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FINITE NUMBER SUMS IN HIGHER ORDER POWERS OF

HARMONIC NUMBERS

(COMMUNICATED BY TOUFIK MANSOUR)

ANTHONY SOFO

Abstract. We develop a set of identities for finite sums of products of har-
monic numbers in higher order and reciprocal binomial coefficients. The results
are analogous to some identities of Euler type.

1. Introduction and preliminaries

Let, as usual,

Hn = γ + ψ (n+ 1) =

n
∑

r=1

1

r
=

∞
∫

0

1− tn

1− t
dt

be the nth harmonic number and γ denotes the Euler–Mascheroni constant. Let,
also, R, C and N denote, respectively the sets of real, complex and natural numbers.

A generalized binomial coefficient

(

w
z

)

may be defined by

(

w
z

)

:=
Γ (w + 1)

Γ (z + 1)Γ (w − z + 1)
; w, z ∈ C

and in the special case when z = n, n ∈ N ∪ {0} , N := {1, 2, 3...} we have
(

w
n

)

:=
w (w − 1) ... (w − n+ 1)

n!
=

(−1)n (−w)n
n!

.

The familiar gamma function

Γ (w) =























∞
∫

0

e−yyw−1dy, ℜ (y) > 0,

Γ(w+n)
n−1∏

j=0

(w+j)

, w ∈ C\ {0,−1,−2,−3, ...} , n ∈ N
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and

(w)λ :=
Γ (w + λ)

Γ (w)
=







1, λ = 0; w ∈ C\ {0}

w (w + 1) ... (w + n− 1) , w ∈ C, n ∈ N

, with (0)0 := 1

is known as the Pochhammer symbol. The generalized nth harmonic number in

power r, H
(r)
n , is defined for positive integers n and r as

H(r)
n :=

n
∑

m=1

1

mr
=

(−1)r−1

(r − 1)!

(

ψ(r−1)(n+ 1)− ψ(r−1)(1)
)

,

where

ψ(m) (z) = (−1)
m+1

m!

∞
∑

r=0

1

(z + r)
m+1 = (−1)

m+1
m! ζ (m+ 1, z)

are the polygamma functions of order m which are defined by ψ(0)(z) ≡ ψ(z)
and ψ(m)(z) := dm ψ(z)/dzm, m ∈ N and z 6= 0,−1,−2, . . .. Here ψ(z) is the
psi, or digamma, function, given as the logarithmic derivative of the well-known
gamma function Γ(z), i.e. ψ(z) := d log Γ(z)/dz. ζ (α, z) denotes the Hurwitz
zeta function. There also exists the very useful recurrence relation ψ(m) (z + 1) =
(−1)mm!
zm+1 +ψ(m) (z). We shall provide, in this paper, identities for the general finite

sums
m
∑

n=1

H
(p)
n

n (n+ a)
,

m
∑

n=1

H
(p)
n

(n+ 1) (n+ a)
,

m
∑

n=1

H
(p)
n

(

n+ k
k

) and

m
∑

n=1

H
(p)
n

n

(

n+ k
k

) .

Analogous results of Euler type for infinite series have been developed by many
authors, see for example [3], [4], [17] and references therein. Many finite versions
of higher order harmonic number sum identities also exist in the literature, for
example [15]

p
∑

n=0

(−1)n+1

(

p
n

)

[

(Hn)
3 + 3HnH

(2)
n + 2H(3)

n

]

=
6

p3

and by the inversion formula
p
∑

n=1

6 (−1)
n+1

n3

(

p
n

)

= (Hp)
3
+ 3HpH

(2)
p + 2H(3)

p .

Also, after a minor modification, [11]

k
∑

r=1

(−1)
r+1

(

k
r

)3(

1 + 3r2
(

H
(2)
k−r +H

(2)
r−1

)

+
(

3r
(

H
(1)
k−r −H

(1)
r−1

)

− 1
)2
)

= 2.

Other finite sum identities can be seen in [1], [18] or [19] where they obtain results
like

2m
∑

k=0

(−1)k
(

n
k

)3

Hk =
(−1)m (3m)!

2 (m!)
3 (Hm + 2H2m −H3m) .

Further work in the summation of harmonic numbers and binomial coefficients has
also been done by Sofo [14]. The works of, [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13],[16], [20], and references therein, also investigate various representations
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of binomial sums and zeta functions in simpler form by the use of the Beta function
and by means of certain summation theorems for hypergeometric series, [17]. The
following results will be useful for later analysis.

