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DOUBLE SINE SERIES AND HIGHER ORDER LIPSCHITZ

CLASSES OF FUNCTIONS

(COMMUNICATED BY HÜSEYIN BOR)

DANDAN HAN, GUOCHENG LI, AND DANSHENG YU

Abstract. In the present paper, we generalize the double Lipschitz classes
and double Zygmund calsses of functions in two variables to the so-called dou-
ble higher order Lipschitz classes, and give the necessary and sufficient condi-
tions for double sine series belonging to the generalized higher order Lipschitz
classes.

1. Introduction

Given a double sequence {ajk; j, k = 1, 2, ...} of nonnegative numbers satisfying
∞
∑

j=1

∞
∑

k=1

ajk < ∞, (1)

then the following double sine series

f(x, y) :=

∞
∑

j=1

∞
∑

k=1

ajk sin jx sinky,

is continuous, due to uniform convergence.

Let ω(h, k) be a modulus of continuity, that is, ω(h, k) is a continuous function
on the square [0, 2π] × [0, 2π], nondecreasing in each variable, and possessing the
following properties:

ω(0, 0) = 0,

ω(t1 + t2, t3) ≤ ω(t1, t3) + ω(t2, t3),

ω(t1, t2 + t3) ≤ ω(t1, t2) + ω(t1, t3).

Yu ([3]) introduced the following classes of functions:

HHω := {f(x, y) : ‖f(x, y)− f(x+ h, y)− f(x, y + k) + f(x+ h, y + k)‖ = O(ω(h, k)), h, k > 0}.
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When ω (u, v) = uαvβ , 0 < α, β ≤ 1, then HHω becomes the well known double
Lipschitz class Lip (α, β) . Yu ([3]) investigated the necessary and sufficient condi-
tions for the double trigonometric series belonging to HHω. In fact, some of his
results can be read as follows:

Theorem 1. If
m
∑

i=1

n
∑

j=1

ijaij = O

(

mnω

(

1

m
,
1

n

))

,

m
∑

i=1

∞
∑

j=n

iaij = O

(

mω

(

1

m
,
1

n

))

,

∞
∑

i=m

n
∑

j=1

jaij = O

(

nω

(

1

m
,
1

n

))

,

∞
∑

i=m

∞
∑

j=n

aij = O

(

ω

(

1

m
,
1

n

))

,

for m,n = 1, 2, · · · , then f (x, y) ∈ HHω.

Theorem 2. If f (x, y) ∈ HHω, then

m
∑

i=1

n
∑

j=1

ijaij = O

(

mnω

(

1

m
,
1

n

))

.

Theorem 3. If
{

ω
(

1
m
, 1
n

)}

satisfies the following conditions

∞
∑

i=m

i−1ω

(

1

i
,
1

n

)

= O

(

ω

(

1

m
,
1

n

))

,

∞
∑

j=n

j−1ω

(

1

m
,
1

j

)

= O

(

ω

(

1

m
,
1

n

))

,

∞
∑

i=m

∞
∑

j=n

i−1j−1ω

(

1

i
,
1

j

)

= O

(

ω

(

1

m
,
1

n

))

,

for all m,n = 1, 2, · · · , then f (x, y) ∈ HHω if and only if

m
∑

i=1

n
∑

j=1

ijaij = O

(

mnω

(

1

m
,
1

n

))

.

For any f(x, y) ∈ C(T 2), and r, s = 1, 2, ..., the (r, s)-th difference of f(x, y) at
x with stepsize h and at y with stepsize k, is defined by

△r,s(f ;x, y;h, k) :=

r
∑

µ=0

s
∑

γ=0

(−1)r+s−µ−γ

(

r

µ

)(

s

γ

)

f(x+ µh, y + γk).

