i(µ)E

(α−1)
i (µy) (3.19)

a result given first by Liu and Wang in [6, Theorem 2.7].
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Finally, we would like to mention that many other identities can be obtained from
those shown in this paper. As example, it is easy to see that the two following
relationships hold between the Apostol-Bernoulli and Apostol-Euler polynomials
and the Apostol-Bernoulli and Apostol-Genocchi polynomials. Respectively, we
have for n ∈ N0, µ, ν ∈ N, α ∈ N, a, b, c ∈ R+, (a 6= b) and for λ ∈ C,

E(α)
n (x; λ; a, b, c) =

(−2)αn! B
(α)
n+α(x; −λ; a, b, c)

(n+ α)!
(3.20)

and

B(α)
n (x; λ; a, b, c) =

G
(α)
n (x; −λ; a, b, c)

(−2)α
. (3.21)

Let us see two examples of application of these two results. First, combining
(3.20) with Theorem 4 yields

Theorem 3.11. For n ∈ N0, µ, ν ∈ N, α ∈ N, a, b, c ∈ R+, (a 6= b) and for λ ∈ C.
If µ and ν have the same parity, then the following identity holds true:

n∑
k=0

(
n

k

)
µn−kνk

(
ln

(
b

a

))k (n− k)! B
(α)
n−k+α

(
νx− αν ln a

µ ln c
; −λ; a, b, c

)
(n− k + α)!

T
(α)
k (µ;λ)

=

n∑
k=0

(
n

k

)
νn−kµk

(
ln

(
b

a

))k (n− k)! B
(α)
n−k+α

(
µx− αµ ln a

ν ln c
; −λ; a, b, c

)
(n− k + α)!

T
(α)
k (ν;λ).

(3.22)

Next, considering (3.21) with Theorem 1 gives

Theorem 3.12. For all integers µ > 0, ν > 0, α ∈ N, n ≥ 0, for a, b, c ∈ R+

(a 6= b) and for λ ∈ C, we have the following identity:
n∑
k=0

(
n

k

)
G

(α)
n−k

(
νx+

(µ− 1)ν ln a

µ ln c
; −λ; a, b, c

)
µn−k νk+1

×
k∑
i=0

(
k

i

)
Sk−i(µ− 1, λ) G

(α−1)
i (µy; −λ; a, b, c)

[
ln

(
b

a

)]k−i
=

n∑
k=0

(
n

k

)
G

(α)
n−k

(
µx+

(ν − 1)µ ln a

ν ln c
; −λ; a, b, c

)
νn−k µk+1

×
k∑
i=0

(
k

i

)
Sk−i(ν − 1, λ) G

(α−1)
i (νy; −λ; a, b, c)

[
ln

(
b

a

)]k−i
.

(3.23)
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