# ON SOME QI TYPE INEQUALITIES USING FRACTIONAL $q$-INTEGRAL (COMMUNICATED BY NAIM BRAHA) 

KAMEL BRAHIM \& HEDI EL MONSER


#### Abstract

In this paper, we provide some Qi type inequalities using a fractional $q$-integral.


Key words and phrases: $q$-fractional integral, $q$-integral inequality. 2010 Mathematics Subject Classification: 26A33, 26A24, 26D15.

## 1. INTRODUCTION

In [12, Feng Qi proposed the following problem:
Under what conditions does the inequality:

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{t} d x \geq\left[\int_{a}^{b} f(x) d x\right]^{t-1} \tag{1}
\end{equation*}
$$

hold for $t>1$ ?
In view of the interest in this type of inequalities, many attentions have been payed to the problem and many authors have extended the inequality to more general cases (see [1, 2, 3, 4, 9, 8, 11, 14]). In this paper, we establish some inequalities of F. Qi type by using a fractional $q$-integral and we will generalize the inequalities given in 3].
This paper is organized as follows: In Section 2, we present some definitions and facts from the $q$-calculus necessary for understanding this paper. In Section 3, we discuss some generalizations of Qi's inequality.

## 2. Notations and preliminaries

Throughout this paper, we will fix $q \in(0,1)$. For the convenience of the reader, we provide in this section a summary of the mathematical notations and definitions used in this paper (see [5, 7, 13]). We write for $a \in \mathbb{C}$,

$$
\begin{gathered}
{[a]_{q}=\frac{1-q^{a}}{1-q}, \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad n=1,2, \ldots \infty,} \\
{[0]_{q}!=1, \quad[n]_{q}!=[1]_{q}[2]_{q} \ldots[n]_{q}, \quad n=1,2, \ldots}
\end{gathered}
$$

and

$$
(x-a)^{(n)}= \begin{cases}1, & n=0 \\ (x-a)(x-q a) \ldots\left(x-q^{n-1} a\right), & n \neq 0 \\ 116 & \end{cases}
$$

Their natural expansions to the reals are

$$
(a-b)^{(\alpha)}=a^{\alpha} \frac{\left(\frac{b}{a} ; q\right)_{\infty}}{\left(q^{\alpha} \frac{b}{a} ; q\right)_{\infty}}, \quad(a ; q)_{\alpha}=\frac{(a ; q)_{\infty}}{\left(a q^{\alpha} ; q\right)_{\infty}}
$$

Notice that

$$
(a-b)^{(\alpha)}=a^{\alpha}\left(\frac{b}{a} ; q\right)_{\alpha}
$$

The $q$-derivative $D_{q} f$ of a function $f$ is given by

$$
\begin{equation*}
\left(D_{q} f\right)(x)=\frac{f(x)-f(q x)}{(1-q) x}, \text { if } x \neq 0 \tag{2}
\end{equation*}
$$

$\left(D_{q} f\right)(0)=f^{\prime}(0)$ provided $f^{\prime}(0)$ exists.
Clearly

$$
\begin{equation*}
D_{q, t}(b-t)^{(\alpha)}=-[\alpha]_{q}(b-q t)^{(\alpha-1)} \tag{3}
\end{equation*}
$$

The $q$-Jackson integrals from 0 to $a$ is defined by (see [6])

$$
\begin{equation*}
\int_{0}^{a} f(x) d_{q} x=(1-q) a \sum_{n=0}^{\infty} f\left(a q^{n}\right) q^{n}, \tag{4}
\end{equation*}
$$

provided the sum converges absolutely.
The $q$-Jackson integral in a generic interval $[a, b]$ is given by (see [6])

$$
\begin{equation*}
\int_{a}^{b} f(x) d_{q} x=\int_{0}^{b} f(x) d_{q} x-\int_{0}^{a} f(x) d_{q} x . \tag{5}
\end{equation*}
$$