Define the double higher order Lipschitz classes Λω
r,s and the double higher order

lipshcitz classes λω
r,s as follows:

Λω
r,s :=

{

f(x, y) ∈ C(T 2) : ||∆r,s(f ;x, y;h, k)| | = O (ω(h, k)) , h > 0, k > 0
}

,

λω
r,s :=

{

f(x, y) ∈ C(T 2) : ||∆r,s(f ;x, y;h, k)| | = o (ω(h, k)) , h > 0, k > 0
}

.
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Clearly, if r = s = 1, Λω
r,s reduces to the class HHω, and if r = s = 2, Λω

r,s reduces
to the double Zygmund class ZZω, while if r = 1, s = 2, Λω

r,s is the Lipschitz-
Zygmund class HZω (see [3] for the definitions of ZZω and HZω, they are gen-
eralizations of the multiplicative Zygmund class Zy (α, β) and the multiplicative
Lipschitz-Zygmund class, respectively).

Our main purpose is to generalize Theorem 1-Theorem 3 to the double higher
Lipschitz classes Λω

r,s (see Theorem A-Theorem C below).Our results also generalize
some well known results considering single trigonometric series from Lipscitz class
and Zygmund class to the higher order Lipschitz classes.

2. Main results

In what follows, we always assume that {ajk} is a double sequence of nonnegative
numbers satisfying (1). We first give a sufficient condition for f ∈ Λω

r,s.

Theorem A. If

m
∑

j=1

n
∑

k=1

jrksajk = O

(

mrnsω

(

1

m
,
1

n

))

, (2)

m
∑

j=1

∞
∑

k=n+1

jrajk = O

(

mrω

(

1

m
,
1

n

))

, (3)

∞
∑

j=m+1

n
∑

k=1

ksajk = O

(

nsω

(

1

m
,
1

n

))

, (4)

∞
∑

j=m+1

∞
∑

k=n+1

ajk = O

(

ω

(

1

m
,
1

n

))

, (5)

then f ∈ Λω
r,s.

We have the following necessary conditions for f ∈ Λω
r,s :

Theorem B. If f ∈ Λω
r,s then

m
∑

j=1

n
∑

k=1

jr
∗

ks
∗

ajk = O

(

mr∗ns∗ω

(

1

m
,
1

n

))

,

where r∗ :=

{

r + 1 r is even,

r r is odd,
, s∗ :=

{

s+ 1, s is even,

s, s is odd.

If ω(δ, η) satisfies some further conditions, we can obtain the necessary and
sufficient conditions for f ∈ Λω

r,s. In fact, we have the following:

Theorem C. (i). If r and s are all odd , ω
(

1
m
, 1
n

)

satisfies

∞
∑

j=m

1

j
ω

(

1

j
,
1

n

)

= O

(

ω

(

1

m
,
1

n

))

, (6)

∞
∑

k=n

1

k
ω

(

1

m
,
1

k

)

= O

(

ω

(

1

m
,
1

n

))

, (7)
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for all m,n = 1, 2, ..., then f ∈ Λω
r,s if and only if (2.1) holds.

(ii). If r is even and s is odd, ω
(

1
m
, 1
n

)

satisfies (2.5),(2.6) and

m
∑

j=1

jr−1ω

(

1

j
,
1

n

)

= O

(

mrω

(

1

m
,
1

n

))

, (8)

then f ∈ Λω
r,s if and only if (2.3) holds.

(iii). If r is odd and s is even, and ω
(

1
m
, 1
n

)

satisfies (2.5),(2.6) and

n
∑

k=1

ks−1ω

(

1

m
,
1

j

)

= O

(

nsω

(

1

m
,
1

n

))

, (9)

then f ∈ Λω
r,s if and only if (2.2) holds.

(iv). If r and s are all even , ω
(

1
m
, 1
n

)

satisfies (2.5)-(2.8), then f ∈ Λω
r,s if and

only if (2.4) holds.

Now, we give some useful corollaries of Theorem C.

Corollary A. Assume that there are µ1, ν1 (µ1, ν1 > 0) such that
{

mµ1ω
(

1
m
, 1
n

)}

and
{

nν1ω
(

1
m
, 1
n

)}

are almost decreasing on m and n respectively, then
(i). If r and s are all odd, f ∈ Λω

r,s if and only if (2.1) holds.