Lemma 1.1. Let m and p be a positive integers and a > 0 then

m
∑

n=1

a H
(p)
n

n (n+ a)
= H(p+1)

m +H(p)
m (Ha−1 +Hm −Hm+a) + (−1)

p+1
HmH

(p)
a−1

+

a−1
∑

j =1

(−1)
p+1

jp
(Hj −Hm+j) +

p−1
∑

s=2

(−1)
p−s

H(s)
m H

(p−s+1)
a−1 .(1.1)

Proof. Consider
m
∑

n=1

H
(p)
n

n (n+ a)
=

m
∑

n=1

n
∑

k=1

1

kp n (n+ a)

since these sums are absolutely convergent we can write

m
∑

n=1

n
∑

k=1

1

kp n (n+ a)
=

m
∑

k=1

m
∑

n=k

1

kp n (n+ a)

=

m
∑

k=1

1

a kp
[ψ(a+ k)− ψ(k)− (ψ(m+ a+ 1)− ψ(m+ 1))] .

Now
m
∑

k=1

1

a kp
[ψ(a+ k)− ψ(k)− (ψ(m+ a+ 1)− ψ(m+ 1))]

=

m
∑

k=1

1

akp





a−1
∑

j =0

1

k + j
−

a−1
∑

j =0

1

m+ 1 + j





=
m
∑

k=1

1

akp





1

k
−

1

m+ 1
+

a−1
∑

j =1

(

1

k + j
−

1

m+ 1 + j

)





=
H

(p+1)
m

a
−

H
(p)
m

a (m+ 1)
+

1

a

a−1
∑

j =1

m
∑

k=1

(

1

kp (k + j)
−

1

kp (m+ 1 + j)

)

=
H

(p+1)
m

a
−

H
(p)
m

a (m+ 1)
−

1

a

a−1
∑

j =1

H
(p)
m

(m+ 1 + j)
+

1

a

a−1
∑

j =1

m
∑

k=1

1

kp (k + j)

=
H

(p+1)
m

a
−

H
(p)
m

a (m+ 1)
−
H

(p)
m

a
(Hm+a −Hm+1)+

1

a

a−1
∑

j =1

m
∑

k=1

(

(−1)
p+1

jp−1k (k + j)
+

p
∑

s=2

(−1)
p−s

ksjp−s+1

)
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by partial fraction decomposition, hence

=
H

(p+1)
m

a
−

H
(p)
m

a (m+ 1)
−
H

(p)
m

a
(Hm+a −Hm+1)

+
1

a

a−1
∑

j =1

(

(−1)
p+1

jp
(Hj +Hm −Hm+j) +

p
∑

s=2

(−1)
p−s

H
(s)
m

jp−s+1

)

.

Therefore

m
∑

n=1

a H
(p)
n

n (n+ a)
= H(p+1)

m −H(p)
m

(

1

m+ 1
+Hm+a −Hm+1 −Ha−1

)

+(−1)
p+1

HmH
(p)
a−1 +

a−1
∑

j =1

(−1)
p+1

jp
(Hj −Hm+j) +

p−1
∑

s=2

(−1)
p−s

H(s)
m H

(p−s+1)
a−1

= H(p+1)
m +H(p)

m (Ha−1 +Hm −Hm+a) + (−1)
p+1

HmH
(p)
a−1

+

a−1
∑

j =1

(−1)
p+1

jp
(Hj −Hm+j) +

p−1
∑

s=2

(−1)
p−s

H(s)
m H

(p−s+1)
a−1

and the result (1.1) follows. �

Remark. When a = 1, m and p are positive integers, and we define H
(α)
0 = 0,

then
m
∑

n=1

H
(p)
n

n (n+ 1)
= H(p+1)

m −
H

(p)
m

m+ 1
(1.2)

and for a = 2

m
∑

n=1

2 H
(p)
n

n (n+ 2)
= H(p+1)

m +

(

m2 +m− 1
)

H
(p)
m

(m+ 1) (m+ 2)
+
m (−1)

p+1

m+ 1
+

p−1
∑

s=2

(−1)
p−s

H(s)
m .

A related Lemma which will be useful later is the following.