For any function $f$, we have ( see [7)

$$
\begin{equation*}
D_{q}\left(\int_{a}^{x} f(t) d_{q} t\right)=f(x) \tag{6}
\end{equation*}
$$

The fractional $q$-integral of the Riemann-Liouville type is 13 ]

$$
\begin{equation*}
I_{q, a}^{\alpha}(f)(x)=I_{q, a}^{\alpha}(f(t))(x)=\frac{1}{\Gamma_{q}(\alpha)} \int_{a}^{x}(x-q t)^{(\alpha-1)} f(t) d_{q} t, \quad \alpha>0 . \tag{7}
\end{equation*}
$$

Finally, for $b>0$ and $a=b q^{n}, \quad n=1,2, \ldots, \infty$, we write
$[a, b]_{q}=\left\{b q^{k}: 0 \leq k \leq n\right\} \quad$ and $\quad(a, b]_{q}=\left[q^{-1} a, b\right]_{q}$.
3. Fractional $q$-Integral Inequalities of Qi type

Let us begin by recalling the following useful result 3:
Lemma 1. Let $p \geq 1$ be a real number and $g$ be a nonnegative and monotonous function on $[a, b]_{q}$. Then

$$
\begin{equation*}
p g^{p-1}(q x) D_{q} g(x) \leq D_{q}\left[g^{p}(x)\right] \leq p g^{p-1}(x) D_{q} g(x), \quad x \in(a, b]_{q} . \tag{8}
\end{equation*}
$$

Proposition 1. Let $f$ be a function defined on $[a, b]_{q}$ satisfying
$f(a) \geq 0 \quad$ and $\quad D_{q} f(x) \geq(\beta-2) C_{\alpha}^{\beta-2}(x-a)^{\beta-3} \quad$ for $\quad x \in(a, b]_{q} \quad$ and $\beta \geq 3$.
Then

$$
\begin{equation*}
I_{q, a}^{\alpha}\left(f^{\beta}(t)\right)(b) \geq \Gamma_{q}^{\beta-2}(\alpha)\left[I_{q, a}^{\alpha}(f(q t))(b)\right]^{\beta-1} \tag{9}
\end{equation*}
$$

where $C_{\alpha}=\sup _{t \in[a, b]_{q}}(b-q t)^{(\alpha-1)}=\left\{\begin{array}{lll}(b-q a)^{(\alpha-1)}, & \text { if } & \alpha \geq 1 \\ b^{\alpha-1}(q, q)_{\alpha-1}, & \text { if } & 0<\alpha<1 .\end{array}\right.$

Proof. For $x \in(a, b]_{q}$, we put
$g(x)=\int_{a}^{x}(b-q t)^{(\alpha-1)} f(q t) d_{q} t \quad$ and $F(x)=\int_{a}^{x}(b-q t)^{(\alpha-1)}[f(t)]^{\beta} d_{q} t-\left(\int_{a}^{x}(b-q t)^{(\alpha-1)} f(q t) d_{q} t\right)^{\beta-1}$.
We have

$$
D_{q} F(x)=(b-q x)^{(\alpha-1)} f^{\beta}(x)-D_{q}\left[g^{\beta-1}\right](x)
$$

Since $f$ and $g$ increase on $[a, b]_{q}$, we obtain from Lemma 1 .

$$
\begin{aligned}
D_{q} F(x) & \geq(b-q x)^{(\alpha-1)} f^{\beta}(x)-(\beta-1) g^{\beta-2}(x)(b-q x)^{(\alpha-1)} f(q x) \\
& \geq(b-q x)^{(\alpha-1)} f^{\beta}(x)-(\beta-1) g^{\beta-2}(x)(b-q x)^{(\alpha-1)} f(x) \geq(b-q x)^{(\alpha-1)} f(x) h(x)
\end{aligned}
$$

where $h(x)=f^{\beta-1}(x)-(\beta-1) g^{\beta-2}(x)$.
On the other hand, we have

$$
D_{q} h(x)=D_{q}\left[f^{\beta-1}\right](x)-(\beta-1) D_{q}\left[g^{\beta-2}\right](x)
$$

