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SUBCLASSES OF STARLIKE FUNCTIONS INVOLVING

SRIVASTAVA-ATTIYA INTEGRAL OPERATOR

(COMMUNICATED BY INDRAJIT LAHIRI)

SHIGEYOSHI OWA 1,∗ G.MURUGUSUNDARAMOORTHY 2AND N.MAGESH3

Abstract. Making use of the generalized Srivastava-Attiya integral operator,
we define a new subclass of starlike functions with negative coefficients and
obtain coefficient estimates, extreme points, the radii of close to convexity, star-
likeness and convexity and neighbourhood results for f ∈ TS

µ
b (α, β, γ, A,B).

In particular, we obtain modified Hadamard product results for the function
f(z) belongs to the class TS

µ
b (α, β, γ,A, B) in the unit disc.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +

∞
∑

n=2

anz
n (1.1)

which are analytic and univalent in the open disc U = {z : z ∈ C, |z| < 1}. Also
denote by T a subclass of A consisting of functions of the form

f(z) = z −
∞
∑

n=2

|an|zn, z ∈ U, (1.2)

introduced and studied by Silverman [24]. For functions f ∈ A given by (1.1)

and g ∈ A given by g(z) = z +
∞
∑

n=2
bnz

n, we define the Hadamard product (or

convolution ) of f and g by

(f ∗ g)(z) = z +

∞
∑

n=2

anbnz
n, z ∈ U. (1.3)
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We recall here a general Hurwitz-Lerch Zeta function Φ(z, s, a) defined in [27]
by

Φ(z, s, a) :=

∞
∑

n=0

zn

(n+ a)s
; (a ∈ C\{Z−

0 }; s ∈ C when |z| < 1;R(s) > 1 and |z| = 1)

(1.4)
where, as usual, Z−

0 := Z \ {N}, (Z := {0,±1,±2,±3, ...});N := {1, 2, 3, ...}. Sev-
eral interesting properties and characteristics of the Hurwitz-Lerch Zeta function
Φ(z, s, a) can be found in the recent investigations by Choi and Srivastava [5], Fer-
reira and Lopez [8], Garg et al. [10], Lin and Srivastava [12], Lin et al. [13], and
others. Srivastava and Attiya [25] (see also Raducanu and Srivastava [21], and
Prajapat and Goyal [20]) introduced the linear operator:

Jµ,b : A → A

defined in terms of the Hadamard product by

Jµ,bf(z) = Gb,µ ∗ f(z), (z ∈ U ; b ∈ C \ {Z−
0 };µ ∈ C; f ∈ A) (1.5)

where, for convenience,

Gµ,b(z) := (1 + b)µ[Φ(z, µ, b)− b−µ] (z ∈ U). (1.6)

We recall here the following relationships (given earlier by [20], [21]) which follow
easily by using (1.1), (1.5) and (1.6)

J µ
b f(z) = z +

∞
∑

n=2

(

1 + b

n+ b

)µ

anz
n. (1.7)

Motivated essentially by the Srivastava-Attiya operator, Al-Shaqsi and Darus [3]
introduced the integral operator

J λ,k
µ,b f(z) = z +

∞
∑

n=2

Cλ
n(b, µ)anz

n, (1.8)

where

Cλ
n(b, µ) = |

(

1 + b

n+ b

)µ
λ!(n+ k − 2)!

(k − 2)!(n+ λ− 1)!
| (1.9)

and (throughout this paper unless otherwise mentioned) the parameters µ, b are

constrained as b ∈ C \ {Z−
0 };µ ∈ C, k ≥ 2 and λ > −1. Further note that J

1,2
µ,b is

the Srivastava-Attiya operator, and J
λ,k
0,b is the well-known Choi-Saigo- Srivastava

operator (see [6, 14]). It is of interest to note that for λ = 1; k = 2, and specializing
the parameters µ and b suitably we get various integral operators introduced by
Alexander [2] , Bernardi[4] and Jung-Kim-Srivastava integral operator [15] closely
related to some multiplier transformation studied by Fleet [9]. Making use of the

operator J λ,k
µ,b , and motivated by the earliear works of Murugusundaramoorthy[17,

18] we introduce a new subclass of analytic functions with negative coefficients and
discuss some usual properties of the geometric function theory of this generalized
function class.