Lemma 1.2. Let m and p be a positive integers and a > 0 then

m
∑

n=1

(a− 1) H
(p)
n

(n+ 1) (n+ a)
= H(p)

m (Ha−1 +Hm+1 −Hm+a) + (−1)
p+1

HmH
(p)
a−1

+
a−1
∑

j =1

(−1)
p+1

jp
(Hj −Hm+j) +

p−1
∑

s=2

(−1)p−sH(s)
m H

(p−s+1)
a−1 .(1.3)
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Proof. Consider
m
∑

n=1

H
(p)
n

(n+ 1) (n+ a)
=

m
∑

n=1

n
∑

k=1

1

kp (n+ 1) (n+ a)

since these sums are absolutely convergent we can write
m
∑

n=1

n
∑

k=1

1

kp (n+ 1) (n+ a)
=

m
∑

k=1

m
∑

n=k

1

kp (n+ 1) (n+ a)

=

m
∑

k=1

1

(a− 1) kp
[ψ(a+ k)− ψ(k + 1)− (ψ(m+ a+ 1)− ψ(m+ 2))] .

Now
m
∑

k=1

1

(a− 1) kp
[ψ(a+ k)− ψ(k + 1)− (ψ(m+ a+ 1)− ψ(m+ 2))]

=

m
∑

k=1

1

(a− 1) kp





a−1
∑

j =1

1

k + j
−

a−1
∑

j =1

1

m+ 1 + j





=
m
∑

k=1

1

(a− 1) kp





a−1
∑

j =1

(

1

k + j
−

1

m+ 1 + j

)





=
1

(a− 1)

a−1
∑

j =1

m
∑

k=1

(

1

kp (k + j)
−

1

kp (m+ 1 + j)

)

= −
1

(a− 1)

a−1
∑

j =1

H
(p)
m

(m+ 1 + j)
+

1

(a− 1)

a−1
∑

j =1

m
∑

k=1

1

kp (k + j)

= −
H

(p)
m

(a− 1)
(Hm+a −Hm+1) +

1

(a− 1)

a−1
∑

j =1

m
∑

k=1

(

(−1)
p+1

jp−1k (k + j)
+

p
∑

s=2

(−1)
p−s

ksjp−s+1

)

by partial fraction decomposition, hence

= −
H

(p)
m

(a− 1)
(Hm+a −Hm+1)

+
1

(a− 1)

a−1
∑

j =1

(

(−1)
p+1

jp
(Hj +Hm −Hm+j) +

p
∑

s=2

(−1)
p−s

H
(s)
m

jp−s+1

)

.

Therefore
m
∑

n=1

(a− 1) H
(p)
n

(n+ 1) (n+ a)
= −H(p)

m (Hm+a −Hm+1 −Ha−1)

+ (−1)
p+1

HmH
(p)
a−1 +

a−1
∑

j =1

(−1)
p+1

jp
(Hj −Hm+j) +

p−1
∑

s=2

(−1)
p−s

H(s)
m H

(p−s+1)
a−1
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= H(p)
m (Ha−1 +Hm+1 −Hm+a) + (−1)

p+1
HmH

(p)
a−1

+

a−1
∑

j =1

(−1)
p+1

jp
(Hj −Hm+j) +

p−1
∑

s=2

(−1)
p−s

H(s)
m H

(p−s+1)
a−1

and the result (1.3) follows. �

Some special cases are noted in the remark.

Remark. When a = 2 and p and m positive integers, then

m
∑

n=1

H
(p)
n

(n+ 1) (n+ 2)
=

(m+ 1)H
(p)
m

(m+ 2)
+
m (−1)

p+1

m+ 1
+

p−1
∑

s=2

(−1)
p−s

H(s)
m . (1.4)

2. Two theorems

We now prove the following two theorems.

Theorem 2.1. Let p be a positive integer and k be a positive integer greater than

1, then

m
∑

n=1

H
(p)
n

(

n+ k
k

) = kH(p)
m Hm+1 (2.1)

+

k
∑

r=2

(−1)
r
r

(

k
r

)







−H
(p)
m Hm+r + (−1)

p+1
HmH

(p)
r−1+

+
∑r−1

j =1
(−1)p+1

jp
(Hj −Hm+j) +

∑p

s=2 (−1)p−sH
(s)
m H

(p−s+1)
r−1






.