(ii). If r is even and s is odd, and there is a µ2 (0 < µ2 < r) such that
{

mµ2ω
(

1
m
, 1
n

)}

is almost increasing on m , then f ∈ Λω
r,s if and only if (2.3) holds.

(iii). If r is odd and s is even, and there is a ν2 (0 < ν2 < s) such that
{

nν2ω
(

1
m
, 1
n

)}

is almost increasing on n, then f ∈ Λω
r,s if and only if (2.2) holds.

(iv). If r and s are all even , and there are µ3, ν3 (0 < µ3 < r, 0 < ν3 < s) such that
{

mµ3ω
(

1
m
, 1
n

)}

and
{

nν3ω
(

1
m
, 1
n

)}

are almost increasing on m and n respectively,
then f ∈ Λω

r,s if and only if (2.4) holds.

Corollary B. (i). If r and s are all odd, and ω(δ, η) = δαηβ (0 < α ≤ r, 0 < β ≤ s),
then f ∈ Λω

r,s if and only if

m
∑

j=1

n
∑

k=1

jrksajk = O
(

mr−αns−β
)

.

(ii). If r is even and s is odd, and ω(δ, η) = δαηβ (0 < α < r, 0 < β ≤ s), then
f ∈ Λω

r,s if and only if

∞
∑

j=m

n
∑

k=1

ksajk = O
(

m−αns−β
)

.

(iii). If r is odd and s is even, and ω(δ, η) = δαηβ (0 < α ≤ r, 0 < β < s), then
f ∈ Λω

r,s if and only if

m
∑

j=1

∞
∑

k=n

jrajk = O
(

mr−αn−β
)

.
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(iv). If r and s are all even, and ω(δ, η) = δαηβ(0 < α < r, 0 < β < s), then
f ∈ Λω

r,s if and only if

∞
∑

j=m

∞
∑

k=n

ajk = O
(

m−αn−β
)

.

Remark. When ‘O’ is replaced by ‘o’, and Λω
r,s is replaced by λω

r,s , the cor-
responding results still hold. When r = s = 2, our results also generalize the
corresponding results in [4].

3. Auxiliary results

Lemma 1. When r = 2m,m = 1, 2..., we have

r
∑

j=0

(−1)r−j

(

r

j

)

sin k(x+ jh) = 2m(cos kh− 1)m sink(x+mh). (10)

When r = 2m− 1,m = 1, 2..., we have

r
∑

j=0

(−1)r−j

(

r

j

)

sin k(x+ jh) = 2m(cos kh− 1)m−1 cos k(x+mh−
h

2
) sin

kh

2
. (11)

Proof. First, we have (Móricz ([2])) for m = 1, 2, ..., t ∈ R, that

S2m−1 :=

2m−1
∑

j=0

(−1)j
(

2m− 1

j

)

ei(m−j)t = 2m−1(cos t− 1)m−1(eit − 1), (12)

and

S2m :=

2m
∑

j=0

(−1)j
(

2m

j

)

ei(m−j)t = 2m(cos t− 1)m. (13)

When r = 2m, by (3.4), we have

r
∑

j=0

(−1)r−j

(

r

j

)

sin k(x+ jh) = Im

r
∑

j=0

(−1)r−j

(

r

j

)

eik(x+jh)

= Im





2m
∑

j=0

(−1)j
(

2m

j

)

ei(m−j)(−kh)ei(mkh+kx)





= 2m(cos kh− 1)mIm
(

ei(mkh+kx)
)

= 2m(cos kh− 1)m sin k(x+mh),

which prove (3.1).
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When r = 2m− 1, by (3.3), we have
r
∑

j=0

(−1)r−j

(

r

j

)

sin k(x+ jh) = Im

r
∑

j=0

(−1)r−j

(

r

j

)

eik(x+jh)

= Im





2m−1
∑

j=0

(−1)j
(

2m− 1

j

)

ei(m−j)(−kh)ei(mkh+kx)





= 2m−1(cos kh− 1)m−1Im
(

(ei(−kh) − 1)ei(kx+mh)
)

