
Bulletin of Mathematical Analysis and Applications

ISSN: 1821-1291, URL: http://www.bmathaa.org

Volume 4 Issue 3 (2012.), Pages 18-28

PERIODIC SOLUTIONS OF DELAYED DIFFERENCE

EQUATIONS

(COMMUNICATED BY PROFESSOR CLAUDIO CUEVAS)

SHILPEE SRIVASTAVA

Abstract. In this article, existence of multiple positive T -periodic solutions
for the first order delay difference equation of the form

∆x(n) = a(n)g(x(n))x(n) − λf(n, x(n− τ(n)))

has been studied. Leggett-Williams multiple fixed point theorem has been
employed to prove the results, which are established considering different cases
on functions g and f .

1. Introduction

The theory of difference equations has grown at an accelerated pace in the past
decades. It now occupies a key position in applicable analysis. It is observed that
there is much interest in developing theoretical analysis of functional difference
equations. There are much interest in periodicity(see [1, 3, 12, 16, 17, 20, 21, 25]),
asymptotic behavior [1, 4, 5, 7, 19], maximal regularity [6], invariant manifolds [18],
numerical methods, etc.

This paper is concerned with the existence of multiple positive periodic solutions
of delay difference equation of the form

∆x(n) = a(n)g(x(n))x(n) − λf(n, x(n− τ(n))), (1.1)

here ∆x(n) = x(n + 1) − x(n), a(n), b(n) and τ(n), n ∈ Z are T -periodic positive
sequences with T ≥ 1, f(n, x) is T -periodic about n and is continuous about x for
each n ∈ Z , λ is a positive parameter and R denote the set of real numbers, R+

the set of positive reals. Z is the set of integers and Z+ the set of positive integers.

Let [a, b] = {a, a + 1, ..., b} for a < b, a, b ∈ Z,
∏b

n=a x(n) denote the product of
x(n) from n = a to n = b.
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Eq.(1.1) is the discrete analog of functional differential equation

x′(t) = a(t)g(x(t))x(t) − λb(t)f(t, x(h(t))), (1.2)

where b(t) ≡ 1 in our case. In recent years, considerable contribution on the ex-
istence of periodic solutions of Eq.(1.2) has been done by the authors, see [2, 11,
13, 24]. In [11, 13], Graef et.al. and Wang et.al have obtained interesting results
by using upper lower solution method and fixed point index theory, when g(x(t))
is not necessarily bounded. In this paper, an attempt has been made to study the
existence of at least two or three positive T -periodic solutions of Eq.(1.1) using
well known Leggett-Williams fixed point theorem ([15], see Theorem 3.3, Theorem
3.5). We have first considered the case when function g(x) is bounded and then
obtained sufficient conditions for the existence of periodic solutions when g(x) is
not bounded. To the best of our knowledge no result has been done for the Eq.(1.1).
The results obtained in this article are different from previous results in the litera-
ture and generalize the result in [13] as they considered the particular function for
g(x).

The whole work has been divided into three sections. Section 1 is introduction.
Some preliminary results are given in Section 2. In Section 3, sufficient conditions
for the existence of periodic solutions of Eq.(1.1) have been discussed, moreover the
obtained results are illustrated by examples.

2. Preliminaries:

For the convenience of the reader, some necessary definitions from cone theory
are described here.
Definition 2.1 Let X be a Banach space over R. A nonempty closed set K ⊂ X
is called a (positive) cone if the following conditions are satisfied:
(i) if x ∈ K, then λx ∈ K for λ ≥ 0;
(ii) if x ∈ K and −x ∈ K, then x = 0.
Definition 2.2 An operator A is completely continuous if A is continuous and
compact, i.e., A maps bounded sets into relatively compact sets.