Using Lemma 1 once again leads to

$$
\begin{aligned}
D_{q} h(x) & \geq(\beta-1) f^{\beta-2}(q x) D_{q} f(x)-(\beta-1)(\beta-2) g^{\beta-3}(x) D_{q} g(x) \\
& \geq(\beta-1) f^{\beta-2}(q x) D_{q} f(x)-(\beta-1)(\beta-2) g^{\beta-3}(x)(b-q x)^{(\alpha-1)} f(q x) \\
& \geq(\beta-1) f(q x)\left[f^{\beta-3}(q x) D_{q} f(x)-(\beta-2)(b-q x)^{(\alpha-1)} g^{\beta-3}(x)\right]
\end{aligned}
$$

The use of the inequality,

$$
\int_{a}^{x}(b-q t)^{(\alpha-1)} f(q t) d_{q} t \leq C_{\alpha} f(q x)(x-a)
$$

gives

$$
\begin{aligned}
D_{q} h(x) & \geq(\beta-1) f^{\beta-2}(q x)\left[D_{q} f(x)-(\beta-2)(b-q x)^{(\alpha-1)} C_{\alpha}^{\beta-3}(x-a)^{\beta-3}\right] \\
& \geq(\beta-1) f^{\beta-2}(q x)\left[D_{q} f(x)-(\beta-2) C_{\alpha}^{\beta-2}(x-a)^{\beta-3}\right] \geq 0
\end{aligned}
$$

From the fact $h(a)=f^{\beta-1}(a) \geq 0$, we get $h(x) \geq 0, \quad x \in[a, b]_{q}$.
Therefore $D_{q} F(x) \geq 0$, and so $F(x) \geq 0$ for all $x \in[a, b]_{q}$, in particular

$$
F(b)=\int_{a}^{b}(b-q t)^{(\alpha-1)}[f(t)]^{\beta} d_{q} t-\left(\int_{a}^{b}(b-q t)^{(\alpha-1)} f(q t) d_{q} t\right)^{\beta-1} \geq 0
$$

hence

$$
\frac{1}{\Gamma_{q}(\alpha)} \int_{a}^{b}(b-q t)^{(\alpha-1)}[f(t)]^{\beta} d_{q} t \geq \Gamma_{q}^{\beta-2}(\alpha)\left(\frac{1}{\Gamma_{q}(\alpha)} \int_{a}^{b}(b-q t)^{(\alpha-1)} f(q t) d_{q} t\right)^{\beta-1}
$$

The proof is complete.
Remark: We can see that for $\alpha=1$, we obtain the proposition 3.2 of 3 .
Corollary 1. Let $n$ be a positive integer and $f$ be a function defined on $[a, b]_{q}$ satisfying

$$
f(a) \geq 0 \quad \text { and } \quad D_{q} f(x) \geq n C_{\alpha}^{n}(x-a)^{n-1}, \quad x \in(a, b]_{q} .
$$

Then

$$
I_{q, a}^{\alpha}\left(f^{n+2}(t)\right)(b) \geq \Gamma_{q}^{n}(\alpha)\left[I_{q, a}^{\alpha}(f(q t))(b)\right]^{n+1}
$$

Proof. It suffices to take $\beta=n+2$ in Proposition 1 and the result follows.