= 2m−1(cos kh− 1)m−1Im
(

ei(kx−kh+mkh) − ei(kx+mkh)
)

= 2m−1(cos kh− 1)m−1 (cos(kx− kh+mkh)− cos(kx+mkh))

= 2m(cos kh− 1)m−1 cos k(x+mh−
h

2
) sin

kh

2
,

which prove (3.2). �

Lemma 2. If ω
(

1
m
, 1
n

)

satisfies (6), (7), then for any δ ≥ r, η ≥ s,

m
∑

j=1

n
∑

k=1

iδjηajk = O

(

mδnηω

(

1

m
,
1

n

))

(14)

implies
m
∑

j=1

∞
∑

k=n+1

jδajk = O

(

mδω

(

1

m
,
1

n

))

, (15)

∞
∑

j=m+1

n
∑

k=1

kηajk = O

(

nsω

(

1

m
,
1

n

))

, (16)

∞
∑

j=m+1

∞
∑

k=n+1

ajk = O

(

ω

(

1

m
,
1

n

))

. (17)

Lemma 2 can be proved in a way similar to that of Lemma 3.1 in [4].

Lemma 3. If ω
(

1
m
, 1
n

)

satisfies (8) and (9), then, for any δ ≥ r, η ≥ s, (3.8)
implies (3.5)-(3.7).

Proof. Let M and N be integers for which 1 ≤ m < M, 1 ≤ n < N , by Abel’s
transformation, we conclude that

m
∑

i=1

iδ
n
∑

j=1

jηaij =
m
∑

i=1

iδ
n
∑

j1=1

(jη1 − (j1 − 1)η)
N
∑

j=j1

aij − nη

N
∑

j=n+1

aij

≤

n
∑

j1=1

ηj
η−1
1

N
∑

j=j1

m
∑

i=1

iδaij

=
n
∑

j1=1

ηj
η−1
1

N
∑

j=j1

(

m
∑

i1=1

(iδ1 − (i1 − 1)δ)
M
∑

i=i1

aij −mδ

M
∑

i=m+1

aij

)

≤

n
∑

j1=1

ηj
η−1
1

m
∑

i1=1

δiδ−1
1

N
∑

j=j1

M
∑

i=i1

aij .
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Letting M and N tend to ∞, by (3.8), we have

m
∑

i=1

n
∑

j=1

iδjηaij = O





m
∑

i1=1

n
∑

j1=1

iδ−1
1 j

η−1
1 ω(

1

i1
,
1

j1
)





= O



mδ−rnη−s

m
∑

i1=1

n
∑

j1=1

ir−1
1 js−1

1 ω(
1

i1
,
1

j1
)





= O



mδnη−s

n
∑

j1=1

js1ω(
1

i1
,
1

j1
)





= O

(

mδnηω(
1

i1
,
1

j1
)

)

,

which proves (3.5).
By Abel’s transformation again, we have

m
∑

i=1

∞
∑

j=n

iδaij ≤

∞
∑

j=n

(

m
∑

i1=1

(iδ1 − (i1 − 1)δ)

M
∑

i=i1

aij −mδ

M
∑

i=m+1

aij

)

≤

m
∑

i1=1

δiδ−1
1

M
∑

i=i1

∞
∑

j=n

aij .

Letting M tend to ∞, by (2.7), we have

m
∑

i=1

∞
∑

j=n

iδaij = O

(

mδ−r

m
∑

i1=1

ir−1
1 ω(

1

i1
,
1

n
)

)

= O

(

mδω(
1

m
,
1

n
)

)

.

which proves (3.6).
In a similar way to the proof of (3.6), we have (3.7). �

Analogue to Lemma 3, we have the following lemmas.

Lemma 4. If ω
(

1
m
, 1
n

)

satisfies (6) and (9), then, for any δ ≥ r, η ≥ s (15) implies
(14), (16) and (17).

Lemma 5. If ω
(

1
m
, 1
n

)

satisfies (7), (8), then, for any δ ≥ r, η ≥ s, (16) implies
(14), (15) and (17).

