
Bulletin of Mathematical Analysis and Applications

ISSN: 1821-1291, URL: http://www.bmathaa.org

Volume 5 Issue 1 (2013), Pages 80-85.

SUFFICIENT CONDITIONS FOR CERTAIN SUBCLASSES OF

MEROMORPHIC MULTIVALENT FUNCTIONS
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Abstract. In the present paper we derive various useful properties and char-
acteristics for certain class of meromorphic multivalent function involving a
linear operator in the punctured unit disk U∗ = {z : z ∈ C and 0 < |z| < 1},
and derive various useful properties and characteristics of this function class.
Several results are presented exhibiting relevant connections to some of the
results presented here and those obtained in earlier works.

1. Introduction

For any integer m > −p, let Σp,m denote the class of all meromorphic functions
f(z) normalized by

f(z) = z−p +

∞
∑

k=m

akz
k (p ∈ N := {1, 2, 3, ...}), (1.1)

which are analytic and p−valent in the punctured unit disk U∗. Also let U =
U∗ ∪ {0}. We denote by Σ∗

p,m(α), Σp,m,k(α) and Σp,m,c(α), the three subclasses of
the class f ∈ Σp,m, which are defined as follows:

Σ∗
p,m(α) =

{

f : f ∈ Σp,m and ℜ

(

−
zf ′(z)

f(z)

)

> α (z ∈ U; 0 ≤ α < p)

}

(1.2)

Σp,m,k(α) =

{

f : f ∈ Σp,m and ℜ

(

−

(

1 +
zf ′(z)

f(z)

))

> α (z ∈ U; 0 ≤ α < p)

}

(1.3)
Σp,m,c(α) =

{

f : f ∈ Σp,m and ℜ
(

−zp+1f ′(z)
)

> α (z ∈ U; 0 ≤ α < p)
}

(1.4)

where, for 0 ≤ α < p, the classes Σ∗
p,m(α), Σp,m,k(α) and Σp,m,c(α) denotes,

respectively the subclass of meromorphic p-valently starlike functions of order α
in U, meromorphic p-valently convex functions of order α in U and meromorphic
p-valently close-to-convex functions of order α in U. In particular, we have

Σ∗
1,1(α) = Σ∗(α), Σ1,1,k(α) = Σk(α) and Σ1,1,c(α) = Σc(α),
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where Σ∗(α), Σk(α) and Σc(α) are, respectively, subclass of meromorphic starlike
function of order α(0 ≤ α < 1) in U, subclass of meromorphic convex function of
order α(0 ≤ α < 1) in U and subclass of meromorphic close-to-convex function of
order α(0 ≤ α < 1) in U.

If

hi(z) =
ai
zp

+

∞
∑

k=m

ak,i z
k (i = 1, 2; ai ∈ R− {0};m > −p; p ∈ N),

are analytic in U∗, the their Hadamard product(or convolution) is defined by

(h1 ∗ h2)(z) =
a1 a2
zp

+

∞
∑

k=m

ak,1 ak,2 z
k, z ∈ U

∗, (1.5)

We now introduce a subclass Σp,m(φ, ψ;µ, α) of the function class Σp,m which is
defined as follows:

Definition 1.1. suppose the function φ(z) and ψ(z) are given by

φ(z) =
c1
zp

+

∞
∑

k=m

λk z
k (c1 ∈ R− {0}; m > −p; p ∈ N), (1.6)

and

ψ(z) =
c2
zp

+

∞
∑

k=m

µk z
k (c2 ∈ R− {0}; m > −p; p ∈ N), (1.7)

then we say that f(z) ∈ Σp,m, is in the class Σp,m(φ, ψ;µ, α) if it satisfies the
inequality

ℜ

(

−
z(1−µ)p (f ∗ φ)(z)

((f ∗ ψ)(z))µ

)

> α (z ∈ U; p ∈ N;µ ≥ 0; 0 ≤ α < p). (1.8)

provided that (f ∗ ψ)(z) 6= 0; < λk >
∞
k=1 and < µk >

∞
k=1 are increasing sequence

such that λk ≥ µk ≥ 0 (λk and µk are not both simultaneously equal to zero).
If the coefficients λk and µk and constants c1 and c2, in (1.8) and (1.9) are,

chosen as follows:

λk = (p+ n+ 1)nk (n ∈ N), µk =
λk
k
, c1 = −p, c2 = 1, (1.9)

then the function class Σp,m(φ, ψ; 1, α) reduces to the class Σn
p,m(α), studied re-

cently by Srivastava and Patel [4]. Furthermore we have the following relationships:

Σ1,1

(

2z − 1

z(1− z)2
,
z2 − z + 1

z(1− z)
; 1, α

)

= Σ∗(α), (1.10)

Σ1,1

(

1− 3z + 4z2

z(1− z)3
,

2z − 1

z(1− z)2
; 1, α

)

= Σk(α), (1.11)

Σ1,1

(

2z − 1

z(1− z)2
,
1

z
; 1, α

)

= Σc(α), (1.12)

Some other interesting developments involving convolution of meromorphic func-
tions were considered in [3]. The object in the present paper is to obtain some suffi-
cient conditions of functions belonging to the above defined subclass Σp,m(φ, ψ;µ, α)
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2. Results

In our present investigation of the function class Σp,m(φ, ψ;µ, α), we shall require
the following Lemmas.