For fixed −1 ≤ A ≤ B ≤ 1 and 0 < B ≤ 1,let S
µ
b (α, β, γ, A,B) denote the

subclass of A consisting of functions f(z) of the form (1.1) and satisfying the
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condition
∣

∣

∣

∣

∣

∣

∣

∣

z(J λ,k

µ,b
f(z))′

J
λ,k

µ,b
f(z)

− 1

2γ(B −A)

(

z(J λ,k

µ,b
f(z))′

J
λ,k

µ,b
f(z)

− α

)

−B

(

z(J λ,k

µ,b
f(z))′

J
λ,k

µ,b
f(z)

− 1

)

∣

∣

∣

∣

∣

∣

∣

∣

< β, z ∈ U (1.10)

where J λ,k
µ,b f(z) is given by (1.8), 0 ≤ α < 1, 0 < β ≤ 1, B

2(B−A) < γ ≤
{

B
2(B−A)α α 6= 0,

1 α = 0.

We also let TSµ
b (α, β, γ, A,B) = S

µ
b (α, β, γ, A,B) ∩ T.

For convenience in entire paper we consider 0 ≤ α < 1, 0 < β ≤ 1,

B

2(B −A)
< γ ≤

{

B
2(B−A)α α 6= 0,

1 α = 0.

for fixed −1 ≤ A ≤ B ≤ 1 and 0 < B ≤ 1, one or otherwise stated.
By suitably specializing the values of A,B, α, β and γ the class TSµ

b (α, β, γ, A,B)
leads to known subclasses studied in [1, 16] and [19] and various new subclasses.

The main object of this paper is to study some usual properties of the geometric
function theory such as the coefficient bound, extreme points, radii of close to
convexity, starlikeness and convexity for the class TS

µ
b (α, β, γ, A,B). Further, we

obtain modified Hadamard product and Neighbourhood results for aforementioned
class.

2. Characterization Properties

We now obtain the characterization property for functions f(z) to belong to the
class TSµ

b (α, β, γ, A,B) there by obtaining coefficient bounds.

Theorem 2.1. Let the function f(z) be defined by (1.2) is in the class TSµ
b (α, β, γ, A,B)

if and only if
∞
∑

n=2

[2βγ(B−A)(n−α)+(1−Bβ)(n−1)]Cλ
n (b, µ)|an| ≤ 2βγ(1−α)(B−A), (2.1)

where Cλ
n(b, µ) is given by (1.9).

Proof. The proof of Theorem 2.1 is much akin to the proof of theorems on coefficient
bounds established in [7, 17, 26], so we skip the details in this regard. �

Corollary 2.2. Let the function f(z) defined by (1.2) be in the class TSµ
b (α, β, γ, A,B).

Then we have

an ≤ 2βγ(1− α)(B −A)

[2βγ(B −A)(n− α) + (1−Bβ)(n− 1)]Cλ
n(b, µ)

(2.2)

The equation (2.2) is attained for the function

f(z) = z − 2βγ(1− α)(B −A)

[2βγ(B −A)(n− α) + (1−Bβ)(n− 1)]Cλ
n(b, µ)

zn (n ≥ 2) (2.3)

where Cλ
n(b, µ) is given by (1.9).

For the sake of brevity , we let

Φn(α, β, γ, A,B) = [2βγ(B −A)(n− α) + (1−Bβ)(n− 1)] (2.4)
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and

Φ2(α, β, γ, A,B) = [1 + 2βγ(B −A)(2 − α)−Bβ] (2.5)

unless otherwise stated.

Theorem 2.3. Let the function f(z) defined by (1.2) belong to TS
µ
b (α, β, γ, A,B).