The following concept will be used in the statement of the Leggett-Williams fixed
point theorem. Let X be a Banach space and K be a cone in X .
A mapping ψ is said to be a concave nonnegative continuous functional on K if
ψ : K → [0,∞) is continuous and

ψ(µx+ (1 − µ)y) ≥ µψ(x) + (1− µ)ψ(y), x, y ∈ K, µ ∈ [0, 1].

Let c1, c2, c3 be positive constants. With K and X as defined above, we define
Kc1 = {x ∈ K : ‖x‖ < c1}, Kc1 = {x ∈ K : ‖x‖ ≤ c1}, K(ψ, c2, c3) = {x ∈ K :
c2 ≤ ψ(x), ‖x‖ < c3}.

Theorem 2.1. (Leggett-Williams fixed point Theorem,(Theorem 3.5,[15])): Let
c3 > 0 be a constant. Assume that A : Kc3 → K is completely continuous, there
exists a concave nonnegative functional ψ with ψ(x) ≤ ‖x‖, x ∈ K and numbers c1
and c2 with 0 < c1 < c2 < c3 satisfying the following conditions:
(i) {x ∈ K(ψ, c2, c3);ψ(x) > c2} 6= φ and ψ(Ax) > c2 if x ∈ K(ψ, c2, c3);
(ii) ‖Ax‖ < c1 if x ∈ Kc1
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(iii) ψ(Ax) > c2
c3
‖Ax‖ for each x ∈ Kc3 with ‖Ax‖ > c3.

Then A has at least two fixed points x1, x2 in Kc3 . Furthermore, ‖x1‖ ≤ c1 <
‖x2‖ < c3.

Theorem 2.2. (Leggett-Williams fixed point theorem,(Theorem 3.3[15])):
Let (X, ‖ · ‖) be a Banach space and K ⊂ X a cone, and c4 a positive constant.
Suppose there exists a concave nonnegative continuous functional ψ on K with
ψ(x) ≤ ‖x‖ for x ∈ Kc4 and let A : Kc4 → Kc4 be a completely continuous
mapping. Assume that there are numbers c1, c2, c3, c4 with 0 < c1 < c2 < c3 ≤ c4
such that
(i) {x ∈ K(ψ, c2, c3) : ψ(x) > c2} 6= φ, and ψ(Ax) > c2 for all x ∈ K(ψ, c2, c3);
(ii) ‖Ax‖ < c1 for all x ∈ Kc1 ;
(iii) ψ(Ax) > c2 for all x ∈ K(ψ, c2, c4) with ‖Ax‖ > c3.
Then A has at least three fixed points x1, x2, x3 in Kc4 . Furthermore, ‖x1‖ ≤ c1 <
‖x2‖, and ψ(x2) < c2 < ψ(x3).

In this article, let X be the set of all bounded periodic sequences which forms a
Banach space under the norm

‖x‖ = max
n∈[0,T−1]

|x(n)|. (2.1)

Define a nonnegative concave continuous functional ψ on K by

ψ(x) = min
n∈[0,T−1]

x(n). (2.2)

3. Main Results:

In this section, we obtained sufficient conditions for the existence of at least three
positive T -periodic solutions of Eq.(1.1) with the following assumptions:
(A1) a, τ ∈ C(Z+, R+), a(n) = a(n+T ), a(n) 6= 0 and τ(n) = τ(n+T ), n ∈ [0, T−1]
where T is a positive constant, denoting common period of the system.
(A2) f ∈ C(Z × R+, R+) is T -periodic with respect to the first variable. Also
function f(n, x) is nondecreasing w.r.t x.
(A3) g ∈ C(R+, R+), there exists positive constants l,m such that 0 < l ≤ g(x) ≤
m <∞ for all x > 0.
Now consider the Banach space as defined in (2.1). It is clear that Eq.(1.1) can be
written as

x(n+ 1) = x(n)[a(n)g(x(n)) + 1]− λf(n, x(n− τ(n))) (3.1)