Corollary 2. Let $n$ be a positive integer and $f$ be a function defined on $[a, b]_{q}$ satisfying

$$
D_{q}^{i} f(a) \geq 0, \quad 0 \leq i \leq n-1 \quad \text { and } \quad D_{q}^{n} f(x) \geq n[n-1]_{q}!C_{\alpha}^{n} ; \quad x \in(a, b]_{q}
$$

Then

$$
I_{q, a}^{\alpha}\left(f^{n+2}(t)\right)(b) \geq \Gamma_{q}^{n}(\alpha)\left[I_{q, a}^{\alpha}(f(q t))(b)\right]^{n+1}
$$

Proof. Since $D_{q}^{n} f(x) \geq n[n-1]_{q}!C_{\alpha}^{n}$, then by $q$-integrating $n-1$ times over $[a, x]$, we get $D_{q} f(x) \geq n C_{\alpha}^{n}(x-a)^{(n-1)} \geq n C_{\alpha}^{n}(x-a)^{n-1}$. The result turns out from Corollary 1 .

Proposition 2. Let $p \geq 1$ be a real number and $f$ be a function defined on $[a, b]_{q}$ satisfying

$$
\begin{equation*}
f(a) \geq 0, \quad D_{q} f(x) \geq p C_{\alpha}^{p}, x \in(a, b]_{q} \tag{10}
\end{equation*}
$$

Then

$$
\begin{equation*}
I_{q, a}^{\alpha}\left(f^{p+2}(t)\right)(b) \geq \frac{\left[\Gamma_{q}(\alpha)\right]^{p}}{(b-a)^{p-1}}\left[I_{q, a}^{\alpha}(f(q t))(b)\right]^{p+1} \tag{11}
\end{equation*}
$$

Proof. Define $g(x)=\int_{a}^{x}(b-q t)^{(\alpha-1)} f(q t) d_{q} t \quad$ and
$H(x)=\int_{a}^{x}(b-q t)^{(\alpha-1)} f^{p+2}(t) d_{q} t-\frac{1}{(b-a)^{p-1}}\left[\int_{a}^{x}(b-q t)^{(\alpha-1)} f(q t) d_{q} t\right]^{p+1}, \quad x \in[a, b]_{q}$.
We have

$$
D_{q} H(x)=(b-q x)^{(\alpha-1)} f^{p+2}(x)-\frac{1}{(b-a)^{p-1}} D_{q}\left[g^{p+1}\right](x), \quad x \in(a, b]_{q}
$$

Since $f$ and $g$ increase on $[a, b]_{q}$, we obtain according to Lemma 1

$$
\begin{aligned}
D_{q} H(x) & \geq(b-q x)^{(\alpha-1)} f^{p+2}(x)-\frac{1}{(b-a)^{p-1}}(p+1) g^{p}(x) D_{q} g(x) \\
& \geq(b-q x)^{(\alpha-1)} f^{p+2}(x)-\frac{1}{(b-a)^{p-1}}(p+1) g^{p}(x)(b-q x)^{(\alpha-1)} f(q x) \\
& \geq\left(f^{p+1}(x)-\frac{1}{(b-a)^{p-1}}(p+1) g^{p}(x)\right)(b-q x)^{(\alpha-1)} f(x)=(b-q x)^{(\alpha-1)} f(x) h(x),
\end{aligned}
$$

where $h(x)=f^{p+1}(x)-\frac{1}{(b-a)^{p-1}}(p+1) g^{p}(x)$.
On the other hand, we have

$$
D_{q} h(x)=D_{q}\left[f^{p+1}\right](x)-\frac{1}{(b-a)^{p-1}}(p+1) D_{q}\left[g^{p}\right](x)
$$

In virtue of Lemma it follows that

$$
\begin{aligned}
D_{q} h(x) & \geq(p+1) f^{p}(q x) D_{q} f(x)-\frac{(p+1) p}{(b-a)^{p-1}} g^{p-1}(x)(b-q x)^{(\alpha-1)} f(q x) \\
& \geq(p+1) f(q x)\left[f^{p-1}(q x) D_{q} f(x)-\frac{p}{(b-a)^{p-1}} g^{p-1}(x)(b-q x)^{(\alpha-1)}\right]
\end{aligned}
$$

