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FIXED POINT THEOREMS IN N-POLYGONAL CONE METRIC

SPACES

(COMMUNICATED BY MARK AGRANOVSKY)

IVAN GATICA ARAUS, JOSEFA LORENZO RAMIREZ

Abstract. In this paper we present a fixed point theorem for mappings de-

fined in an N -polygonal cone metric space. Some generalizations of fixed point

theorems for S-Kannan and S-Chatterjea contractive mappings on cone metric
spaces will be also shown. In these results the underlying cone metric space is

considered over a Banach space ordered by a normal cone.

1. Introduction and Preliminaries

After the extension of Banach Contraction Principle for contractions on vector-
valued metric spaces by Perov in 1964 ([21]), the notion of cone metric space over
an ordered Banach space (also called K-metric space) has been used as a natural
framework for proving useful fixed point theorems in the theory of differential equa-
tions (see [1], [7], [9], [19], [20] and [22]). For more information on this topic we
refer the reader to [23] and the bibliography therein.

Recently, from a paper by Long-Guang and Xian [15] many authors have taken up
the question of the existence of fixed points for mappings satisfying some contractive
conditions in cone metric spaces (see [2], [8], [11], [16] and [18]).

Motivated by two recent papers on rectangular cone metric space ([2] and [16]),
we unify various results deal with generalizations of the Banach’s Contraction Prin-
ciple. On the other hand, we present a fixed point result for a S-Hardy-Rogers cone
contraction following some ideas from [12]. Among other consequences we obtain
an extension of the well known Kannan fixed point theorem appeared in [8].

It is worth pointing out that in the above-mention papers it is usually required
the cone to be normal with nonempty interior. Last condition on the cone is very
restrictive, for example, the positive cone of the space of functions L1 and the
positive cone of the space of sequences ℓp (1 ≤ p < ∞) have empty interior. We
emphasize that in our approach just a normality assumption is imposed on the cone.
Furthermore, we deal with a class of contractive mappings for which the constant
of contractiveness is replaced by a positive operator in the spirit of the papers [9]
and [23].
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Let (V, ∣∣ ⋅ ∣∣) be a Banach space. A set K ⊂ V is called a cone if and only if:

(1) K is nonempty and K ∕= {0V }.
(2) If �, � ∈ K and a, b ∈ ℝ+

0 , then a�+ b� ∈ K.
(3) K ∩ (−K) = {0V }.

For a given cone K ⊂ V , we can define a partial ordering ≤ with respect to K
by � ≤ � if and only if � −� ∈ K. We will refer (V, ∣∣ ⋅ ∣∣,K) as an ordered Banach
space.

The following definitions relate the norm ∣∣ ⋅ ∣∣ with the cone K:

∙ The cone K is called normal if there exists a number � ≥ 1 such that for
all �, � ∈ V , 0V ≤ � ≤ � implies ∣∣�∣∣ ≤ �∣∣�∣∣. The least positive number
satisfying above is called the normal constant of K.

∙ The cone K is called closed if K is closed with respect to the topology
induced by the norm.

Definition 1.1. Let X be a set and dK : X × X :→ K a mapping. We say that
dK is a cone metric, if for all x, y, z ∈ X, one has

(1) dK(x, y) = 0V ⇔ x = y;
(2) dK(x, y) = dK(y, x);
(3) dK(x, y) ≤ dK(x, z) + dK(z, y).

The pair (X, dK) is said to be a cone metric space (CMS).

Example 1.2. Let X = V = Lp[0, 1] such that

Kp = {f ∈ Lp[0, 1] : 0 ≤ f e.c.t}.
We define dK : Lp[0, 1]× Lp[0, 1]→ Kp such that

dK(f, g) = ∣f − g∣.
It is clear that dK is a cone metric.

The proof of the following lemma easily follows from the definition of cone metric.

Lemma 1.3. Let (X, dK) be a cone metric space over an ordered Banach space
(V, ∣∣ ⋅ ∣∣,K) such that K is a normal cone with normal constant �. Then the
function D : X×X → [0,∞) defined by D(x, y) = ∣∣dK(x, y)∣∣ satisfies the following
properties:

(1) D(x, y) = 0⇔ x = y;
(2) D(x, y) = D(y, x);
(3) D(x, y) ≤ �[D(x, z) +D(z, y)] for all x, y, z ∈ X.

Recently, M.A. Khamsi [17] introduced the concept of a metric type space: for an
arbitrary set X, the pair (X,D) is called a metric type space if D : X×X → [0,∞)
is a function satisfying properties (1), (2) and (3) in the above lemma. Defining
a topology on this class of spaces, he obtained some metric and topological fixed
point theorems (see [18]). However, it is worth pointing out that this definition of
D corresponds to the concept of quasi-metric and the pair (X,D) is called a quasi-
metric space in the literature. If (X,D) is a quasi-metric space then the topology in
X induced byD, is canonically defined by means of the theory of uniform structures.
The balls B(x, r) = {y ∈ X : D(x, y) < r} for r > 0 form a basis of neighbourhoods
of x for the topology induced by the uniformity of X. This is a metric topology
since the uniform structure associated to D has a numerable basis (we refer the
reader to Chapter 8 in [10]). Therefore, a sequence {xn}n∈ℕ converges to x in X,
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if lim
n
D(xn, x) = 0 and X is complete if every Cauchy sequence is convergent in X.