∆(x(s)

s−1∏

θ=0

1

1 + a(θ)g(x(s))
) = −

s−1∏

θ=0

1

1 + a(θ)g(x(s))
λf(s, x(s− τ(s)), (3.2)

summing the above equation from s = n to n+ T − 1, we obtain

x(n) = λ

n+T−1∑

s=n

Gl,m(n, s)f(s, x(s− τ(s))), (3.3)



PERIODIC SOLUTIONS OF DELAYED DIFFERENCE EQUATIONS 21

where Gl,m(n, s) is defined as

Gl,m(n, s) =

∏n+T−1
θ=s+1 (1 + a(θ)g(x(s)))

∏n+T−1
θ=n (1 + a(θ)g(x(s))) − 1

, n ≤ s ≤ n+ T − 1,

satisfying the property

0 <
1

δm − 1
≤ Gl,m(n, s) ≤

δm
δl − 1

. (3.4)

Denote δm =
∏T−1

s=0 (1 +ma(s)) and δl =
∏T−1

s=0 (1 + la(s)), Clearly 1
δm−1

δl−1
δm

< 1.

Then x(n) is a T -periodic solution of (1.1) iff x(n) is a T -periodic solution of
difference equation (3.3).
Define an operator Aλ : X → X by

(Aλx)(n) = λ

n+T−1∑

s=n

Gl,m(n, s)f(s, x(s− τ(s))). (3.5)

Using (2.1) we obtain

‖Aλx‖ ≤ λ
δm
δl − 1

n+T−1∑

s=n

f(s, x(s− τ(s)))

and hence

Aλx ≥
1

δm − 1

n+T−1∑

s=n

f(s, x(s− τ(s))) ≥
δl − 1

(δm − 1)δm
‖Aλx‖.

In view of the above inequality, we define a cone K ⊂ X as

K = {x ∈ X ;x(n) > 0, n ∈ Z, x(n) ≥
δl − 1

(δm − 1)δm
‖x‖}.

Then Aλ(K) ⊂ K. The existence of a positive periodic solution of (1.1) is equivalent
to the existence of a fixed point of Aλ in K. Here we use Leggett-Williams fixed
point theorem, that is, Theorem 2.2 to obtain the existence of three fixed point of
Aλ in K. With a small exercise, it may be proved that Aλ : K → K is completely
continuous. The following proof is similar to the proof given in [22].
To complete the proof we first show that operator Aλ is continuous. From the
assumptions (A1)-(A3), assume that for any M > 0 and ǫ > 0, let u, v ∈ K, with
‖u‖ ≤ M, ‖v‖ ≤ M , there exists δ > 0 such that ‖u− v‖ < δ for s ∈ [0, T ] implies
‖f(s, u(s− τ(s))) − f(s, v(s− τ(s)))‖ < ǫ, we have that

max
0≤s≤T−1

|f(s, u(s− τ(s))) − f(s, v(s− τ(s)))| <
ǫ

λβT
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where β = δm
δl−1 then

|Aλ(u)−Aλ(v)| ≤ λ

n+T−1∑

s=n

|Gl,m(n, s)||f(s, u)− f(s, v)| ds

≤ λβ

n+T−1∑

s=n

|f(s, u)− f(s, v)| ds

< ǫ.

Hence Aλ is continuous. Next, to prove that Aλ is completely continuous operator,
we show that Aλ maps bounded subset into compact set. Let M be given, E =
{u ∈ K, ||u|| < M} and G = {Aλu : u ∈ E)} then E is a subset of Banach space X ,
equivalent to the space R, which is closed and bounded, therefore compact. Since
continuous image of compact set is compact. This shows Aλ : K → K is completely
continuous operator.

Theorem 3.1. Let (A1)-(A3) hold. Further, suppose that there are positive con-
stants c1, c2 and c4 with 0 < c1 < c2 < c4 such that

(H1)
maxs∈[0,T−1] f(s,c1)δm

(δl−1)c1
<

maxs∈[0,T−1] f(s,c4)δm
(δl−1)c4

<
mins∈[0,T−1] f(s,c2)

(δm−1)c2
.

