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BOEHMIANS, ULTRADIFFERENTIAL OPERATORS AND

ABELIAN TYPE THEOREMS

(COMMUNICATED BY R. K. RAINA)

DENNIS NEMZER

Abstract. Spaces of generalized functions known as Boehmians contain all
Schwartz distributions as well as all ultradistributions of Beurling and Roumieu
type. Even though these spaces are quite large, it is still possible to investigate
local behavior. In this note, ultradifferential operators are introduced in the
context of Boehmians. As an application, some Abelian type theorems are
established for the unilateral Laplace transform.

1. Introduction

The space of generalized functions known as Boehmians has an algebraic con-
struction which utilizes convolution and approximate identities (see [12]). The space
of Boehmians is quite large. It contains a proper subspace which can be identified
with the space of distributions. There are Boehmians which are not hyperfunctions
and hyperfunctions which are not Boehmians.

A differential operator (possibly of infinite order) having the form P (D) =
∑∞
n=0 cnD

n, where D is the differentiation operator and {cn} is a sequence of
complex numbers satisfying a growth condition, is called an ultradifferential op-
erator. This type of operator is important in the theory of ultradistributions of
Beurling and Roumieu type (see [9], [18], [19]).

In this note, we introduce and investigate the notion of an ultradifferential oper-
ator defined on the space of Boehmians. As an application, by using the notion of
an ultradiffential operator, we establish an initial value theorem as well as a final
value theorem for the Laplace transform.

2. Preliminaries

Let C(R) denote the space of all continuous functions on the real line R, and
let D(R) denote the subspace of C(R) of all infinitely differentiable functions with
compact supports.

A sequence ϕn ∈ D(R) is called a delta sequence provided:
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(i)
∫

ϕn = 1 for all n ∈ N,
(ii)

∫

|ϕn| ≤M for some constant M > 0 and all n ∈ N,
(iii) For every ε > 0, there exists nε ∈ N such that ϕn(x) = 0 for |x| > ε and

n > nε.

A pair of sequences (fn, ϕn) is called a quotient of sequences if fn ∈ C(R) for
n ∈ N, {ϕn} is a delta sequence, and fk ∗ ϕm = fm ∗ ϕk for all k,m ∈ N, where ∗
denotes convolution:

(f ∗ ϕ)(x) =
∫ ∞

−∞
f(x− t)ϕ(t)dt. (2.1)

Two quotients of sequences (fn, ϕn) and (gn, ψn) are said to be equivalent if
fk ∗ψm = gm ∗ϕk for all k,m ∈ N. A straightforward calculation shows that this is
an equivalence relation. The equivalence classes are called Boehmians. The space
of all Boehmians will be denoted by β(R) and a typical element of β(R) will be

written as W =
[

fn
ϕn

]

.

The operations of addition, scalar multiplication, and differentiation are de-

fined as follows:
[

fn
ϕn

]

+
[

gn
ψn

]

=
[

fn∗ψn+gn∗ϕn

ϕn∗ψn

]

, γ
[

fn
ϕn

]

=
[

γfn
ϕn

]

,where γ ∈

C, Dm
[

fn
ϕn

]

=
[

fn∗ϕ(m)
n

ϕn∗ϕn

]

.

Define the map ι : C(R) → β(R) by

ι(f) =

[

f ∗ ϕn
ϕn

]

, (2.2)

where {ϕn} is any fixed delta sequence.
It is not difficult to show that the mapping ι is an injection which preserves the

algebraic properties of C(R). Thus, C(R) can be identified with a proper subspace
of β(R). Likewise, the space of Schwartz distributions D′(R) [25] can be identified
with a proper subspace of β(R). Using this identification, the Dirac measure δ

corresponds to the Boehmian
[

ϕn

ϕn

]

, where {ϕn} is any delta sequence.

A Boehmian W is said to vanish on an open set Ω ⊂ R, denoted W (x) = 0
on Ω, provided that there exists a delta sequence {ϕn} such that W ∗ ϕn ∈ C(R),
n ∈ N, and W ∗ ϕn → 0 uniformly on compact subsets of Ω as n → ∞. The
support of a Boehmian W is the complement of the largest open set on which W
vanishes. βc(R) denotes the space of all Boehmians with compact supports. A

Boehmian W =
[

fn
ϕn

]

∈ βc(R) provided there exists a compact set K ⊂ R such

that suppfn ⊂ K, for all n ∈ N.