This fact suggests that many fixed point results proved in cone metric spaces do
not need full structure because they could follow by using the real valued function
D. However, this approach does not work in order to prove certain fixed point
theorems [8].

Example 1.4. Let (Ω,Σ, �) be a positive measure space. For every 1 < p < ∞
consider the Banach space X = Lp(Ω).

Define D : X ×X → [0,+∞) by

D(f, g) =

∫
Ω

∣f − g∣p d�, f, g ∈ X.

Then D trivially satisfies properties (1), (2) in the above Lemma. Now take f, g, ℎ ∈
X. Since p > 1, it is well known that∫

Ω

∣f − g∣p d� ≤ 2p−1

(∫
Ω

∣f − ℎ∣p d�+

∫
Ω

∣ℎ− g∣p d�
)
,

which means
D(f, g) ≤ 2p−1[D(f, ℎ) +D(ℎ, g)].

Therefore D is a quasi-metric on X.

Concerning example 1.4 and the concept of ”quasi-metric space” (which is called
in some paper b-metric space), it is worth to notice that several examples of quasi-
metrics (including example 1.4) and some fixed point results in this framework are
given in [3], [4], [5], [6], and the references therein.

Following some ideas from [2] next we introduce a class of spaces including cone
metric spaces.

Definition 1.5. Let X be a set and dK : X × X :→ K a mapping. We say that
dK is a N -polygonal cone metric, if for all x, y ∈ X and for all distinct points
z1, z2, . . . , zN ∈ X, each of them different from x and y, one has

(1) dK(x, y) = 0V ⇔ x = y;
(2) dK(x, y) = dK(y, x);
(3) dK(x, y) ≤ dK(x, z1) + dK(z1, z2) + ⋅ ⋅ ⋅+ dK(zN−1, zN ) + dK(zN , y).

The pair (X, dK) is said to be a N -polygonal cone metric space, Np-CMS for short.

If N = 1 the pair (X, dK) is a cone metric space. The concept of 2-polygonal
cone metric space is referred in [2] as cone rectangular metric space. It is clear that
a cone metric space is a N -polygonal cone metric space, for all N ≥ 2.

Example 1.6. Let X = ℕ, (V, ∣∣ ⋅ ∣∣) = (ℝ2, ∣∣ ⋅ ∣∣) with ∣∣�∣∣ =
√
�2

1 + �2
2 and

K = {(�1, �2) : �1, �2 ≥ 0}.
We define dK : X ×X → K as follow:

dK(x, y) =

⎧⎨⎩ (0, 0) : if x = y,
(3a, 3) : if x ∈ {1, 2} ∧ y ∈ {1, 2} ∧ x ∕= y,
(a, 1) : if (x ∈ {1, 2}c ∨ y ∈ {1, 2}c) ∧ x ∕= y.

with a ∈ (0,∞). Then dK is a rectangular cone metric but it is not a cone metric
because it lacks the triangular property:

dK(1, 2) = (3a, 3) > dK(1, 3) + dK(3, 2) = (2a, 2).
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From the definition of N-polygonal cone metric we can easily deduce the following
lemma.

Lemma 1.7. Let (X, dK) be a Np-CMS over an ordered Banach space (V, ∣∣ ⋅ ∣∣,K)
such that K is a normal cone with normal constant �. Then the function D :
X ×X → [0,∞) defined by D(x, y) = ∣∣dK(x, y)∣∣ satisfies the following properties:

(1) D(x, y) = 0⇔ x = y;
(2) D(x, y) = D(y, x);
(3) D(x, y) ≤ �[D(x, z1) + D(z1, z2) + ⋅ ⋅ ⋅ + D(zN−1, zN ) + D(zN , y)] for all

distinct points z1, z2, . . . , zN ∈ X, each of them different from x and y.

Given a N-polygonal cone metric space (X, dK), the concept of sequence will be
the usual. We next define convergence and completeness.

Definition 1.8. Let (X, dK) be a Np-CMS over an ordered Banach space (V, ∣∣ ⋅
∣∣,K) such that K is a normal cone, x ∈ X and {xn}n∈ℕ ⊂ X. We say that
{xn}n∈ℕ converges to x in X, if lim

n
D(xn, x) = 0. We write xn → x to denote that

the sequence {xn}n∈ℕ is convergent to x, that is,

xn → x⇔ D(xn, x)→ 0.

In general, for a N-polygonal cone metric space with N ≥ 2, the uniqueness of
the limit of a sequence does not hold (see Example 1.6 in [16]). However, the limit
is unique for a convergent Cauchy sequence as we show below.

Definition 1.9. Let (X, dK) be a Np-CMS over an ordered Banach space (V, ∣∣ ⋅
∣∣,K) such that K is a normal cone and {xn}n∈ℕ a sequence in X. We say that
{xn}n∈ℕ is a Cauchy sequence, if for every positive real number a, there exists

N̂ ∈ ℕ such that for all n,m ≥ N̂ , we have that D(xn, xm) < a.

Next Lemma is a extension of Lemma 1.10 presented in [16].