Then

|f(z)| ≥ |z|
{

1− 2βγ(1− α)(B −A)

[Φ2(α, β, γ, A,B)]Cλ
2 (b, µ)

|z|
}

(2.6)

and

|f(z)| ≤ |z|
{

1 +
2βγ(1− α)(B −A)

[Φ2(α, β, γ, A,B)]Cλ
2 (b, µ)

|z|
}

, (2.7)

where

Cλ
2 (b, µ) =

(

1 + b

2 + b

)µ
(k − 1)k

(1 + λ)
. (2.8)

Proof. In the view of (2.1) and the fact that Cλ
n(b, µ) is non-decreasing for n ≥

2, 0 ≤ α < 1 we have

[2βγ(B −A)(2− α) + (1−Bβ)]Cλ
2 (b, µ)

∞
∑

n=2

an ≤
∞
∑

n=2

Φn(α, β, γ, A,B)Cλ
n (b, µ)an

≤ 2βγ(1− α)(B −A)

which readily yields,

∞
∑

n=2

an ≤ 2βγ(1− α)(B −A)

[1 + 2βγ(B −A)(2 − α)−Bβ)]Cλ
2 (b, µ)

. (2.9)

Theorem 2.3 follows readily from (1.2) and (2.9). �

Theorem 2.4. (Extreme Points ) Letf1(z) = z; fn(z) = z− 2βγ(1−α)(B−A)
Φn(α,β,γ,A,B)Cλ

n(b,µ)
zn, (n ≥

2) where Cλ
n(b, µ) is given by (1.9). Then f(z) is in the class TS

µ
b (α, β, γ, A,B) if

and only if it can be expressed in the form f(z) =
∞
∑

n=1
ωnfn(z) where ωn ≥ 0 (n ≥ 1)

and
∞
∑

n=1
ωn = 1.

We shall prove the following results for the closure of functions in the class
TS

µ
b (α, β, γ, A,B).
Let the functions fj(z)(j = 1, 2) be defined by

fj(z) = z −
∞
∑

n=2

an,j zn for an, j ≥ 0, z ∈ U. (2.10)

Theorem 2.5. (Closure Theorem) Let the functions fj(z)(j = 1, 2, . . .m) de-
fined by (2.10) be in the classes TS

µ
b (αj , β, γ, A,B) (j = 1, 2, . . .m) respectively.

Then the function h(z) defined by h(z) = z − 1
m

∞
∑

n=2

(

m
∑

j=1

an, j

)

zn is in the class

TS
µ
b (α, β, γ, A,B), where α = min

1≤j≤m
{αj} where 0 ≤ αj ≤ 1.
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Proof. Since fj ∈ TS
µ
b (αj , β, γ, A,B), (j = 1, 2, . . .m) by applying Theorem 2.1, to

(2.10) we observe that

∞
∑

n=2

Φn(α, β, γ, A,B)Cλ
n (b, µ)





1

m

m
∑

j=1

an, j



 =
1

m

m
∑

j=1

(

∞
∑

n=2

Φn(α, β, γ, A,B)Cλ
n (b, µ)an, j

)

≤ 1

m

m
∑

j=1

2βγ(1− αj)(B −A) ≤ 2βγ(1− α)(B −A)

which in view of Theorem 2.1, again implies that h ∈ TS
µ
b (α, β, γ, A,B) and so the

proof is complete. �

Next we obtain the radii of close-to-convexity, starlikeness and convexity for the
class TSµ

b (α, β, γ, A,B).

Theorem 2.6. Let the function f(z) defined by (1.2)belong to the class TSµ
b (α, β, γ, A,B).

Then f(z) is close-to-convex of order σ (0 ≤ σ < 1) in the disc |z| < r1, where

r1 := inf

[

(1− σ)Φn(α, β, γ, A,B)Cλ
n (b, µ)

2nβγ(B −A)(1 − α)

]

1

n−1

(n ≥ 2), (2.11)

where Cλ
n(b, µ) is given by (1.9). The result is sharp, with extremal function f(z)

given by (2.4).