Convolution can be extended to βc(R) × β(R). For W =
[

fn
ϕn

]

∈ βc(R) and

V =
[

gn
ψn

]

∈ β(R),W ∗ V =
[

fn∗gn
ϕn∗ψn

]

. Let W,V ∈ βc(R) and U ∈ β(R). Then,

W ∗ (V ∗ U) = (W ∗ V ) ∗ U. (2.3)

For f ∈ C(R), let τaf(x) = f(x− a), a ∈ R. The translation operator τa can be

extended to the space β(R). For W =
[

fn
ϕn

]

∈ β(R), define τaW =
[

τafn
ϕn

]

, a ∈ R.

It is routine to show that
[

τafn
ϕn

]

∈ β(R).
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For ψ ∈ D(R) and W =
[

fn
ϕn

]

∈ β(R), ψ ∗W is defined as

ψ ∗
[

fn

ϕn

]

=

[

ψ ∗ fn
ϕn

]

(2.4)

3. Ultradifferential Operators

Ultradifferential operators have been found to be important tools in the theory
and applications of ultradistributions of Beurling and Roumieu type (see [9], [18],
[19]). By using the mapping (2.2) with a delta sequence consisting of ultradifferen-
tiable functions, spaces of ultradistributions can be viewed as proper subspaces of
β(R). For any sequence {αn}, the series

∑∞
−∞ αne

i(2n)!x can be shown to converge

in β(R). Thus, by picking the sequence {αn} appropriately,
∑∞

−∞ αne
i(2n)!x is an

example of a Boehmian which is not an ultradistribution.
In this section, we introduce ultradifferential operators and establish some useful

properties in the context of Boehmians.
Let {Mn} be a sequence of positive numbers which satisfies the following condi-

tions.

(i) M0 = 1,
(ii) M2

n ≤Mn−1Mn+1, for all n ∈ N,
(iii)

∑∞
n=0

Mn

Mn+1
<∞.

An operator of the form

P (D) =

∞
∑

n=0

cnD
n, (3.1)

where cn ∈ C, is called an ultradifferential operator provided there exist constants
A > 0, B > 0 such that |cn| ≤ ABn

Mn
, n ∈ N.

Let P (D) =
∑∞

n=0 cnD
n be an ultradifferential operator. Then, P (z) =

∑∞
n=0 cnz

n

(z ∈ C) is an entire function of exponential type with Hadamard’s factorization

P (z) = azm
∞
∏

n=1

(

1− z

zn

)

,

where a, zn ∈ C (n ∈ N), and m is a nonnegative integer (see [9]).
Throughout the sequel, P (D) =

∑∞
n=0 cnD

n (or just P (D)) will denote an ul-
tradifferential operator.

Definition 3.1. Let Wn,W ∈ β(R) for n = 1, 2, . . .. We say that the sequence
{Wn} is δ-convergent to W if there exists a delta sequence {ϕn} such that for each
n and k, Wn ∗ ϕk,W ∗ ϕk ∈ C(R), and for each k, Wn ∗ ϕk → W ∗ ϕk uniformly
on compact sets as n→ ∞. This will be denoted by δ-limn→∞Wn =W .

Theorem 3.1. The series P (D) =
∑∞

n=0 cnD
nW converges for all W ∈ β(R).

(That is, there exists V ∈ β(R) such that δ-limn→∞
∑n
k=0 ckD

kW = V .)

Proof. Since the series
∑∞

n=0 cnD
nδ is δ-convergent [16], the proof follows by ob-

serving that the sequence
∑n

k=0 ckD
kδ is δ-convergent, supp

∑n
k=0 ckD

kδ = {0},
for all n ∈ N, and that

∑n
k=0 ckD

kW = (
∑n

k=0 ckD
kδ) ∗W , for all n ∈ N. �

Define P (D) : β(R) → β(R) by P (D)W =
∑∞

n=0 cnD
nW .