Lemma 1.10. Let (X, dK) be a Np-CMS over an ordered Banach space (V, ∣∣⋅∣∣,K)
such that K is a normal cone with normal constant � and {xn}n∈ℕ be a sequence in
X. If {xn}n∈ℕ is an Cauchy sequence, such that satisfies the following conditions:

(a): (∃x, y ∈ X)(xn → x ∧ xn → y),

(b): (∃N̂ ∈ ℕ)(n,m ≥ N̂ ⇒ xn ∕= xm ∧ xn ∕= x ∧ xn ∕= y),

then x = y.

Proof. Suppose {xn}n∈ℕ is an Cauchy sequence satisfying conditions (a) and (b).

For all n ≥ N̂ we have

D(x, y) ≤ �[D(x, xn) +D(xn+1, xn+2) + ⋅ ⋅ ⋅+D(xn+N−1, y)].

Taking limit as n→∞, we obtain D(x, y) = 0 and hence x = y. □

Definition 1.11. Let (X, dK) be a Np-CMS over an ordered Banach space (V, ∣∣ ⋅
∣∣,K) such that K is a normal cone. Then X is called a complete N-polygonal cone
metric space, if every Cauchy sequence is convergent in X.

Finally, we recall some definitions and facts about positive operators.

Definition 1.12. Let (V,K) be an ordered vector space and Q : V → V an operator.
We say that

(1) Q is positive if Q(K) ⊆ K.
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(2) Q is monotone non-decreasing if for all �, � ∈ V such that � − � ∈ K,
then Q(�)−Q(�) ∈ K.

It is clear that every linear positive operator is monotone non-decreasing.

Lemma 1.13. Let (V, ∣∣ ⋅ ∣∣,K) be an ordered Banach space such that K is a normal
cone with normal constant � and Q : V → V be a linear positive operator. If
∣∣Qn(�)∣∣ → 0 for � ∈ K − {0V }, then Q(�)− � /∈ K − {0V }.

Proof. Consider � ∈ K−{0V } such that ∣∣Qn(�)∣∣ → 0. Suppose thatQ(�)−� ∈ K,
that is � ≤ Q(�). Since Q is a linear and positive operator we have that � ≤ Qn(�)
for all n ∈ ℕ. Hence ∣∣�∣∣ ≤ �∣∣Qn(�)∣∣ for all n ∈ ℕ. Taking limit as n → ∞ we
have ∣∣�∣∣ = 0, and so � = 0V which is a contradiction. □

In the sequel we shall use the following notation:

∙ B+(V ) = {Q : V → V/Q is a positive bounded linear operator }.
∙ ∣∣Q∣∣o = sup{∣∣Q(�)∣∣ : � ∈ V ; ∣∣�∣∣ ≤ 1}.

2. Fixed Point Theorems for generalized contraction

In this section we present an adaptation from classical Banach Contraction Prin-
ciple for generalized contraction on N -polygonal cone metric spaces.

Theorem 2.1. Let (X, dK) be a complete Np-CMS over an ordered Banach space
(V, ∣∣ ⋅ ∣∣,K) such that K is a normal cone with normal constant � and T : X → X
be a mapping. If for all x, y ∈ X we have that

(∗) dK(Tx, Ty) ≤ Q(dK(x, y)),

where Q ∈ B+(V ) and
∑∞

n=0 ∣∣Qn∣∣o <∞, then T has a unique fixed point x∗ in X.
Moreover, the iterative sequence xn = Tnx0 converges to x∗ for any initial point
x0 ∈ X and one has the following estimation:

dK(xn, x
∗) ≤ Qn(I −Q)−1(dK(x0, Tx0)).

Proof. Take any point x0 ∈ X such that dK(x0, Tx0) ∈ K −{0V } and consider the
sequence {xn}∞n=0 ⊂ X given by x1 = Tx0, x2 = T 2x0,..., xn = Tnx0. From the
assumption (∗), we have that

dK(x1, x2) = dK(Tx0, T
2x0) ≤ Q(dK(x0, x1)),

dK(x2, x3) = dK(T 2x0, T
3x0) ≤ Q(dK(x1, x2)),

and
dK(xn, xn+1) = dK(Tnx0, T

n+1x0) ≤ Q(dK(xn−1, xn)),

for all n ≥ 1. Since Q is monotone non-decreasing it follows that, for any n ∈ ℕ,
dK(xn, Txn) ≤ Qn(dK(x0, Tx0)).

Now, we will show that xn ∕= x0 for all n ∈ ℕ. Suppose that there exists n̂ ∈ ℕ
such that xn̂ = x0, then

dK(x0, Tx0) = dK(xn̂, Txn̂) ≤ Qn̂(dK(x0, Tx0)).

Therefore, r = dK(x0, Tx0) ∈ K − {0V } and Qn̂(r) − r ∈ K. On the other hand,
since

∑∞
n=0 ∣∣Qn∣∣o < ∞, we can apply Lemma 1.13 to the operator Qn̂ to get a

contradiction.
We proceed to prove that T has a fixed point by dividing the proof into two

cases.
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(Case a): Suppose that xn = xm for some n,m ∈ ℕ such that 1 ≤ n < m,
that is Tnx0 = Tmx0. If we define y0 := Tnx0 we have that y0 = T sy0 where
s = m− n > 1. Therefore, we obtain

dK(y0, Ty0) = dK(T sy0, T
s+1y0) ≤ Qs(dK(y0, T y0)).