Remark 2. When ‘O’ is replaced by ‘o’, the corresponding results of Lemma
2-Lemma 5 still hold.
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4. Proof of the Theorem

Proof of Theorem A. Write m :=
[

1
δ

]

, n :=
[

1
η

]

for given δ > 0, η > 0. Direct

calculations yield that

|∆r,s(f ;x, y; δ, η)| =

∣

∣

∣

∣

∣

∣

∞
∑

j=1

∞
∑

k=1

ajk

r
∑

µ=0

(−1)r−µ

(

r

µ

)

sin j(x+ µδ)

s
∑

γ=0

(−1)s−γ

(

s

γ

)

sin k(y + γη)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∞
∑

j=1

∞
∑

k=1

ajke
ijx
(

1− eijδ
)r

eiky
(

1− eikη
)s

∣

∣

∣

∣

∣

∣

≤ 2r+s

∞
∑

j=1

∞
∑

k=1

ajk

∣

∣

∣

∣

sin
jδ

2

∣

∣

∣

∣

r ∣
∣

∣

∣

sin
kη

2

∣

∣

∣

∣

s

≤ 2r+s







m
∑

j=1

n
∑

k=1

+

m
∑

j=1

∞
∑

k=n+1

+

∞
∑

j=m+1

n
∑

k=1

+

∞
∑

j=m+1

∞
∑

k=n+1







ajk

∣

∣

∣

∣

sin
jδ

2

∣

∣

∣

∣

r ∣
∣

∣

∣

sin
kη

2

∣

∣

∣

∣

s

=: S1 + S2 + S3 + S4.

By (2), we have

S1 ≤ δrηs
m
∑

j=1

n
∑

k=1

jrksajk = O (ω(δ, η)) .

By (3) and (4), we have

S2 ≤ 2sδr
m
∑

j=1

∞
∑

k=n+1

jrajk = O (ω(δ, η)) ,

and

S3 ≤ 2rηs
∞
∑

j=m+1

n
∑

k=1

ksajk = O (ω(δ, η)) ,

respectively. Finally, by (5), we have

S4 ≤ 2r+s

∞
∑

j=m+1

∞
∑

k=n+1

ajk = O (ω(δ, η)) .

Combining all the above estimates, the proof of Theorem A is complete.

Proof of Theorem B. We prove the result by considering the following many
cases.

Case 1. r and s are both odd, say r = 2m0−1 for some m0 = 1, 2, ..., s = 2n0−1
for some n0 = 1, 2, .... Since f ∈ Λω

r,s, by (3.2), there exists a constant C such that

|∆r,s(f ;x, y; δ, η)| =2m0+n0

∣

∣

∣

∣

∣

∣

∞
∑

j=1

∞
∑

k=1

ajk (1− cos jδ)
m0−1

(1− cos kη)
n0−1

∣

∣

∣

∣

∣

∣

×

∣

∣

∣

∣

sin

(

jδ

2

)

cos j

(

x+

(

m0 −
1

2

)

δ

)

sin

(

kη

2

)

cos k

(

y +

(

n0 −
1

2

)

η

)∣

∣

∣

∣

≤Cω(δ, η), δ > 0, η > 0.
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Noting that f is uniformly convergent (due to (1)), we can integrate both sides
of the above inequality with respects to x on (−m0δ,−

(

m0 −
1
2

)

δ) and y on

(−n0η,−
(

n0 −
1
2

)

η) to obtain that

22(m0+n0)
∞
∑

j=1

∞
∑

k=1

ajk

jk
sin2m0

jδ

2
sin2n0

kη

2
=

∣

∣

∣

∣

∣

∫

−(m0−
1

2 )δ

−m0δ

∫

−(n0−
1

2 )η

−n0η

∆r,s(f ;x, y; δ, η)dxdy

∣

∣

∣

∣

∣

≤

∫

−(m0−
1

2 )δ

−m0δ

∫

−(n0−
1

2 )η

−n0η

|∆r,s(f ;x, y; δ, η)| dxdy

≤ C

∫

−(m0−
1

2 )δ

−m0δ

∫

−n0η+η

−n0η

ω(δ, η)dxdy

≤ Cδηω(δ, η), δ > 0, η > 0. (18)