The next corollary follows from the proof of the previous theorem.
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Corollary 3.1. P (D)W = P (D)δ ∗W , for all W ∈ β(R).

Lemma 3.1. Let V ∈ βc(R) such that supp V = {0}. If W ∈ β(R) such that
W (x) = 0 on (a, b), then (V ∗W )(x) = 0 on (a, b).

Proof. Let W =
[

fn
ϕn

]

∈ β(R) and V =
[

gn
ψn

]

∈ βc(R) such that supp gn → {0}
as n → ∞. Let [c, d] ⊂ (a, b). Choose ε > 0 such that [c − ε, d+ ε] ⊂ (a, b). Now,
W (x) = 0 on (a, b) gives fn → 0 uniformly on [c− ε, d+ ε] as n→ ∞.

Pick n0 > 0 such that for all n ≥ n0, supp (gn ∗ ϕn) ⊂ (−ε, ε). Now, let n be
fixed such that n ≥ n0.

Then, for all k ∈ N,

fn ∗ gn = ((fn ∗ gn)− (fn ∗ gn) ∗ ϕk) + (fn ∗ gn) ∗ ϕk (3.2)

Now,

(fn ∗ gn) ∗ ϕk → fn ∗ gn uniformly on [c− ε, d+ ε] as k → ∞, (3.3)

and, for all x ∈ [c, d],

|((fn ∗ gn) ∗ ϕk)(x)| = |(fk ∗ (gn ∗ ϕn))(x)|

≤
∫ ε

−ε
|fk(x− t)||(gn ∗ ϕn)(t)|dt

≤ M sup
y∈[c−ε,d+ε]

|fk(y)|
∫ ∞

−∞
|gn(t)|dt, (3.4)

for some constant M > 0 independent of k and n.
So, by (3.2), (3.3), and (3.4), we see that (fn ∗gn)(x) = 0, for all x ∈ [c, d]. Thus,

(V ∗W )(x) = 0 on (a, b). �

The next theorem follows directly from Corollary 3.1 and the previous lemma.

Theorem 3.2. Let W ∈ β(R). If W (x) = 0 on (a, b), then P (D)W (x) = 0 on
(a, b).

Theorem 3.3. Let W ∈ βc(R) and V ∈ β(R). Then,

P (D)(W ∗ V ) = P (D)W ∗ V =W ∗ P (D)V.

Proof. Since W,P (D)δ ∈ βc(R), we obtain

P (D)δ ∗ (W ∗ V ) = (P (D)δ ∗W ) ∗ V =W ∗ (P (D)δ ∗ V ).

Thus, by Corollary 3.1, we see that P (D)(W ∗V ) = P (D)W ∗V =W ∗P (D)V . �

A mapping Λ : β(R) → β(R) is continuous provided δ-limn→∞ Λ(Wn) = Λ(W )
whenever δ-limn→∞Wn =W .

Theorem 3.4. P (D) is a continuous linear operator on β(R). Moreover, P (D) is
injective if and only if P (D) is a nonzero multiple of the identity.

Proof. Clearly, P (D) is linear. Let V ∈ βc(R). Observe that the mapping β(R) →
β(R) given by W →W ∗V is continuous. Applying the above to Corollary 3.1, the
continuity follows.
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Clearly if P (D) = c0I (c0 6= 0), then P (D) is injective.
Now suppose P (D) is not a nonzero multiple of the identity. Then there exists
z0 ∈ C such that P (z0) = 0. Then,

P (D)ez0x = δ - lim
n→∞

n
∑

k=0

ckD
k(ez0x)

= δ - lim
n→∞

n
∑

k=0

ckz
k
0e
z0x

= P (z0)e
z0x = 0.

Thus, since P (D) is linear, P (D) is not injective. �

Remark 3.1. With the obvious modifications, the results in this section are also
valid for ultradifferential operators defined on β(Rn).

4. Transformable Boehmians

Boehmian spaces have been found favorable by several authors for extending
classical integral transforms. For example, see [1, 2, 3, 4, 6, 7, 8, 10, 11, 13, 14, 15,
17, 21, 22, 23, 24].