Letting s → ∞, in view of Lemma 1.13 we must have dK(y0, T y0) = 0V and y0 is
a fixed point of T .

(Case b): Assume that xn ∕= xm for all n,m ∈ ℕ such that n ∕= m. Using
N -polygonal property (3) and by definition of T we have that,

dK(x0, T
Nx0) ≤ dK(x0, Tx0) + dK(Tx0, T

2x0) + ⋅ ⋅ ⋅+ dK(TN−2x0, T
N−1x0)

+dK(TN−1x0, T
N+1x0) + dK(TN+1x0, T

Nx0)

≤ (I +Q+ ⋅ ⋅ ⋅+QN−2)(dK(x0, Tx0)) +QN−1(dK(x0, T
2x0))

+QN (dK(x0, Tx0)).

Hence

dK(x0, xN ) ≤ (I +Q+ ⋅ ⋅ ⋅+QN )

(
N∑
i=1

dK(x0, xi)

)
.

Similarly we obtain

dK(x0, xN+1) ≤ (I +Q+ ⋅ ⋅ ⋅+QN )(dK(x0, x1))

≤ (I +Q+ ⋅ ⋅ ⋅+QN )

(
N∑
i=1

dK(x0, xi)

)
,

and

dK(x0, xN+l) ≤ (I +Q+ ⋅ ⋅ ⋅+QN−1)(dK(x0, x1)) +QN (dK(x0, xl))

≤ (I +Q+ ⋅ ⋅ ⋅+QN )

(
N∑
i=1

dK(x0, xi)

)
,

for any l ∈ {2, . . . , N}.
In the same way, for l = 1, ⋅ ⋅ ⋅ , N we have that

dK(x0, x2N+l) ≤ (I +Q+ ⋅ ⋅ ⋅+Q2N−1)dK(x0, x1) +Q2N (d(x0, xl))

≤ (I +Q+ ⋅ ⋅ ⋅+Q2N )

(
N∑
i=1

dK(x0, xi)

)
.

Continuing this process, we get for each k ∈ ℕ and l ∈ {1, . . . , N}

dK(x0, xkN+l)≤ (I +Q+ ⋅ ⋅ ⋅+QkN )

(
N∑
i=1

dK(x0, xi)

)
.

It is clear that for any p ∈ ℕ there exist k ∈ ℕ ∪ {0} and l ∈ {1, 2⋅, ⋅, ⋅, N} such
that p = kN + l. From the above we obtain

dK(x0, xp)≤ (I +Q+ ⋅ ⋅ ⋅+QkN )

(
N∑
i=1

dK(x0, xi)

)
.
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In particular

dK(x0, xp)≤ (I +Q+ ⋅ ⋅ ⋅+Qp)

(
N∑
i=1

dK(x0, xi)

)
.

Let n, p ∈ ℕ. From above we have

(∗∗) dK(xn, xn+p) = dK(Tnx0, T
n+px0)

≤ Qn(dK(x0, T
px0))

≤ Qn
(∑p

j=0Q
j
)(∑N

i=1 dK(x0, xi)
)
.

Now, we apply the normality of the cone to get

∣∣dK(xn, xn+p)∣∣ = D(xn, xn+p) ≤ �∣∣Qn∣∣o

⎛⎝ ∞∑
j=0

∣∣Qj ∣∣o

⎞⎠( N∑
i=1

D(x0, xi)

)
.

Letting n → ∞ we conclude that {xn}n∈ℕ is a Cauchy sequence. Since X is
complete, there exists x∗ ∈ X such that Tnx0 → x∗.

We shall now show that Tx∗ = x∗. Without any loss of generality, we can assume
Tnx0 ∕= x∗ and Tnx0 ∕= Tx∗ for all n ∈ ℕ. Therefore, since Tnx0 ∕= Tmx0 for all
n,m ∈ ℕ such that n ∕= m, we obtain

dK(x∗, Tx∗) ≤ dK(x∗, xn+1) + dK(xn+1, xn+2) + ⋅ ⋅ ⋅+ dK(xn+N−1, xn+N )
+dK(xn+N , Tx

∗)

≤ (Qn+1 +Qn+2 + ⋅ ⋅ ⋅+Qn+N−1)(dK(x0, x1))+
dK(x∗, xn+1) +Q(dK(xn+N−1, x

∗))

= (Qn ∘W )(dK(x0, x1)) + dK(x∗, xn+1) +Q(dK(xn+N−1, x
∗)),

where W = (Q+Q2 + ⋅ ⋅ ⋅+QN−1). Thus,

D(x∗, Tx∗) ≤ �∣∣(Qn ∘W )(dK(x0, x1)) + dK(x∗, xn+1) +Q(dK(xn+N−1, x
∗))∣∣

≤ �(∣∣Qn∣∣o∣∣W ∣∣oD(x0, x1) +D(x∗, xn+1) + ∣∣Q∣∣oD(xn+N−1, x
∗)).

It is clear that D(x∗, xn) → 0 and ∣∣Qn∣∣o → 0, therefore D(x∗, Tx∗) = 0. Hence
Tx∗ = x∗.