Since $f$ is non-negative and increasing function, then

$$
g(x)=\int_{a}^{x}(b-q t)^{(\alpha-1)} f(q t) d_{q} t \leq f(q x) C_{\alpha}(x-a)
$$

hence

$$
D_{q} h(x) \geq(p+1) f^{p}(q x)\left[D_{q} f(x)-p C_{\alpha}^{p}\right] \geq 0
$$

which implies that $h$ increases on $[a, b]_{q}$.
Finally, since $h(a)=f^{p+1}(a) \geq 0$, then $H$ increases and $H(b) \geq H(a) \geq 0$. The proof is complete.
In what follows, we will adopt the terminology of the following definition.

Definition 1. Let $b>0$ and $a=b q^{n}$, $n$ be a positive integer. For each real number $r$, we denote by $E_{q, r}^{\alpha}([a, b])$ the set of functions defined on $[a, b]_{q}$ such that

$$
f(a) \geq 0 \quad \text { and } \quad D_{q} f(x) \geq[r]_{q} K_{\alpha}, \quad \forall x \in(a, b]_{q}
$$

where $K_{\alpha}=\sup _{t \in[a, b]_{q}}\left(b-q^{2} t\right)^{(\alpha-1)}= \begin{cases}\left(b-q^{2} a\right)^{(\alpha-1)} & \text { if } \alpha \geq 1 \\ b^{\alpha-1}\left(q^{2}, q\right)_{\alpha-1} & \text { if } 0<\alpha<1 .\end{cases}$
Proposition 3. Let $f \in E_{q, 2}^{\alpha}([a, b])$. Then for all $p>0$, we have

$$
\begin{equation*}
I_{q, a}^{\alpha}\left(f^{2 p+1}(t)\right)(b)>\Gamma_{q}(\alpha)\left[I_{q, a}^{\alpha}\left(f^{p}(t)\right)(b)\right]^{2} \tag{12}
\end{equation*}
$$

Proof. For $x \in[a, b]_{q}$, let
$F(x)=\int_{a}^{x}(b-q t)^{(\alpha-1)} f^{2 p+1}(t) d_{q} t-\left[\int_{a}^{x}(b-q t)^{(\alpha-1)} f^{p}(t) d_{q} t\right]^{2}$
and $g(x)=\int_{a}^{x}(b-q t)^{(\alpha-1)} f^{p}(t) d_{q} t$.
We have for $x \in[a, b]_{q}$,

$$
\begin{aligned}
D_{q} F(x) & =(b-q x)^{(\alpha-1)} f^{2 p+1}(x)-(b-q x)^{(\alpha-1)} f^{p}(x)(g(x)+g(q x)) \\
& =(b-q x)^{(\alpha-1)} f^{p}(x) G(x)
\end{aligned}
$$

where $G(x)=f^{p+1}(x)-[g(x)+g(q x)]$.
On the other hand, we have

$$
\begin{aligned}
D_{q} G(x) & =\frac{f^{p+1}(x)-f^{p+1}(q x)}{(1-q) x}-\left((b-q x)^{(\alpha-1)} f^{p}(x)+q\left(b-q^{2} x\right)^{(\alpha-1)} f^{p}(q x)\right) \\
& =f^{p}(x) \frac{f(x)-(1-q) x(b-q x)^{(\alpha-1)}}{(1-q) x}-f^{p}(q x) \frac{f(q x)+q\left(b-q^{2} x\right)^{(\alpha-1)}(1-q) x}{(1-q) x}
\end{aligned}
$$

From the relation $D_{q} f(x) \geq K_{\alpha}[2]_{q} \geq\left(b-q^{2} x\right)^{(\alpha-1)}[2]_{q}$, we obtain
$f(x) \geq f(q x)+\left(1-q^{2}\right) x\left(b-q^{2} x\right)^{(\alpha-1)}$,
hence

$$
\begin{equation*}
D_{q} G(x) \geq \frac{f^{p}(x)-f^{p}(q x)}{(1-q) x}\left[f(q x)+q\left(b-q^{2} x\right)^{(\alpha-1)}(1-q) x\right]>0 \quad x \in(a, b]_{q} \tag{13}
\end{equation*}
$$