The space βL(R) of Laplace transformable Boehmians was introduced in [14]. It
was shown, among other things, that the space of Laplace transformable distribu-
tions of Zemanian [25] supported on [0,∞) can be identified with a proper subspace
of βL(R). Subsequently, some Abelian theorems were established [15].

Abelian theorems for the Laplace transform can be found in many areas of
mathematics; control theory, probability theory, and signal analysis to name a
few.

In this section, as an application of ultradifferential operators on Boehmians, we
present an initial value theorem and a final value theorem for the Laplace transform.
The initial value theorem, which extends Theorem 3.5 in [15], relates the behavior of
a transformable Boehmian at zero to the behavior of its transform at infinity. While
the final value theorem, which extends Theorem 2.7 in [14], relates the behavior
of the transformable Boehmian at infinity to the behavior of its transform at a
singularity.

The space of all functions f ∈ C(R) such that f(t) = 0 for t < 0 will be denoted
by C+(R).

The space of transformable Boehmians βL(R) is defined as

{
[

fn

ϕn

]

∈ β(R) : ϕn ≥ 0, fn, ϕn ∈ C+(R), fn(t) = O(eγt) as t→ ∞ (∃γ ∈ R), n ∈ N}.

Let f ∈ C+(R) such that f(t) = O(eγt) as t → ∞ (some γ ∈ R). The Laplace
transform of f , denoted L[f ], is given by

L[f ](z) =
∫ ∞

0

e−ztf(t)dt, for Re z > γ. (4.1)

The Laplace transform for W =
[

fn
ϕn

]

∈ βL(R),where fn(t) = O(eγt) as t → ∞,

is given by
L[W ](z) = W(z) = lim

n→∞
L[fn](z), for Re z > γ. (4.2)
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Remark 4.1.

(1) The above limit exists and is independent of the representative.
(2) The convergence is uniform on compact subsets in the half-plane Re z > γ.
(3) W is an analytic function in the half-plane Re z > γ.
(4) If W has bounded support, then W is entire.

Theorem 4.1. Let W ∈ BL(R). Then, P (D)W ∈ BL(R).

The proof of the previous theorem follows directly from Corollary 3.1 and ob-
serving that the Boehmian P (D)δ has bounded support and has a representation
in which the delta sequence {ϕn} is nonnegative and for each n ∈ N, suppϕn ⊆
[

1
2n ,

1
n

]

(see the proof of Theorem 4 in [16]).

Theorem 4.2. Let W ∈ BL(R) such that W(z) exists in the half-plane Re z > γ.
Then, L[P (D)W ](z) = P (z)W(z), Re z > γ.

Proof. Supp

∞
∑

k=0

ckD
kδ = {0}. Thus,

L[P (D)δ](z) = L[δ- lim
n→∞

n
∑

k=0

ckD
kδ](z)

= lim
n→∞

n
∑

k=0

L[ckDkδ](z) (see [14])

=

∞
∑

k=0

ckz
k = P (z), z ∈ C.

So, L[P (D)W ](z) = L[P (D)δ ∗W ](z) = L[(P (D)δ)(z)]W(z) = P (z)W(z), Rez >
γ. �

Lemma 4.1. Let W ∈ BL(R) and f ∈ L1(a, b) (a < 0, b > 0) such that supp

f ⊆ [0,∞), f(t)
tλ

→ ξ as t→ 0+ (Reλ > −1), and W (t) = P (D)f(t) on (a, b). Then

there exists f# ∈ L1(a, b) such that supp f# ⊆ [0, b], f
#(t)
tλ

→ ξ as t → 0+, and

W (t) = P (D)f#(t) on (a, b).

Definition 4.1. Let λ, ξ, z0 ∈ C,W ∈ BL(R), and gλ,z0(t) = tλez0t. W is said to

be equivalent at the origin (infinity) to ξP (D)gλ,z0 , denoted W (t)
e∼ ξP (D)gλ,z0(t)

as t → 0+ (t → ∞), provided there exist an interval (a, b) with a < 0 and b > 0
(a > 0 and b = ∞) and a locally integrable function f such that W (t) = P (D)f(t)

on (a, b) and f(t)
gλ,z0

(t) → ξ as t→ 0+ (t → ∞).