Proof. Given f ∈ T, and f is close-to-convex of order σ, we have

|f ′(z)− 1| < 1− σ. (2.12)

For the left hand side of (2.12) we have |f ′(z) − 1| ≤
∞
∑

n=2
nan|z|n−1. The last

expression is less than 1− σ if
∞
∑

n=2

n

1− σ
an|z|n−1 < 1,

that is, if
n

1− σ
|z|n−1 ≤ Φn(α, β, γ, A,B)Cλ

n (b, µ)

2βγ(B −A)(1− α)
.

where we have made use of the assertion (2.1) of Theorem 2.1.The last inequality
leadus immediately to the disk |z| < r1 where r1 given by (2.11,which completes
the proof. �

Theorem 2.7. Let f ∈ TS
µ
b (α, β, γ, A,B). Then

(i) f is starlike of order σ(0 ≤ σ < 1) in the disc |z| < r2; that is, Re
{

zf ′(z)
f(z)

}

>

σ, where

r2 = inf

[(

1− σ

n− σ

)

Φn(α, β, γ, A,B)Cλ
n (b, µ)

2βγ(B −A)(1 − α)

]

1

n−1

(n ≥ 2) (2.13)

(ii) f is convex of order σ (0 ≤ σ < 1) in the disc |z| < r3, that is Re
{

1 + zf ′′(z)
f ′(z)

}

>

σ, where

r3 = inf

[(

1− σ

n(n− σ)

)

Φn(α, β, γ, A,B)Cλ
n (b, µ)

2βγ(B −A)(1 − α)

]

1

n−1

(n ≥ 2) (2.14)
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where Cλ
n(b, µ) is given by (1.9). Each of these results are sharp for the extremal

function f(z) given by (2.4).

Proof. Following the techniques employed in [26],we can easily prove (i)
(ii) Using the fact that f is convex if and only if zf ′ is starlike, we can prove

(ii). �

3. Modified Hadamard Products

Let the functions fj(z)(j = 1, 2) be defined by (2.10). The modified Hadamard
product of f1(z) and f2(z) is defined by

(f1 ∗ f2)(z) = z −
∞
∑

n=2

an,1an,2 zn.

Using the techniques of Schild and Silverman [23], we prove the following results.

Theorem 3.1. For functions fj(z)(j = 1, 2) defined by (2.10), let f1 ∈ TS
µ
b (α, β, γ, A,B)

and f2 ∈ TS
µ
b (δ, β, γ, A,B). Then (f1 ∗ f2) ∈ TS

µ
b (ξ, β, γ, A,B), where

ξ = 1− 2βγ(B −A)(1 − α)(1 − δ)(1 + 2βγ(B −A)−Bβ)

Φ2(α, β, γ, A,B)Φ2(δ, β, γ, A,B)Cλ
2 (b, µ)− 4β2γ2(B −A)2(1 − α)(1 − δ)

(3.1)
and Φ2(α, β, γ, A,B)is given by (2.5) , Cλ

2 (b, µ) is given by (2.8)and Φ2(δ, β, γ, A,B, 2) =
[2βγ(B −A)(2 − δ) + (1−Bβ)] .

Proof. In view of Theorem 2.1, it suffice to prove that
∞
∑

n=2

[2βγ(B −A)(n− ξ) + (1−Bβ)(n− 1)]Cλ
n(b, µ)

2βγ(1− ξ)(B −A)
an,1an,2 ≤ 1, (0 ≤ ξ < 1)

where ξ is defined by (3.1). On the other hand, under the hypothesis, it follows
from (2.1) and the Cauchy’s-Schwarz inequality that

∞
∑

n=2

[Φn(α, β, γ, A,B)]1/2[Φn(δ, β, γ, A,B)]1/2
√

(1− α)(1 − δ)(Cλ
n (b, µ))

−1

√
an,1an,2 ≤ 1, (3.2)

where Φn(α, β, γ, A,B) is given by (2.4) and Φn(δ, β, γ, A,B, n) = [2βγ(B−A)(n−
δ) + (1 −Bβ)(n− 1)]. Thus we need to find the largest ξ such that