Lemma 2.1. (see, [1]) Let the nonconstant function w(z) be analytic in U, with
w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r < 1 at a point
z0 ∈ U, then

z0w
′(z0) = kw(z0),

where k ≥ 1 is a real number.

Lemma 2.2. (see, [2]) Let S be a set in the complex plane C and suppose that φ(z)
is a mapping from C2×U to C which satisfies Φ(ix, y; z) /∈ S for all z ∈ U, and for
all real x, y such that y ≤ −(1 + x2)/2. If the function q(z) = 1 + q1z + q2z

2 + · · ·
is analytic in U such that φ(q(z), zq′(z); z) ∈ S for all z ∈ U , then ℜ (q(z)) > 0.

Making use of Lemma 2.1, we first prove

Theorem 2.3. If f(z) ∈ Σp,m satisfies the following inequality
∣

∣

∣

∣

(1− µ)p+
z(f ∗ φ)′(z)

(f ∗ ψ)(z)
− µ

z(f ∗ ψ)′(z)

(f ∗ ψ)(z)
− γ

(

z(1−µ)p(f ∗ φ)(z)

((f ∗ ψ)(z))µ
+ p

)∣

∣

∣

∣

<
(p− α)(γ(2p− α) + 1)

2p− α
, (2.1)

then f(z) ∈ Σp,m(φ, ψ;µ, α).

Proof. Define the function w(z) by

z(1−µ)p(f ∗ φ)(z)

((f ∗ ψ)(z))µ
= −p+ (α− p)w(z), (2.2)

then w(z) is analytic in U and w(0) = 0. Differentiating logarithmically both sides
of (2.2) with respect to z, we get

(1 − µ)p+
z(f ∗ φ)′(z)

(f ∗ ψ)(z)
− µ

z(f ∗ ψ)′(z)

(f ∗ ψ)(z)
=

(p− α)zw′(z)

p+ (p− α)w(z)
. (2.3)

Now using (2.2) in (2.3), we find that

(1 − µ)p+
z(f ∗ φ)′(z)

(f ∗ ψ)(z)
− µ

z(f ∗ ψ)′(z)

(f ∗ ψ)(z)
− γ

(

z(1−µ)p (f ∗ φ)(z)

((f ∗ ψ)(z))µ
+ p

)

= γ(p− α)w(z) +
(p− α)zw′(z)

p+ (p− α)w(z)
. (2.4)

Let us suppose that there exist z0 ∈ U such that

max|z|<|z0| |w(z)| = |w(z0)| = 1,

and apply Lemma 2.1, we find that

z0w
′(z0) = kw(z0) (k ≥ 1) (2.5)

writing w(z) = eiθ (0 ≤ θ < 2π) and setting z = z0 in (2.4), we get
∣

∣

∣

∣

∣

(1− µ)p+
z0(f ∗ φ)′(z0)

(f ∗ ψ)(z0)
− µ

z0(f ∗ ψ)′(z0)

(f ∗ ψ)(z0)
− γ

(

z
(1−µ)p
0 (f ∗ φ)(z0)

(f ∗ ψ)(z0))µ
+ p

)∣

∣

∣

∣

∣
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=

∣

∣

∣

∣

γ(p− α)eiθ +
(p− α)keiθ

p+ (p− α)eiθ

∣

∣

∣

∣

≥ ℜ

(

γ(p− α) +
(p− α)k

p+ (p− α)eiθ

)

> γ(p− α) +
(p− α)

2p− α

=
(p− α)(γ(2p− α) + 1)

2p− α
,

which contradicts our assumption (2.1). Therefore, we have |w(z)| < 1 in U. Fi-
nally, we have

∣

∣

∣

∣

z(1−µ)p (f ∗ φ)(z)

((f ∗ ψ)(z))µ
+ p

∣

∣

∣

∣

= |(p− α)w(z)| = (p− α)|w(z)|

< p− α (z ∈ U), (2.6)

that is f(z) ∈ Σp,m(φ, ψ;µ, α). This proves the Theorem 2.3. �

Theorem 2.4. If f(z) ∈ Σp,m satisfies the following inequality

ℜ

{

(

z(1−µ)p(f ∗ φ)(z)

((f ∗ ψ)(z))µ

)2

−
z(1−µ)p(f ∗ φ)(z)

((f ∗ ψ)(z))µ

(

z(f ∗ φ)′(z)

(f ∗ φ)(z)
− µ

z(f ∗ ψ)′(z))

(f ∗ ψ)(z)

)

}

> δ

(

δ +
1

2

)

+ p

(

δ(µ− 1)−
1

2

)

,

(2.7)

then f(z) ∈ Σp,m(φ, ψ;µ, δ).