Therefore $G$ is strictly increasing on $[a, b]_{q}$. Moreover, we have

$$
G(a)=[f(a)]^{p+1}+(b-q a)^{(\alpha-1)}(f(a))^{p} \geq 0
$$

then for all $x \in(a, b]_{q}, G(x)>G(a) \geq 0$, which proves that $D_{q} F(x)>0$, and so $F$ is strictly increasing on $[a, b]_{q}$. In particular, $F(b)>F(a)=0$.

Corollary 3. Let $\beta>0$ and $f \in E_{q, 2}^{\alpha}([a, b])$. Then for all positive integers $m$, we have

$$
\begin{equation*}
I_{q, a}^{\alpha}\left(f^{(\beta+1) 2^{m}-1}(t)\right)(b)>\Gamma_{q}^{2^{m}-1}(\alpha)\left[I_{q, a}^{\alpha}\left(f^{\beta}(t)\right)(b)\right]^{2^{m}} \tag{14}
\end{equation*}
$$

Proof. We suggest here a proof by induction. For this purpose, we note

$$
p_{m}(\beta)=(\beta+1) 2^{m}-1
$$

We have

$$
\begin{equation*}
p_{m}(\beta)>0 \quad \text { and } \quad p_{m+1}(\beta)=2 p_{m}(\beta)+1 \tag{15}
\end{equation*}
$$

From Proposition 3, we deduce that the inequality (14) is true for $m=1$.
Suppose that (14) holds for an integer $m$ and let us prove it for $m+1$.
By using the relation (15) and Proposition 3, we obtain

$$
\begin{equation*}
I_{q, a}^{\alpha}\left(f^{(\beta+1) 2^{m+1}-1}(t)\right)(b)>\Gamma_{q}(\alpha)\left[I_{q, a}^{\alpha}\left(f^{(\beta+1) 2^{m}-1}(t)\right)(b)\right]^{2} \tag{16}
\end{equation*}
$$

And by assumption, we have

$$
\begin{equation*}
I_{q, a}^{\alpha}\left(f^{(\beta+1) 2^{m}-1}(t)\right)(b)>\Gamma_{q}^{2^{m}-1}(\alpha)\left[I_{q, a}^{\alpha}\left(f^{\beta}(t)\right)(b)\right]^{2^{m}} \tag{17}
\end{equation*}
$$

Finally, the relations (16) and (17) imply that the inequality (14) is true for $m+1$. This completes the proof.

Corollary 4. Let $f \in E_{q, 2}^{\alpha}([a, b])$ and $\beta>0$. For $m \in \mathbb{N}$, we have

$$
\begin{equation*}
\left[I_{q, a}^{\alpha}\left(f^{(\beta+1) 2^{m+1}-1}(t)\right)(b)\right]^{\frac{1}{2^{m+1}}}>\left[\Gamma_{q}(\alpha)\right]^{\frac{1}{2^{m+1}}}\left[I_{q, a}^{\alpha}\left(f^{(\beta+1) 2^{m}-1}(t)\right)(b)\right]^{\frac{1}{2^{m}}} \tag{18}
\end{equation*}
$$