In addition, letting p→∞ in (∗∗) we get

dK(xn, x
∗) ≤ Qn

⎛⎝ ∞∑
j=0

Qj

⎞⎠( N∑
i=1

dK(x0, xi)

)
= Qn(I −Q)−1(dK(x0, Tx0)).

Uniqueness: Suppose that x∗ is not a unique fixed point of T . That is, there
exists y∗ ∈ X such that x∗ ∕= y∗ and Ty∗ = y∗. Since x∗ ∕= y∗ then dK(x∗, y∗) ∈
K − {0V } and

dK(x∗, y∗) = dK(Tx∗, T y∗) ≤ Q(dK(x∗, y∗)).

Therefore there exists r = dK(x∗, y∗) ∈ K −{0V } such that Q(r)− r ∈ K which is
a contradiction by Lemma 1.13. We conclude that x∗ = y∗.

□
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It is easy to prove that lim
n→∞

(∣∣Qn∣∣o)1/n = inf{(∣∣Qn∣∣o)1/n : n = 1, 2, ...}. Thus

the series
∑∞

n=0 ∣∣Qn∣∣o converges if and only if lim
n→∞

(∣∣Qn∣∣o)1/n < 1. As a conse-

quence we can formulate the following corollaries.

Corollary 2.2. Let (X, dK) be a complete Np-CMS over an ordered Banach space
(V, ∣∣ ⋅ ∣∣,K) such that K is a normal cone with normal constant � and T : X → X
be a mapping. If for all x, y ∈ X we have that

dK(Tx, Ty) ≤ Q(dK(x, y)),

where Q ∈ B+(V ) and lim
n→∞

(∣∣Qn∣∣o)1/n < 1, then T has a unique fixed point in X.

Corollary 2.3. Let (X, dK) be a complete Np-CMS over an ordered Banach space
(V, ∣∣ ⋅ ∣∣,K) such that K is a normal cone with normal constant � and T : X → X
be a mapping. If for all x, y ∈ X we have that

dK(Tx, Ty) ≤ Q(dK(x, y)),

where Q ∈ B+(V ) and ∣∣Q∣∣o < 1, then T has a unique fixed point in X.

Since a rectangular metric space is a 2-polygonal cone metric space, we obtain
the following consequence.

Corollary 2.4. ([2]) Let (X, dK) be a complete rectangular cone metric space over
an ordered Banach space (V, ∣∣ ⋅ ∣∣,K) such that K is a normal cone with normal
constant � ≥ 1 and T : X → X be a mapping. If for all x, y ∈ X we have that

dK(Tx, Ty) ≤ k ⋅ dK(x, y),

where k ∈ [0, 1[ is a real constant. Then T has a unique fixed point in X.

3. Fixed point theorems of S-Kannan and S-Chatterjea cone
contractive mappings

We begin this section with a more general definition of S-Hardy-Rogers contrac-
tion than that from [12], in order to obtain some news fixed point results on cone
metric spaces.

Definition 3.1. Let (X, dK) be a CMS over an ordered Banach space (V, ∣∣ ⋅ ∣∣,K)
and S, T : X → X two mappings. We say that T is a S-Hardy-Rogers cone
contraction, if there exists {Qi}5i=1 ⊂ B+(V ) with

∑5
i=1 ∣∣Qi∣∣o < 1 such that for

all x, y ∈ X we have

dK(STx, STy) ≤ Q1(dK(Sx, Sy)) +Q2(dK(Sx, STx)) +Q3(dK(Sy, STy))
+Q4(dK(Sx, STy)) +Q5(dK(Sy, STx)).

In particular, if

(1) Q2 ≡ Q3 ≡ Q4 ≡ Q5 ≡ Θ, then T is a S-Banach cone contraction;
(2) Q4 ≡ Q5 ≡ Θ, then T is a S-Reich cone contraction;
(3) Q1 ≡ Q4 ≡ Q5 ≡ Θ, then T is S-Kannan cone contraction;
(4) Q1 ≡ Q2 ≡ Q3 ≡ Θ, then T is S-Chatterjea cone contraction,

where Θ is the null operator.
If we put in the previous definition S = Id, (X, dK) a metric space, and Qi(�) =

ai� where ai > 0 such that
∑5

i=1 ai < 1, we have that T is a Hardy-Rogers
contraction (see [14]).
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Example 3.2. Let V = C([0, 1]), K = {f ∈ V : f ≥ 0}, X = ℝ and dK :
X ×X → K defined by dK(x, y) = ∣x− y∣et, where et ∈ V . Then (X, dK) is a cone
metric space. We consider the functions S, T : X → X defined by Sx = 1

2x + 2
and Tx = 3x. Obviously, T is not a cone contraction but it is a S-Banach cone
contraction from the following:

dK(STx, STy) = ∣STx− STy∣et = ∣ 1

6x
− 1

6y
∣et =

1

3
∣Sx− Sy∣et =

1

3
dK(Sx, Sy).

Example 3.3. Let V = C([0, 1]), K = {f ∈ V : f ≥ 0}, X = ℝ and dK : X×X →
K defined by dK(x, y) = ∣x − y∣et, where et ∈ V . Then (X, dK) is a cone metric
space. We consider the functions S, T : X → X defined by Sx = x2 and Tx = x

2 .
Then

dK(STx, STy) = ∣STx− STy∣et =

∣∣∣∣x2

4
− y2

4

∣∣∣∣ et
≤ 1

3
[∣Sx− STx∣+ ∣Sy − STy∣] et

≤ 1

3
[dK(Sx, STx) + dK(Sy, STy)].