∞
∑

n=2

[Φn(ξ, β, γ,A,B)]Cλ
n(b, µ)

2βγ(1− ξ)(B − A)
an,1an,2 ≤

∞
∑

n=2

[Φn(α, β, γ,A,B)]1/2[Φn(δ, β, γ,A,B)]1/2
√

(1− α)(1− δ)(Cλ
n(b, µ))−1

√
an,1an,2

or, equivalently that

√
an,1an,2 ≤ 1− ξ

√

(1− α)(1− δ)

[Φn(α, β, γ,A,B)]1/2[Φn(δ, β, γ, A,B)]1/2

[Φn(ξ, β, γ,A,B)]
, (n ≥ 2)

where Φn(ξ, β, γ,A,B) = 2βγ(B − A)(n − ξ) + (1 − Bβ)(n − 1). By view of (3.2) it is
sufficient to find largest ξ such that

2βγ(B − A)
√

(1− α)(1− δ)(Cλ
n(b, µ))

−1

[Φn(α, β, γ, A,B)]1/2[Φn(δ, β, γ,A,B)]1/2
≤ 1− ξ

√

(1− α)(1− δ)

[Φn(α, β, γ,A,B)]1/2[Φn(δ, β, γ,A,B)]1/2

[2βγ(B − A)(n− ξ) + (1−Bβ)(n− 1)]

which yields

ξ = Ψ(n) = 1− 2βγ(B − A)(1− α)(1− δ)(n− 1)(1 + 2βγ(B − A)−Bβ)

[Φn(α, β, γ,A,B)Φn(δ, β, γ,A,B)]Cλ
n(b, µ) − 4β2γ2(B − A)2(1− α)(1− δ)

(3.3)
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for n ≥ 2 is an increasing function of n (n ≥ 2) and letting n = 2 in (3.3), we get the
desired result. �

By using arguments similar to those in proof of Theorem 3.1,and employing the
techniques of [26] we can easily prove the following results, hence we state the
following theorems without proof.

Theorem 3.2. Let the functions fj(z)(j = 1, 2) defined by (2.10), be in the class

TS
µ
b (α, β, γ, A,B) then (f1∗f2) ∈ TS

µ
b (ρ, β, γ, A,B), where ρ = 1− 2βγ(B−A)(1−α)2(1+2βγ(B−A)−Bβ)

[Φ2(α,β,γ,A,B)]2Cλ
2
(b,µ)−4β2γ2(B−A)2(1−α)2

and Cλ
2 (b, µ) is given by (2.8).

Proof. By taking δ = α, in the above theorem, the result follows. �

Theorem 3.3. Let the function f(z) defined by (1.2) be in the class TSµ
b (α, β, γ, A,B).

Also let g(z) = z −
∞
∑

n=2
bnz

n for |bn| ≤ 1. Then (f ∗ g) ∈ TS
µ
b (α, β, γ, A,B).

Theorem 3.4. Let the functions fj(z)(j = 1, 2) defined by (2.10) be in the class

TS
µ
b (α, β, γ, A,B). Then the function h(z) defined by h(z) = z−

∞
∑

n=2
(a2n,1+a2n,2)z

n is

in the class TSµ
b (ξ, β, γ, A,B), where ξ = 1− 4βγ(1−α)2(B−A)

Cλ
2
(b,µ)[Φ2(α,β,γ,A,B)]2−8β2γ2(B−A)2(1−α)2

and Cλ
2 (b, µ) is given by (2.8).

4. Inclusion relations involving Nδ(e)

Following [11, 22], we define the δ− neighbourhood of function f ∈ T by

Nδ(f) :=

{

h ∈ T : h(z) = z −
∞
∑

n=2

dnz
n and

∞
∑

n=2

n|an − dn| ≤ δ

}

. (4.1)

Particulary for the identity function e(z) = z, we have

Nδ(e) :=

{

h ∈ T : h(z) = z −
∞
∑

n=2

dnz
n and

∞
∑

n=2

n|dn| ≤ δ

}

. (4.2)

Now we obtain inclusion relations of the class TSµ
b (α, β, γ, A,B).