Proof. Since, from Proposition 3

$$
\begin{equation*}
I_{q, a}^{\alpha}\left(f^{(\beta+1) 2^{m+1}-1}(t)\right)(b)>\Gamma_{q}(\alpha)\left[I_{q, a}^{\alpha}\left(f^{(\beta+1) 2^{m}-1}(t)\right)(b)\right]^{2} \tag{19}
\end{equation*}
$$

then

$$
\begin{equation*}
\left[I_{q, a}^{\alpha}\left(f^{(\beta+1) 2^{m+1}-1}(t)\right)(b)\right]^{\frac{1}{2^{m+1}}}>\left[\Gamma_{q}(\alpha)\right]^{\frac{1}{2^{m+1}}}\left[I_{q, a}^{\alpha}\left(f^{(\beta+1) 2^{m}-1}(t)\right)(b)\right]^{\frac{1}{2^{m}}} \tag{20}
\end{equation*}
$$

Corollary 5. Let $f \in E_{q, 2}^{\alpha}([a, b])$. For all integers $m \geq 2$, we have

$$
\begin{equation*}
I_{q, a}^{\alpha}\left(f^{2^{m+1}-1}(t)\right)(b)>\left[\Gamma_{q}(\alpha)\right]^{2^{m}-1}\left[I_{q, a}^{\alpha}(f(t))(b)\right]^{2^{m}} \tag{21}
\end{equation*}
$$

Proof. By using Proposition 3 for $\beta=1$, we obtain the result.

## References

[1] L. Bougoffa, Notes on Qi type inequalities, J. Inequal. Pure and Appl. Math. 4 (2003) no 4, Art. 77; Available online at http://www.emis.de/journals/JIPAM/article318.html.
[2] L. Bougoffa, An integral inequality similar to Qi's inequality, J. Inequal. Pure and Appl. Math. 6 (2005), no.1, Art. 27; Available online at http://www.emis.de/journals/JIPAM/article496. html.
[3] K. Brahim, N. Bettaibi and M. Sellami, On some Feng Qi type q-integral inequalities, J. Inequal. Pure and Appl. Math. 9(2008), no.2, Art. 43; Available online at http://www.emis.de/journals/JIPAM/article975.html.
[4] Z. Dahmani and S. Belarbi, Some inequalities of Qi type using fractional integration, Int. J. Nonlinear Sci. vol. 10(2010) no. 4, 396-400.
[5] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd Edition, (2004), Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge.
[6] F. H. Jackson, On a q-Definite Integrals. Quarterly Journal of Pure and Applied Mathematics 41, 1910, 193-203.
[7] V. G. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, (2002).
[8] V. Krasniqi and A. Sh. Shabani, On some Feng Qi type h-integral inequalities, Int. J. Open Probl. Comput. Sci. Math. 2(2009), no. 4, 516-521.
[9] S. Mazouzi and F. Qi, On an open problem regarding an integral inequality, J. Inequal. Pure Appl. Math., 4(2) (2003), Art 31; Available online at http://www.emis.de/journals/ JIPAM/article269.html.
[10] Y. Miao and F. Qi, Several q-integral inequalities, J. Math. Inequal. 3(2009), no.1, 115-121.
[11] T. K. Pogány, On an open problem of F. Qi, J. Inequal Pure Appl. Math., 3(4) (2002), Art 54; Available online at http://www.emis.de/journals/JIPAM/article206.html.
[12] F. Qi, Several integral inequalities, J. Inequal. Pure Appl. Math., 1(2) (2000), Art. 19; Available online at http://www.emis.de/journals/JIPAM/article113.html.
[13] P. M. Rajković, S. D. Marinković, M. S. Stanković, Fractional integrals and derivatives in $q$-calculus, Applicable analysis and discrete mathematics, 1 (2007), 311-323.
[14] L. Yin and F. Qi, Some integral inequalities on time scales, J. Math. Inequal. 6 (2012), no.3, 419-429; Available online at http://dx.doi.org:10.7153/jmi-06-39.
K. Brahim. Institut Supérieur des Études Préparatoires en Biologie Géologie Soukra Tunisia.

E-mail address: kamel.brahim@ipeit.rnu.tn*
H. Elmonser. Institut National des sciences appliques et de technology, Tunis, Tunisia.

E-mail address: monseur2004@yahoo.fr