Therefore T is a S-Kannan cone contraction but, it is easy to see that it is not
a Kannan contraction. Moreover, it is not difficult to show that T is besides a
S-Chatterjea cone contraction.

Definition 3.4. Let (X, dK) be a CMS over an ordered Banach space (V, ∣∣ ⋅ ∣∣,K)
and S : X → X a mapping. We say that:

(1) S is a sequentially continuous mapping, if for all sequence {xn}n∈ℕ in
X, such that xn → x∗ then Sxn → Sx∗;

(2) S is a sequentially convergent mapping, if for all sequence {xn}n∈ℕ in
X, such that Sxn → x∗ then there exists y∗ ∈ X such that xn → y∗.

Our main result requires the following lemma.

Lemma 3.5. Let (X, dK) be a CMS over an ordered Banach space (V, ∣∣⋅∣∣,K) such
that K is a normal cone, {xn}n∈ℕ a sequence in X and x∗ ∈ X. If dK(xn, x

∗)→ 0,
then for all y ∈ X dK(xn, y)→ dK(x∗, y).

Proof. Suppose that dK(xn, x
∗) → 0 and let y ∈ X. By triangular inequality for

dK we have

−dK(xn, x
∗) ≤ dK(xn, y)− dK(x∗, y) ≤ dK(xn, x

∗), ∀n ∈ ℕ.

Since K is a normal cone, we may apply Theorem 1.1.1 of [13] to obtain

∣∣dK(xn, y)− dK(x∗, y)∣∣ → 0,

that is, dK(xn, y)→ dK(x∗, y). □

Theorem 3.6. Let (X, dK) be a complete CMS over an ordered Banach space
(V, ∣∣⋅∣∣,K) such that K is a normal cone with normal constant � and S, T : X → X
two mappings, such that T is a S-Hardy-Rogers cone contraction. Then

(1) For all x0 ∈ X, {STnx0}n∈ℕ is a Cauchy sequence.
(2) There exists x∗ ∈ X such that STnx0 → x∗.



CONE METRIC SPACE 31

(3) If S is one to one, sequentially continuous and sequentially convergent,
then there exists a unique y∗ such that Ty∗ = y∗ and for every x0 ∈ X, the
sequence {Tnx0}n∈ℕ converges to y∗.

Proof. Let x0 ∈ X. We consider the sequence {xn}n∈ℕ ⊂ X such that x1 = Tx0,
x2 = T 2x0,..., xn = Tnx0 and dK(x0, Tx0) ∈ K−{0V }. It is clear that xn+1 = Txn
for all n ∈ ℕ. Since T is a S-Hardy-Rogers cone contraction, we have the following

dK(Sx1, Sx2) = dK(STx0, STx1)

≤ Q1(dK(Sx0, Sx1)) +Q2(dK(Sx0, STx0)) +Q3(dK(Sx1, STx1))
+Q4(dK(Sx0, STx1)) +Q5(dK(Sx1, STx0))

≤ Q1(dK(Sx0, Sx1)) +Q2(dK(Sx0, Sx1)) +Q3(dK(Sx1, Sx2))
+Q4(dK(Sx0, Sx1)) +Q4(dK(Sx1, Sx2)),

because Q4 ∈ B+(V ) and Q5(dK(Sx1, Sx1)) = 0V . Therefore

[I −Q3 −Q4](dK(Sx1, Sx2)) ≤ [Q1 +Q2 +Q4](dK(Sx0, Sx1)).

Also

dK(Sx2, Sx1) = dK(STx1, STx0)

≤ Q1(dK(Sx1, Sx0)) +Q2(dK(Sx1, STx1)) +Q3(dK(Sx0, STx0))
+Q4(dK(Sx1, STx0)) +Q5(dK(Sx0, STx1))

≤ Q1(dK(Sx1, Sx0)) +Q2(dK(Sx1, Sx2)) +Q3(dK(Sx0, Sx1))
+Q5(dK(Sx0, Sx1)) +Q5(dK(Sx1, Sx2)),

that is

[I −Q2 −Q5](dK(Sx2, Sx1)) ≤ [Q1 +Q3 +Q5](dK(Sx1, Sx0)).

Thus

[2I−Q2−Q3−Q4−Q5](dK(Sx1, Sx2)) ≤ [2Q1+Q2+Q3+Q4+Q5](dK(Sx0, Sx1)).

If we put W := [2I −Q2 −Q3 −Q4 −Q5]−1 ∘ [2Q1 +Q2 +Q3 +Q4 +Q5], then

dK(Sx1, Sx2) ≤W (dK(Sx0, Sx1)),

which implies that
D(Sx1, Sx2) ≤ �∣∣W ∣∣oD(Sx0, Sx1).

On the other hand,

dK(Sx2, Sx3) = dK(STx1, STx2)

≤ Q1(dK(Sx1, Sx2)) +Q2(dK(Sx1, STx1)) +Q3(dK(Sx2, STx2))
+Q4(dK(Sx1, STx2)) +Q5(dK(Sx2, STx1))

≤ Q1(dK(Sx1, Sx2)) +Q2(dK(Sx1, Sx2)) +Q3(dK(Sx2, Sx3))
+Q4(dK(Sx1, Sx2)) +Q4(dK(Sx2, Sx3)).