Theorem 4.3. Initial Value Theorem. Let W ∈ βL(R) and λ, ξ ∈ C such that

Re λ > −1. Suppose thatW (t)
e∼ ξP (D)gλ,0(t) as t→ 0+. If eγt|P (t)| → ∞ as t→

∞ (for some 0 < γ < b, where b is as in Definition 4.1), then tλ+1W(t)
Γ(λ+1) ∼ ξP (t) as

t→ ∞, where Γ is the well known gamma function. That is, lim
t→∞

tλ+1W(t)

Γ(λ+ 1)P (t)
= ξ.
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Proof. W = W1 + W2, where W1 = W − P (D)f and W2 = P (D)f with supp
W1 ⊆ [b,∞). By Lemma 4.1, we may assume that supp f ⊆ [0, b]. Thus,

tλ+1W2(t)

Γ(λ+ 1)P (t)
=

tλ+1L[P (D)f ](t)

Γ(λ+ 1)P (t)

=
tλ+1L[f ](t)
Γ(λ+ 1)

→ ξ as t→ ∞.

This follows by a classical Abelian theorem (see [5]).
Now, to complete the proof it suffices to show that

tλ+1W1(t)

Γ(λ+ 1)P (t)
→ 0 as t→ ∞. (4.3)

Let V ∈ BL(R) such that τb−εV =W1, where ε =
b−γ
4 .

Now, by Theorem 2.2 in [15], there exist M > 0 and t0 > 0 such that |V(t)| ≤
Meεt for all t ≥ t0.

Therefore for t ≥ t0,
∣

∣

∣

∣

tλ+1W1(t)

Γ(λ+ 1)P (t)

∣

∣

∣

∣

=

∣

∣

∣

∣

tλ+1L[τb−εV ](t)

Γ(λ+ 1)P (t)

∣

∣

∣

∣

≤ M

∣

∣

∣

∣

tλ+1e−(b−2ε)t

Γ(λ+ 1)P (t)

∣

∣

∣

∣

= M

∣

∣

∣

∣

tλ+1e−(γ+2ε)t

Γ(λ+ 1)P (t)

∣

∣

∣

∣

= M

∣

∣

∣

∣

(

tλ+1

Γ(λ+ 1)e2εt

)(

1

eγtP (t)

)∣

∣

∣

∣

Thus, tλ+1W1(t)
Γ(λ+1)P (t) → 0 as t→ ∞. �

Remark 4.2. There exist many ultradifferential operators which satisfy eγt|P (t)| →

∞ as t → ∞. For example, let α > 0, then Pα(D) =

∞
∏

n=1

(

1 +
αD

mn

)

, where

mn = Mn

Mn−1
(n ∈ N), is an ultradifferential operator (see [9], p.60). Moreover, for

γ > 0, eγt|Pα(t)| → ∞ as t→ ∞, for all α > 0.

Example 4.1.

(1) Let W =

∞
∑

k=0

[

τkϕn

ϕn

]

. It is routine to show that W ∈ BL(R). Now, W (t) =

DH(t) on (−1, 1), where H is the Heaviside function. This follows from

W − δ =

∞
∑

k=1

[

τkϕn

ϕn

]

, and

∞
∑

k=1

τkϕn → 0

uniformly on compact subsets of (−1, 1) as n→ ∞. Thus, W (t)
e∼ P (D)g0,0(t)

as t → 0+, where P (D) = D. Since, for any γ > 0, eγt|P (t)| = eγtt → ∞
as t→ ∞, Theorem 4.3 yields

lim
t→∞

W(t) = 1.
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(2) Let f(t) = ect−edt√
t

H(t) (c, d ∈ R) and P (D) =

∞
∑

n=0

Dn

(2n)!
. Suppose W ∈

BL(R) such that W (t) = P (D)f(t) on (a, b) for some a < 0 and b > 0.

Then, W (t)
e∼ (c− d)P (D)g 1

2 ,0
(t) as t→ 0+.

Notice that for any γ > 0,

eγt|P (t)| = eγt| cosh
√
t| → ∞ as t→ ∞.