Then for λ ∈ ( (δm−1)c2
T mins∈[0,T−1] f(s,c2)

, (δl−1)c4
Tδm maxs∈[0,T−1] f(s,c4)

], Eq.(1.1) has at least three

positive T -periodic solutions.

Proof: For x ∈ Kc4 , we have

||Aλx|| = max
0≤n≤T−1

λ
n+T−1∑

s=n

Gl,m(n, s)f(s, x(s− τ(s)))

≤
δm
δl − 1

λ

n+T−1∑

s=n

f(s, x(s− τ(s)))

≤
δm
δl − 1

λT max
s∈[0,T−1]

f(s, c4) ≤ c4.

Now take c3 = δm(δm−1)c2
δl−1 and c0(n) = c0 = c2+c3

2 , then c0 ∈ {x : x ∈ K(ψ, c2, c3), ψ(x) >

c2}, where ψ(x) is defined as in Eq.(2.2). Then for x ∈ K(ψ, c2, c3), we obtain

ψ(Aλx) = min
0≤n≤T−1

λ

n+T−1∑

s=n

Gl,m(n, s)f(s, x(s− τ(s)))

≥
1

δm − 1
λT min

s∈[0,T−1]
f(s, c2)

> c2.
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Further for x ∈ Kc1 , and using (H1) we have

||Aλx|| = max
0≤n≤T−1

λ
n+T−1∑

s=n

Gl,m(n, s)f(s, x(s− τ(s)))

≤
δm
δl − 1

λ

n+T−1∑

s=n

f(s, x(s− τ(s)))

≤
δm
δl − 1

λT max
s∈[0,T−1]

f(s, c1)

≤
(δl − 1)c4

δmT maxs∈[0,T−1] f(s, c4)

δm
(δl − 1)

T max
s∈[0,T−1]

f(s, c1) < c1.

Finally, for x ∈ K(ψ, c2, c4) with ||Aλx|| > c3, we have

||Aλx|| ≤
δm
δl − 1

λ

n+T−1∑

s=n

f(s, x(s− τ(s)))

and

ψ(Aλx) ≥
1

δm − 1
λT

n+T−1∑

s=n

f(s, x(s− τ(s)))

>
1

δm − 1

δl − 1

δm
||Aλx|| > c2.

Since all the conditions of Theorem 2.2 are satisfied, therefore Eq.(1.1) has at least
three positive T -periodic solutions.

Corollary 3.1. Let (A1),(A3) and (H1) hold. Also suppose that

lim supx→∞
f(n,x)

x
= 0 and lim supx→0

f(n,x)
x

= 0.

Then for λ ∈ ( (δm−1)c2
T mins∈[0,T−1] f(s,c2)

, (δl−1)c4
Tδm maxs∈[0,T−1] f(s,c4)

], Eq.(1.1) has at least three

positive T -periodic solutions.

In the following, Theorem 3.1 is applied to the single species population model ex-
hibiting the allee effect proposed by Gopalsamy and Ladas[10], which is the discrete
analog of proposed model.

Example 3.1. consider the equation

∆x(n) = x(n)[a(n) + b(n)x(n− τ(n)) − c(n)x2(n− τ(n))], (3.6)

where a(n), b(n), c(n) and τ(n) are positive integers.

Eq.(3.6) can be rewritten as

∆x(n) = a(n)x− f(n, x),

where f(n, x) = (c(n)x2 − b(n)x)x(n) and λ, g=1. Then applying Theorem 3.1 we
have the following result:
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Theorem 3.2. Assume that there are positive constants 0 < c1 < c2 < c4 such that

maxn∈[0,T−1][c(n)c
2
1−b(n)c1]

δ−1 <
maxn∈[0,T−1][c(n)c

2
4−b(n)c4]

δ−1 <
minn∈[0,T−1][c(n)c

2
2−b(n)c2]

δ−1 .