By using the well known inequality

sin t ≥
2t

π
, 0 ≤ t ≤

π

2
, (19)

and (18), we obtain

22(m0+n0)
m
∑

j=1

n
∑

k=1

ajk

jk

(

jδ

2

)2m0
(

kη

2

)2n0

≤ Cδηω(δ, η), δ > 0, η > 0,

where m :=
[

1
δ

]

, n :=
[

1
η

]

. Hence,

m
∑

j=1

n
∑

k=1

jrksajk = O

(

mrnsω

(

1

m
,
1

n

))

,

which proves Theorem B in the case when r and s are all odd.
Case 2. r is odd, s is even, say r = 2m0 − 1 for some m0 = 1, 2, ..., s = 2n0 for

some n0 = 1, 2, .... Since f ∈ Λω
r,s, by Lemma 1, there exists a constant C such that

|∆r,s(f ;x, y; δ, η)| =2m0+n0

∣

∣

∣

∣

∣

∣

∞
∑

j=1

∞
∑

k=1

ajk (1− cos jδ)
m0−1

(1− cos kη)
n0

sin

(

jδ

2

)

cos j

(

x+

(

m0 −
1

2

)

δ

)

sin k(y + n0η)

∣

∣

∣

∣

≤Cω(δ, η), δ > 0, η > 0.

By integrating both sides of the above inequality with respects to x on (−m0δ,−
(

m0 −
1
2

)

δ)
and y on (−n0η,−n0η + η), we have

22(m0+n0)
∞
∑

j=1

∞
∑

k=1

ajk

jk
sin2m0

jδ

2
sin2n0+2 kη

2
=

∣

∣

∣

∣

∣

∫

−(m0−
1

2 )δ

−m0δ

∫

−n0η+η

−n0η

∆r,s(f ;x, y; δ, η)dxdy

∣

∣

∣

∣

∣

≤

∫

−(m0−
1

2 )δ

−m0δ

∫

−n0η+η

−n0η

|∆r,s(f ;x, y; δ, η)| dxdy

≤

∫

−(m0−
1

2 )δ

−m0δ

∫

−n0η+η

−n0η

ω(δ, η)dxdy

≤ Cδηω(δ, η), δ > 0, η > 0. (20)
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By (4.2) and (20), we have

22(m0+n0)
m
∑

j=1

n
∑

k=1

ajk

jk

(

jδ

2

)2m0
(

kη

2

)2n0+2

≤ Cδηω(δ, η), δ > 0, η > 0,

where m :=
[

1
δ

]

, n :=
[

1
η

]

. Hence,

m
∑

j=1

n
∑

k=1

jrks+1ajk = O

(

mrns+1ω

(

1

m
,
1

n

))

,

which proves Theorem B in the case when r is odd and s is even.
Case 3. r is even, s is odd. By similar discussion to Case 2, we see that Theorem

B holds in this case.
Case 4. r and s are both even, say r = 2m0 for some m0 = 1, 2, ..., s = 2n0 for

some n0 = 1, 2, .... Since f ∈ Λω
r,s, there exists a constant C such that

|∆r,s(f ;x, y; δ, η)| =2m0+n0

∣

∣

∣

∣

∣

∣

∞
∑

j=1

∞
∑

k=1

ajk (1− cos jδ)
m0 (1− cos kη)

n0 sin j(x+m0δ) sin k(y + n0η)

∣

∣

∣

∣

∣

∣

=22(m0+n0)

∣

∣

∣

∣

∣

∣

∞
∑

j=1

∞
∑

k=1

ajk sin
2m0

jδ

2
sin2n0

kη

2
sin j(x+m0δ) sin k(y + n0η)

∣

∣

∣

∣

∣

∣

≤Cω(δ, η), δ > 0, η > 0.