Theorem 4.1. If

δ :=
4βγ(1− α)(B −A)

[Φ2(α, β, γ, A,B)]Cλ
2 (b, µ)

(4.3)

where Cλ
2 (b, µ) is given by (2.8). Then TS

µ
b (α, β, γ, A,B) ⊂ Nδ(e).

Proof. For f ∈ TS
µ
b (α, β, γ, A,B), Theorem 2.1 immediately yields

[Φ2(α, β, γ, A,B)]Cλ
2 (b, µ)

∞
∑

n=2

an ≤ 2βγ(1− α)(B −A),

so that
∞
∑

n=2

an ≤ 2βγ(1− α)(B −A)

[Φ2(α, β, γ, A,B)]Cλ
2 (b, µ)

. (4.4)
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On the other hand, from (2.1) and (4.4) that

[2βγ(B −A) + (1−Bβ)]Cλ
2 (b, µ)

∞
∑

n=2

nan

≤ 2βγ(1− α)(B −A) + [2βγα(B −A) + (1 −Bβ)]Cλ
2 (b, µ)×

[

2βγ(1− α)(B −A)

[Φ2(α, β, γ, A,B)]Cλ
2 (b, µ)

]

=
2[2βγ(1− α)(B −A)][2βγ(B −A) + (1−Bβ)]

[Φ2(α, β, γ, A,B)]

that is
∞
∑

n=2

nan ≤ 4βγ(1− α)(B −A)

[Φ2(α, β, γ, A,B)]Cλ
2 (b, µ)

:= δ (4.5)

which, in view of the (4.2) which complete the proof of Theorem 4.1. �

Next we determine the neighborhood for the class TSµ
b (ρ, α, β, γ, A,B) which we

define as follows. A function f ∈ T is said to be in the class TSµ
b (ρ, α, β, γ, A,B) if

there exists a function h ∈ TS
µ
b (ρ, α, β, γ, A,B) such that

∣

∣

∣

f(z)
h(z) − 1

∣

∣

∣ < 1 − ρ, (z ∈
U, 0 ≤ ρ < 1).

Theorem 4.2. If h ∈ TS
µ
b (ρ, α, β, γ, A,B) and

ρ = 1− [Φ2(α, β, γ, A,B)]δCλ
2 (b, µ)

[2 + 4βγ(B −A)(2 − α)−Bβ]Cλ
2 (b, µ)− 4βγ(1− α)(B −A)

(4.6)

then Nδ(h) ⊂ TS
µ
b (ρ, α, β, γ, A,B).

Proof. Suppose that f ∈ Nδ(g) we then find from (4.1) that
∞
∑

n=2
n|an−bn| ≤ δ which

implies that the coefficient inequality
∞
∑

n=2
|an−bn| ≤ δ

2 . Since h ∈ TS
µ
b (α, β, γ, A,B),

we have
∞
∑

n=2
bn ≤ 2βγ(1−α)(B−A)

[Φ2(α,β,γ,A,B)]Cλ
2
(b,µ)

so that

∣

∣

∣

∣

f(z)

h(z)
− 1

∣

∣

∣

∣

<

∞
∑

n=2
|an − bn|

1−
∞
∑

n=2
bn

≤
δ
2

1− 2βγ(1−α)(B−A)

[Φ2(α,β,γ,A,B)]Cλ
2
(b,µ)

=
[Φ2(α, β, γ, A,B)]δCλ

2 (b, µ)

[2 + 4βγ(B −A)(2 − α)−Bβ]Cλ
2 (b, µ)− 4βγ(1− α)(B −A)

= 1− ρ.

provided that ρ is given precisely by (4.6). Thus by definition, f ∈ TS
µ
b (ρ, α, β, γ, A,B)

for ρ given by (4.6), which completes the proof. �

Concluding Remarks: By suitably specializing the various parameters in-
volved in Theorem 2.1 to Theorem 4.2, one can state the corresponding results for
many relatively more familiar function classes.
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