Hence

[I −Q3 −Q4](dK(Sx2, Sx3)) ≤ [Q1 +Q2 +Q4](dK(Sx1, Sx2)).

Also we have
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dK(Sx3, Sx2) = dK(STx2, STx1)

≤ Q1(dK(Sx2, Sx1)) +Q2(dK(Sx2, STx2)) +Q3(dK(Sx1, STx1))
+Q4(dK(Sx2, STx1)) +Q5(dK(Sx1, STx2))

≤ Q1(dK(Sx2, Sx1)) +Q2(dK(Sx2, Sx3)) +Q3(dK(Sx1, Sx2))
+Q5(dK(Sx1, Sx2)) +Q5(dK(Sx2, Sx3)).

By symmetry of dK , we have

[I −Q2 −Q5](dK(Sx3, Sx2)) ≤ [Q1 +Q3 +Q5](dK(Sx2, Sx1)).

Thus

dK(Sx2, Sx3) ≤W (dK(Sx1, Sx2)) ≤W 2(dK(Sx0, Sx1)),

Following the above reasoning we obtain

dK(Sxn, Sxn+1) ≤WndK(Sx0, Sx1),

for all n ∈ ℕ.
Given R ∈ B+(V ) notice that if ∣∣R∣∣o < 1, then there exists [I − R]−1 and

∣∣[I −R]−1∣∣o ≤
1

1− ∣∣R∣∣o
. Also, if Q ∈ B(V ) such that there exists Q−1, then for

all k ∈ ℝ+, [kQ]−1 =
Q−1

k
and ∣∣[kQ]−1∣∣o =

∣∣Q−1∣∣o
k

. Take in to account these

facts we proceed as follows.

Denote byR :=
Q2 +Q3 +Q4 +Q5

2
and J := 2[Q1+R]. ThusW = [2[I−R]]−1∘

[J ]. It is clear that ∣∣R∣∣o < 1, because
∑5

i=1 ∣∣Qi∣∣o < 1. Therefore there exists

[I−R]−1, in consequence there exists [2[I−R]]−1 and ∣∣[2[I −R]]−1∣∣o ≤
1

2− 2∣∣R∣∣o
.

Hence

∣∣W ∣∣o ≤ ∣∣[2[I −R]]−1∣∣o∣∣J ∣∣o

≤ ∣∣J ∣∣o
2− 2∣∣R∣∣o

=
∣∣2Q1 +Q2 +Q3 +Q4 +Q5∣∣o

2− ∣∣Q2 +Q3 +Q4 +Q5∣∣o

≤ 2∣∣Q1∣∣o + ∣∣Q2∣∣o + ∣∣Q3∣∣o + ∣∣Q4∣∣o + ∣∣Q5∣∣o
2− ∣∣Q2∣∣o − ∣∣Q3∣∣o − ∣∣Q4∣∣o − ∣∣Q5∣∣o

< 1,

because
∑5

i=1 ∣∣Qi∣∣o < 1. We next prove that {Sxn}n∈ℕ is a Cauchy sequence. For
each m ≥ 1 we have

dK(Sxn, Sxn+m) ≤ dK(Sxn, Sxn+1) + dK(Sxn+1, Sxn+2) + ⋅ ⋅ ⋅
⋅ ⋅ ⋅+ dK(Sxn+m−1, Sxn+m)]

≤ (Wn +Wn+1 + ⋅ ⋅ ⋅+Wn+m−1)dK(Sx0, Sx1).

Hence
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D(Sxn, Sxn+m) ≤ �[(∣∣W ∣∣no + ∣∣W ∣∣n+1
o + ⋅ ⋅ ⋅+ ∣∣W ∣∣n+m−1

o )D(Sx0, Sx1)]
≤ �∣∣W ∣∣no [(1 + ∣∣W ∣∣o + ⋅ ⋅ ⋅+ ∣∣W ∣∣m−1

o + ⋅ ⋅ ⋅ )D(Sx0, Sx1)]

=
�∣∣W ∣∣no

1− ∣∣W ∣∣o
D(Sx0, Sx1).

Therefore, D(Sxn, Sxn+m)→ 0 as n→∞, hence {Sxn}n∈ℕ is a Cauchy sequence.
Since X is complete, there exists x∗ ∈ X such that Sxn → x∗.

Proof of (3) Suppose that S is one to one, sequentially continuous and sequen-
tially convergent mapping. Since Sxn → x∗, there exists y∗ ∈ X such that xn → y∗

and it must be the case that Sxn → Sy∗. Therefore Sy∗ = x∗. We first show that
Ty∗ = y∗.

For each n ≥ 1

dK(STy∗, Sy∗) ≤ dK(STy∗, Sxn) + dK(Sxn, Sy
∗).

We observe that

dK(STy∗, Sxn) = dK(STy∗, STxn−1)

≤ Q1(dK(Sy∗, Sxn−1)) +Q2(dK(Sy∗, STy∗))
+Q3(dK(Sxn−1, Sxn)) +Q4(dK(Sy∗, Sxn))
+Q5(dK(Sxn−1, STy

∗)).