Proof. Consider the following expansion:

m
∑

n=1

H
(p)
n

(

n+ k
k

) =

m
∑

n=1

k! H
(p)
n

(n+ 1)
k
∏

r=2
(n+ r)

=

m
∑

n=1

k! H
(p)
n

(n+ 1) (n+ 2)k+1

where (α)r is Pochhammer’s symbol given by (α)r = α (α+ 1) (α+ 2) ... (α+ r − 1) , r >
0, (α)0 = 1. Now

m
∑

n=1

H
(p)
n

(

n+ k
k

) =

m
∑

n=1

k! H
(p)
n

(n+ 1)

k
∑

r=2

Ar

(n+ r)
(2.2)

where

Ar = lim
n→−r

n+ r
k
∏

r=2
(n+ r)

=
2 (−1)

r

k!

(

k
r

) (

r
2

)

.
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Now from (2.2) and using Lemma 1.2

m
∑

n=1

k! H
(p)
n

(n+ 1)

k
∑

r=2

Ar

(n+ r)
=

k
∑

r=2

(−1)
r
r (r − 1)

(

k
r

) m
∑

n=1

H
(p)
n

(n+ 1) (n+ r)

=

k
∑

r=2

(−1)
r
r

(

k
r

)











H
(p)
m (Hm+1 −Hm+r) + (−1)

p+1
HmH

(p)
r−1

+
∑r−1

j =1
(−1)p+1

jp
(Hj −Hm+j) +

∑p

s=2 (−1)p−sH
(s)
m H

(p−s+1)
r−1











= kH(p)
m Hm+1 +

k
∑

r=2

(−1)
r
r

(

k
r

)[

−H
(p)
m Hm+r + (−1)

p+1
HmH

(p)
r−1

]

+

k
∑

r=2

(−1)
r
r

(

k
r

)





r−1
∑

j =1

(−1)
p+1

jp
(Hj −Hm+j) +

p
∑

s=2

(−1)
p−s

H(s)
m H

(p−s+1)
r−1





=

m
∑

n=1

H
(p)
n

(

n+ k
k

)

which is the result (2.1). �

Now we consider the following extension of Theorem 2.1.

Theorem 2.2. Let k, m and p be positive integers, then

m
∑

n=1

H
(p)
n

n

(

n+ k
k

) = H(p+1)
m +H(p)

m Hm +

k
∑

r=1

(−1)
r

(

k
r

)

[

H(p)
m Hm+r + (−1)

p
HmH

(p)
r−1

]

(2.3)

−

k
∑

r=1

(−1)
r

(

k
r

)





r−1
∑

j =1

(−1)
p+1

jp
(Hj −Hm+j) +

p
∑

s=2

(−1)
p−s

H(s)
m H

(p−s+1)
r−1



 .

Proof. Consider the following expansion:

m
∑

n=1

H
(p)
n

n

(

n+ k
k

) =

m
∑

n=1

k! H
(p)
n

n
k
∏

r=1
(n+ r)

=

m
∑

n=1

k! H
(p)
n

n (n+ 1)k+1
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Now
m
∑

n=1

H
(p)
n

(

n+ k
k

) =

m
∑

n=1

k! H
(p)
n

n

k
∑

r=1

Br

(n+ r)

where

Br = lim
n→−r

n+ r
k
∏

r=1
(n+ r)

=
(−1)

r+1
r

k!

(

k
r

)

.

Now from (2.3) and using Lemma 1.1

m
∑

n=1

k! H
(p)
n

n

k
∑

r=1

Br

(n+ r)
=

k
∑

r=1

(−1)
r+1

r

(

k
r

) m
∑

n=1

H
(p)
n

n (n+ r)

=

k
∑

r=1

(−1)
r+1

(

k
r

)







H
(p+1)
m +H

(p)
m (Hm −Hm+r) + (−1)

p+1
HmH

(p)
r−1

+
∑r−1

j =1
(−1)p+1

jp
(Hj −Hm+j) +

∑p

s=2 (−1)
p−s

H
(s)
m H

(p−s+1)
r−1







= H(p+1)
m +H(p)

m Hm

+

k
∑

r=1

(−1)
r

(

k
r

)







H
(p)
m Hm+r + (−1)

p
HmH

(p)
r−1

−
∑r−1

j =1
(−1)p+1

jp
(Hj −Hm+j) −

∑p

s=2 (−1)
p−s

H
(s)
m H

(p−s+1)
r−1







=

m
∑

n=1

H
(p)
n

n

(

n+ k
k

)

which is the result (2.3). �
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