By integrating both sides of the above inequality with respects to x on (−m0δ,−m0δ+
δ) and y on (−n0η,−n0η + η), we have

22(m0+n0)
∞
∑

j=1

∞
∑

k=1

ajk

jk
sin2m0+2 jδ

2
sin2n0+2 kη

2
=

∣

∣

∣

∣

∣

∫

−m0δ+δ

−m0δ

∫

−n0η+η

−n0η

∆r,s(f ;x, y; δ, η)dxdy

∣

∣

∣

∣

∣

≤

∫

−m0δ+δ

−m0δ

∫

−n0η+η

−n0η

|∆r,s(f ;x, y; δ, η)| dxdy

≤ C

∫

−m0δ+δ

−m0δ

∫

−n0η+η

−n0η

ω(δ, η)dxdy

≤ Cδηω(δ, η), δ > 0, η > 0.
(21)

By (4.2) and (21), we have

22(m0+n0)
m
∑

j=1

n
∑

k=1

ajk

jk

(

jδ

2

)2m0+2 (
kη

2

)2n0+2

≤ Cδηω(δ, η), δ > 0, η > 0,

where m :=
[

1
δ

]

, n :=
[

1
η

]

. Hence,

m
∑

j=1

n
∑

k=1

jr+1ks+1ajk = O

(

mr+1ns+1ω

(

1

m
,
1

n

))

,

which proves Theorem B in the case when r and s are both even.
We prove Theorem B by combining the results of Case 1-Case 4.
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Proof of Theorem C. (i) The necessity follows from Theorem B, while the
sufficiency follows from Theorem A and Lemma 2 (with δ = r, η = s).
(ii) The necessity follows from Theorem B and Lemma 2 (with δ = r + 1, η = s),
while the sufficiency follows from Theorem A and Lemma 5 (with δ = r, η = s).
(iii) The necessity follows from Theorem B and Lemma 2 (with δ = r, η = s + 1),
while the sufficiency follows from Theorem A and Lemma 4 (with δ = r, η = s).
(iv) The necessity follows from Theorem B and Lemma 2 (with δ = r+1, η = s+1),
while the sufficiency follows from Theorem A and Lemma 3 (with δ = r, η = s).

Proof of Corollary A. (i) If there are µ1, ν1 (µ1, ν1 > 0) such that
{

mµ1ω
(

1
m
, 1
n

)}

and
{

nν1ω
(

1
m
, 1
n

)}

are almost decreasing on m and n respectively, then

∞
∑

j=m

j−1ω

(

1

j
,
1

n

)

=

∞
∑

j=m

j−1−µ1

(

jµ2ω

(

1

j
,
1

n

))

=O



mµ1ω

(

1

m
,
1

n

) m
∑

j=1

j−1−µ1





=O

(

ω

(

1

m
,
1

n

))

,

which implies (6).
Similarly, we have (7).
Therefore, the result follows from (i) of Theorem C.

(ii) If there is µ2 (0 < µ2 < r) such that
{

mµ2ω
(

1
m
, 1
n

)}

is almost increasing on m,
then

m
∑

j=1

jr−1ω

(

1

j
,
1

n

)

=

m
∑

j=1

jr−1−µ2

(

jµ2ω

(

1

j
,
1

n

))

=O



mµ2ω

(

1

m
,
1

n

) m
∑

j=1

jr−1−µ2





=O

(

mrω

(

1

m
,
1

n

))

.

Thus, the result follows from (ii) of Theorem C.

Similarly, (iii) and (iv) of Corollary A follow from (iii) and (iv) of Theorem C,
respectively.

Proof of Corollary B. Set

ω (u, v) = uαvβ , α, β > 0.

Then ω (u, v) satisfies the conditions of Theorem C under assumptions of Corol-
lary B on the parameters α, β. Therefore, Corollary B follows from Theorem C
immediately.
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[6] V. Fülöp, Double cosine series with nonnegative coefficients, Acta Sci. Math. (Szeged),

70(2004), 91-100.
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