Then Eq.(3.6) has at least three positive T -periodic solutions for
(δ−1)

minn∈[0,T−1][c(n)c
2
2−b(n)c2]

< T < (δ−1)
δmaxn∈[0,T−1][c(n)c

2
4−b(n)c4]

,

where δ =
∏T−1

n=0 (1 + a(n)).

From the assumption used in above Corollary 3.1, it is easily seen that the choice of
constant c4 used in Theorem 2.2 (for the existence of three periodic solutions) lead
the function f to be unimodel, Now the point to be noted that this kind of functions
exclude many important class of growth functions arising in various mathematical
models such as: The logistic equation with several delays ([14]), Richards single
species growth model ([14]), Michaelis-Menton type single species growth model
([14, 23]).
In view of this, we make another assumption on f :

(A′
2) f ∈ C(Z × R+, R+) is T -periodic with respect to the first variable. Also

function f(n, x) is nondecreasing with respect to x and not bounded.
Then using Theorem 2.1 we have the following result:

Theorem 3.3. Let (A1), (A3) and (A′
2) hold. Further assume that there are con-

stants 0 < c1 < c2 s.t. for λ ∈ ( (δm−1)c2∑T−1
s=0 f(s,c2)

, (δl−1)c1
δm

∑T−1
s=0 f(s,c1)

), Eq.(1.1) has at least

two positive T -periodic solutions.

Proof: Let c3 = δm(δm−1)c2
δl−1 and c0(s) = c0 = c2+c3

2́ , then for x ∈ K(ψ, c2, c3), we
obtain

ψ(Aλx) = min
0<n<T−1

λ

n+T−1∑

s=n

Gl,m(n, s)f(s, x(s− τ(s)))

≥
1

δm − 1
λ

T−1∑

s=0

f(s, c2)

> c2.

Further, for x ∈ Kc1 , we find

||Aλx|| = max
0≤n≤T−1

λ

n+T−1∑

s=n

Gl,m(n, s)f(s, x(s− τ(s)))

≤
δm
δl − 1

λ

T−1∑

s=0

f(s, c1)

< c1.

Finally, for x ∈ K(ψ, c2, c4) with ||Aλx|| > c3, we have

||Aλx|| ≤
δm
δl − 1

λ

n+T−1∑

s=n

f(s, x(s− τ(s)))
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and

ψ(Aλx) ≥
1

δm − 1
λT

n+T−1∑

s=n

f(s, x(s− τ(s)))

>
1

δm − 1

δl − 1

δm
||Aλx|| > c2.

This shows that Eq.(1.1) has at least two positive T -periodic solutions.

Next, we study the existence of periodic solutions of Eq.(1.1) when the function g(x)
in Eq.(1.1) is not bounded. This case was first considered by Jin[13] to obtain the
existence of one periodic solution of functional differential equation (1.2). In [11],
Graef et.al. used upper lower solution method to study the existence of multiple
periodic solutions of Eq.(1.2). Now using this assumption we obtained the result
different from those in literature. Since g(x) → ∞ as x → ∞ then there exists a
constant m1 > 0 s.t. g(x) = gm1(x) for all 0 ≤ x < m1 and g(x) = gm1(m1) for all
x ≥ m1.
In view of this we make the following assumption:

(A′
3) There exists a constant m1 > 0, s.t. gm1(0) ≤ g(x) ≤ gm1(m1) for 0 <

||x|| ≤ m1.
Now inequality (3.4) will take the form

0 <
1

∏T−1
s=0 (1 + gm1(m1)a(s))− 1

≤ Gm1,m10
(n, s) ≤

∏T−1
s=0 (1 + gm1(m1)a(s))∏T−1

s=0 (1 + gm1(0)a(s))− 1
.