Thus, by Theorem 4.3,

lim
t→∞

t
3
2W(t)

cosh
√
t
=

√
π

2
(c− d).

Notice any W ∈ βL(R) having the form W = V +P (D)f , where V ∈ βc(R)

with suppV ⊆ [a,∞) (a > 0), will work (for example V =
∑∞

n=0
Dnτπδ
n2n ).

(3) Some condition like eγt|P (t)| → ∞ as t→ ∞ in Theorem 4.3 is needed.

Let f ∈ L1(−1, 1) such that supp f ⊆ [0,∞) and f(t)
tλ

→ ξ as

t → 0+ (λ > −1) and P (D) =

∞
∑

n=0

(−1)nDn

(2n)!
. Notice that for any γ >

0, eγt|P (t)| = eγt cos
√
t does not converge to infinity as t → ∞. Let W =

P (D)f + δ(t− 1). Since W (t) = P (D)f(t) on (−1, 1), W (t)
e∼ P (D)gλ,0(t)

as t→ 0+. Now,

tλ+1W(t)

Γ(λ+ 1)P (t)
=

(

tλ+1

Γ(λ+ 1)P (t)

)

L[P (D)f + δ(t− 1)](t)

=
tλ+1L[f ](t)
Γ(λ+ 1)

+
tλ+1

Γ(λ+ 1)et cos
√
t
.

By a classical Abelian theorem, the first term converges to ξ as t → ∞.

However, the second term does not converge as t→ ∞. Therefore, tλ+1W(t)
Γ(λ+1)P (t)

does not converge to ξ as t→ ∞.

Theorem 4.4. Final Value Theorem. Let W ∈ BL(R) and λ, z0, ξ ∈ C such

that Re λ > −1. If W (t)
e∼ ξP (D)gλ,z0(t) as t → ∞, then W(z) exists for Re z >

Re z0. Moreover, W(z) has the following asymptotic behavior .

(I) When P (z0) 6= 0,
(z−z0)λ+1W(z)

Γ(λ+1) ∼ ξP (z) as z → z0 in |arg(z − z0)| ≤ ψ < π
2 .

That is, lim
z→z0

|arg(z−z0)|≤ψ<π
2

(z − z0)
λ+1W(z)

Γ(λ + 1)P (z)
= ξ.

(II) If P (k)(z0) = 0, for 0 ≤ k ≤ n− 1 and P (n)(z0) 6= 0, for some n ∈ N, then:
(i) For n < Re λ+ 1,

(z−z0)λ+1W(z)
Γ(λ+1) ∼ ξP (z) as z → z0 in |arg(z − z0)| ≤ ψ < π

2 .

(ii) For n ≥ Re λ+ 1,

(z−z0)λ+1

(

W(z)−
∑m

k=0(
U
(k)(z0)

k! )(z−z0)k
)

Γ(λ+1) ∼ ξP (z) as z → z0 in

|arg(z − z0)| ≤ ψ < π
2 (where U = W − P (D)f , m = n − [Reλ] − 1,

and [·] is the greatest integer function).
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Proof. Since, W = U + P (D)f (where U has compact support), W(z) exists for
Re z > Re z0. Now,

(z − z0)
λ+1W(z)

Γ(λ+ 1)P (z)
=

(z − z0)
λ+1(U(z) + P (z)L[f ](z))
Γ(λ+ 1)P (z)

=
(z − z0)

λ+1U(z)
Γ(λ+ 1)P (z)

+
(z − z0)

λ+1L[f ](z)
Γ(λ+ 1)

.

By a classical Abelian theorem [5], the second term converges to ξ as z → z0 in
|arg(z − z0)| ≤ ψ < π

2 .

(I) Assume P (z0) 6= 0.

Then, (z−z0)λ+1U(z)
Γ(λ+1)P (z) → 0 as z → z0 in |arg(z − z0)| ≤ ψ < π

2 . This proves

(I).
(II) Assume P (k)(z0) = 0, 0 ≤ k ≤ n− 1 and P (n)(z0) 6= 0.