Which implies

[I −Q2 −Q5](dK(STy∗, Sy∗)) ≤ dK(Sxn, Sy
∗) +Q1(dK(Sy∗, Sxn−1))

+Q3(dK(Sxn−1, Sxn)) +Q4(dK(Sy∗, Sxn))
+Q5(dK(Sxn−1, STy

∗)− dK(STy∗, Sy∗)).

Hence

dK(STy∗, Sy∗) ≤ [I −Q2 −Q5]−1(dK(Sxn, Sy
∗) +Q1(dK(Sy∗, Sxn−1))

+Q3(dK(Sxn−1, Sxn)) +Q4(dK(Sy∗, Sxn))
+Q5(dK(Sxn−1, STy

∗)− dK(STy∗, Sy∗))).

∣∣dK(STy∗, Sy∗)∣∣ = D(STy∗, Sy∗)

≤ �∣∣[I −Q2 −Q5]−1∣∣∣∣dK(Sxn, Sy
∗) +Q1(dK(Sy∗, Sxn−1))

+Q3(dK(Sxn−1, Sxn)) +Q4(dK(Sy∗, Sxn))
+Q5(dK(Sxn−1, STy

∗)− dK(STy∗, Sy∗))∣∣

≤ �∣∣[I −Q2 −Q5]−1∣∣[D(Sxn, Sy
∗) + ∣∣Q1∣∣oD(Sxn−1, Sy

∗)
+∣∣Q3∣∣oD(Sxn−1, Sxn) + ∣∣Q4∣∣oD(Sxn, Sy

∗)
+∣∣Q5∣∣o∣∣dK(Sxn−1, STy

∗)− dK(Sy∗, STy∗)∣∣].

Denote by � := D(STy∗, Sy∗), an := D(Sxn, Sy
∗), bn := �∣∣W ∣∣nD(Sx0, Sx1)

and cn = ∣∣dK(Sxn, STy
∗)− dK(Sy∗, STy∗)∣∣. Thus

� ≤ �∣∣[I −Q2 −Q5]−1∣∣[an + ∣∣Q1∣∣oan−1 + ∣∣Q3∣∣obn−1 + ∣∣Q4∣∣oan + ∣∣Q5∣∣ocn−1].

It is clear that an, bn → 0 as n → ∞. On the other hand, by Lemma 3.5 we have
cn → 0 as n → ∞. Thus, D(STy∗, Sy∗) = 0. This fact implies STy∗ = Sy∗, and
from the injectivity of S it follows that Ty∗ = y∗ .

We shall show that y∗ is the unique fixed point of T . Suppose that there exists
another x∗ ∈ X such that Tx∗ = x∗ and x∗ ∕= y∗. Hence, from the injectivity of
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S we get dK(Sx∗, Sy∗) ∈ K − {0V }. Applying that T is a S-Hardy-Rogers cone
contraction, we have that

dK(Sx∗, Sy∗) = dK(STx∗, STy∗)

≤ Q1(dK(Sx∗, Sy∗)) +Q2(dK(Sx∗, STx∗)) +Q3(dK(Sy∗, STy∗))
+Q4(dK(Sx∗, STy∗)) +Q5(dK(Sy∗, STx∗)).

= [Q1 +Q4 +Q5](dK(Sx∗, Sy∗)),

which is a contradiction by Lemma 1.13. Therefore y∗ is the unique fixed point of
T and the proof is complete.

□

Taking Sx = x in the above theorem, the conditions Q2 ≡ Q3 ≡ Q4 ≡ Q5 ≡ Θ
yields Banach’s fixed point theorem, while Q1 ≡ Q4 ≡ Q5 ≡ Θ yields Kannan’s
fixed point theorem and Q1 ≡ Q2 ≡ Q3 ≡ Θ yields Chatterjea fixed point theorem
in the context of cone metric spaces.

Corollary 3.7. Let (X, dK) be a complete CMS over an ordered Banach space
(V, ∣∣ ⋅ ∣∣,K) such that K is a normal cone and T : X → X be a mapping. If for all
x, y ∈ X we have that

dK(Tx, Ty) ≤ Q(dK(x, y)),

where Q ∈ B+(V ) and ∣∣Q∣∣o < 1, then T has a unique fixed point in X.

Corollary 3.8. ([8]) Let (X, dK) be a complete CMS over an ordered Banach space
(V, ∣∣ ⋅ ∣∣,K) such that K is a normal cone. If T is a self-mapping on X such that

dK(Tx, Ty) ≤ Q(dK(x, Tx)) +R(dK(y, Ty)),

for all x, y ∈ X, where Q,R ∈ B+(V ) and ∣∣Q∣∣o + ∣∣R∣∣o < 1, then T has a unique
fixed point in X.

Corollary 3.9. Let (X, dK) be a complete CMS over an ordered Banach space
(V, ∣∣ ⋅ ∣∣,K) such that K is a normal cone. If T is a self-mapping on X such that

dK(Tx, Ty) ≤ Q(dK(x, Ty)) +R(dK(y, Tx)),

for all x, y ∈ X, where Q,R ∈ B+(V ) and ∣∣Q∣∣o + ∣∣R∣∣o < 1, then T has a unique
fixed point in X.
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