Denote δm1 =
∏T−1

s=0 (1 + gm1(m1)a(s)) and δm10
=

∏T−1
s=0 (1 + gm1(0)a(s)), Clearly

1
δm1−1

δm10
−1

δm1
< 1, then

1

δm1 − 1
≤ Gm1,m10

(n, s) ≤
δm1

δm10
− 1

, n ≤ s ≤ n+ T − 1. (3.7)

Next, we state the following theorem using (3.7).

Theorem 3.4. Let (A1), (A
′
2) and (A′

3) hold. Suppose that there are constants
0 < c1 < c2, then for

λ ∈ (
(δm1−1)m1

∑T−1
s=0 f(s,m1)

,
(δm10

−1)c1

δm1

∑T−1
s=0 f(s,c1)

), for each m1 > 0,

Eq.(1.1) has at least two positive T -periodic solutions.

Proof: Let c2 = m1 and c3 =
δm1 (δm1−1)m1

δm10
−1 . Then proceeding as in the lines of

Theorem 3.3, for x ∈ K(ψ,m1,
δm1 (δm1−1)m1

δm10
−1 ), we find

ψ(Aλx) = min
0≤n≤T−1

λ

n+T−1∑

s=n

Gm1,m10
(n, s)f(s, x(s− τ(s)))

≥
1

δm1 − 1
λ

T−1∑

s=0

f(s,m1)

> m1 = c2.
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Further, for x ∈ Kc1 , we have

||Aλx|| = max
0≤n≤T−1

λ

n+T−1∑

s=n

Gm1,m10
(n, s)f(s, x(s− τ(s)))

≤
δm1

δm10
− 1

λ

T−1∑

s=0

f(s, ||x||)

<
δm1

δm10
− 1

(δm10
− 1)c1

δm1

∑T−1
s=0 f(s, c1)

T−1∑

s=0

f(s, c1)

< c1.

Last hypothesis is easy to proof. Hence by Theorem 2.1, Eq.(1.1) has at least two
positive T -periodic solutions.

Remark 3.1. Now, we give an example to illustrate the Theorem 3.4. This exam-
ple was considered by Graef et al. [11] (in continuous case) to find the existence
of atleast one positive periodic solution. In the following, for the same example
using Theorem 3.4, the existence of at least two positive periodic solutions has been
obtained. Hence Theorem 3.4 improves the result in [11].

Example 3.2. Consider the equation

∆x(n) = ex(n)x(n)− λ(x3(n− cosnπ) + 1), (3.8)

here a(n) = 1, τ(n) = cosnπ, f(n, x) = x3 + 1, g(x) = ex and T = 2. We see that
A1, A

′
2, and A

′
3 hold. δm1 = 1 + em1 and δm10

= 2. Then for each m1 > 0 there

are constants 0 < c1 < c2 s.t. for λ ∈ ( em1m1

2(m3
1+1)

, c1
4(c31+1)

), by Theorem 3.4, (2.2) has

at least two positive 2-periodic solutions.

Remark 3.2. As the existence of positive periodic solutions of (1.1) is regarded,
it is found from the previous sections that some similar results can be derived for
functional difference equation of the form

∆x(n) = −a(n)g(x(n))x(n) + λf(n, x(n− τ(n))), (3.9)

we see that (3.9) is equivalent to the summation series

x(n) =

n+T−1∑

s=n

Gl,m(n, s)f(s, x(h(s))),

where

Gl,m(n, s) =

∏n+T−1
θ=s+1 (1− a(θ)g(x(θ)))

1−
∏T−1

θ=0 (1 − a(θ))
, n ≤ s ≤ n+ T − 1

is the Green’s kernel satisfying the property

0 <

∏T−1
θ=0 (1−ma(θ))

1−
∏T−1

θ=0 (1−ma(θ))
≤ Gl,m(n, s) ≤

1

1−
∏T−1

θ=0 (1− la(θ))
.
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