(i) Suppose n < Re λ+ 1. Then,

(z − z0)
λ+1U(z)

Γ(λ+ 1)P (z)
=

(z − z0)
λ+1U(z)

Γ(λ+ 1)(z − z0)nQ(z)

=
(z − z0)

λ+1−nU(z)
Γ(λ+ 1)Q(z)

,

where Q is an entire function and Q(z0) 6= 0. This term converges to
zero as z → z0 in |arg(z − z0)| ≤ ψ < π

2 . Thus, the proof of part (i) is
complete.

(ii) Suppose n ≥ Re λ+ 1. Then,

(z−z0)λ+1

(

W(z)−
∑

m
k=0

(

U
(k)(z0)

k!

)

(z−z0)k
)

Γ(λ+1)P (z)

=
(z−z0)λ+1

(

U(z)−
∑

m
k=0

(

U
(k)(z0)

k!

)

(z−z0)k
)

Γ(λ+1)P (z) + (z−z0)λ+1L[f ](z)
Γ(λ+1) .

As before, the second term converges to ξ as z → z0 in
|arg(z − z0)| ≤ ψ < π

2 . And,

(z−z0)λ+1

(

U(z)−
∑m

k=0

(

U
(k)(z0)

k!

)

(z−z0)k
)

Γ(λ+1)P (z)

=
(z−z0)λ+1

(

U(z)−∑m
k=0

(

U
(k)(z0)

k!

)

(z−z0)k
)

Γ(λ+1)(z−z0)nQ(z)

(Q is entire and (Q(z0) 6= 0)

=
(

(z−z0)λ−[Reλ]

Γ(λ+1)Q(z)

)

(

U(z)−∑m
k=0

(

U
(k)(z0)

k!

)

(z−z0)k
)

(z−z0)m → 0 as z → z0 in

|arg(z − z0)| ≤ ψ < π
2 . This completes the proof of part (ii) and the

theorem.

�

For differential equations of fractional order, the Mittag-Leffler functions play a
fundamental role.

For α > 1, and n = 0, 1, 2, . . ., let cn,α = 1
Γ(αn+1) . Then the ultradifferential

operator

Eα(D) =

∞
∑

n=0

cn,αD
n =

∞
∑

n=0

Dn

Γ(αn+ 1)
(4.4)
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is generated by the Mittag-Leffler function

Eα(z) =

∞
∑

n=0

zn

Γ(αn+ 1)
(4.5)

Corollary 4.1. Let W ∈ βL(R), α > 1, and λ, ξ ∈ C such that Reλ > −1. If

W (t)
e∼ ξEα(D)gλ,0(t) as t → ∞, then W(z) exists for Re z > 0 and zλ+1W(z)

Γ(λ+1) ∼
ξEα(z) as z → 0 in |argz| ≤ ψ < π

2 .

Since for α ≥ 2, the zeros of Eα(z) are on the negative real axis [20], the following
corollary is immediate from the Final Value Theorem.

Corollary 4.2. Let W ∈ βL(R), α ≥ 2, and λ, ξ, z0 ∈ C such that Reλ > −1

and z0 does not lie on the negative real axis. If W (t)
e∼ ξEα(D)gλ,z0(t) as t →

∞, then W(z) exists for Re z >Re z0 and (z−z0)λ+1W(z)
Γ(λ+1) ∼ ξEα(z) as z → z0 in

|arg(z − z0)| ≤ ψ < π
2 .

Example 4.2. Let f(t) =
√
t and ϕ ∈ D(R). Notice that f(t)√

t
→ 1 as t→ ∞. Let

W = ϕ
(

pf
1+(t)
t

)

+E2(D)f , where pf 1+(t)
t

denotes the distributional derivative of

1+(t) log t (see [25]). Notice that E2(z) = cosh
√
z.

Since the support of ϕ
(

pf
1+(t)
t

)

is bounded, W (t)
e∼ E2(D)g 1

2 ,0
(t) as t → ∞.

Thus, by Corollary 4.1,

z
3
2W(z) ∼

√
π

2
cosh

√
z as z → 0 in |argz| ≤ ψ <

π

2
.

That is,

lim
z→0

|argz|≤ψ<π
2

z
3
2W(z)

cosh
√
z
=

√
π

2
.
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