Proof. Define the functions q(z) by

z(1−µ)p(f ∗ φ)(z)

((f ∗ ψ)(z))µ
= −δ + (δ − p)q(z), (2.8)

then we see that q(z) = 1 + q1z + q2z
2 + ... is analytic in U. Now differentiating

both sides of (2.8) with respect to z logarithmically, we get

(δ + (p− δ)q(z))

(

z(f ∗ φ)′(z)

(f ∗ φ)(z)
− µ

z(f ∗ ψ)′(z))

(f ∗ ψ)(z)

)

= (p− δ)zq′(z) + p(µ− 1)(δ + (p− δ)q(z)).

(2.9)

Again using (2.8) in (2.9), we find that

(

z(1−µ)p (f ∗ φ)(z)

((f ∗ ψ)(z))µ

)2

−
z(1−µ)p (f ∗ φ)(z)

((f ∗ ψ)(z))µ

(

z(f ∗ φ)′(z)

(f ∗ φ)(z)
− µ

z(f ∗ ψ)′(z))

(f ∗ ψ)(z)

)

= (p− δ)zq′(z) + (p− δ)2q2(z) + (p− δ)(2δ + p(µ− 1))q(z) + pδ(µ− 1) + δ2

= φ(q(z), zq′(z); z),

where

φ(r, s, z) = (p− δ)s+ (p− δ)2r2 + (p− δ)(2δ+ p(µ− 1))r+ pδ(µ− 1) + δ2. (2.10)
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For all real x, y satisfying y ≤ −(1 + x2)/2, we have

ℜ (φ(ix, y, z)) = (p− δ)y + (p− δ)2x2 + p δ(µ− 1) + δ2

≤ −
1

2
(p− δ)(1 + x2)− (p− δ)2x2 + δp(µ− 1) + δ2

= −
1

2
(p− δ)− (p− δ)

(

1

2
+ p− δ

)

x2 + δp(µ− 1) + δ2

≤ δp(µ− 1) + δ2 −
1

2
(p− δ)

= δ

(

δ +
1

2

)

+ p

(

δ(µ− 1)−
1

2

)

.

Let

S =

{

w : ℜ(w) > δ

(

δ +
1

2

)

+ p

(

δ(µ− 1)−
1

2

)}

,

then φ(q(z), zq′(z); z) ∈ S and φ(ix, y; z) /∈ S for all real x and y < −(1+x2)/2, z ∈
U. By using Lemma 2.2, we have ℜ (q(z)) > 0, that is f(z) ∈ Σp,m(φ, ψ;µ, δ). This
proves the Theorem 2.4. �

3. Some Consequences Of Main Results

In this concluding section, we consider some Corollaries and Consequences of
our main results (Theorem 2.3 and Theorem 2.4) established in section 2.

By setting m = µ = 1, γ = 0 and parametric substitution as (1.10) in Theorem
2.3, we get

Corollary 3.1. If f(z) ∈ Σ satisfies the following inequality
∣

∣

∣

∣

zf ′′(z)

f ′(z)
−
zf ′(z)

f(z)
+ 1

∣

∣

∣

∣

<
(p− α)

2p− α
,

then f(z) ∈ Σ∗(α).

Corollary 3.1, further on setting p = 1 and α = 1 gives

Corollary 3.2. If f(z) ∈ Σ satisfies
∣

∣

∣

∣

zf ′′(z)

f ′(z)
−

2zf ′(z)

f(z)
+ 1

∣

∣

∣

∣

<
1

2
,

then f(z) ∈ Σ∗.

Taking p = m = µ = 1, γ = 0 and parametric substitution as (1.11) in Theorem
2.3, we get

Corollary 3.3. If f(z) ∈ Σ satisfies
∣

∣

∣

∣

z3f ′′′(z) + 3z2f ′′(z) + zf ′(z)

z2f ′′(z) + zf ′(z)
−
z2f ′(z) + 2

zf(z)− 2

∣

∣

∣

∣

<
(1− α)

2− α
,

then f(z) ∈ Σk(α).

Setting p = m = µ = 1, γ = 0 and parametric substitution as (1.12) in Theorem
2.3, we get
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Corollary 3.4. If f(z) ∈ Σ satisfies
∣

∣

∣

∣

2

z2f ′(z)
+ 2

∣

∣

∣

∣

<
(1− α)

2− α
,

then f(z) ∈ Σc(α).

Taking µ = 1 and parametric substitution as (1.11) in Theorem 2.4, we have

Corollary 3.5. If f(z) ∈ Σ satisfies

ℜ

{

2

(

zf ′(z)

f(z)

)2

−
z2f ′′(z)

f(z)
−
zf ′(z)

f(z)

}

> δ

(

δ +
1

2

)

−
p

2
,

then f(z) ∈ Σ∗(δ).
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