TUBULAR SURFACES OF WEINGARTEN TYPES IN GALILEAN AND PSEUDO-GALILEAN

(COMMUNICATED BY KRISHAN L. DUGGAL)

MURAT KEMAL KARACAN ${ }^{1}$ AND YILMAZ TUNCER ${ }^{2}$

Abstract

In this paper, we have defined canal surfaces in Galilean and Pseudo-Galilean 3-spaces.Then, we have studied Tubular surface in Galilean and Pseudo-Galilean 3 -space satisfying some equations in terms of the Gaussian curvature and the mean curvature. We have discussed Weingarten,linear Weingarten conditions and $H K$-quadric type for this surface with respect to their curvatures

1. Introduction

A surface M in Euclidean space E^{3} or Minkowski space E_{1}^{3} is called a Weingarten surface if there is a smooth relation $U\left(k_{1}, k_{2}\right)=0$ between its two principal curvatures k_{1} and k_{2}. If K and H denote respectively the Gauss curvature and the mean curvature of $M, U\left(k_{1}, k_{2}\right)=0$ implies a relation $\Phi(K, H)=0$. The existence of a non-trivial functional relation $\Phi(K, H)=0$ on a surface M parameterized by a patch $x(s, t)$ is equivalent to the vanishing of the corresponding Jacobian determinant, namely $\left|\frac{\partial(K, H)}{\partial(s, t)}\right|=0[10]$.

The simplest case when $U=a k_{1}+b k_{2}-c$ or $\Phi=a H+b K-c(a, b$ and c are constants with $a^{2}+b^{2} \neq 0$), the surfaces are called linear Weingarten surfaces. When the constant $b=0$, a linear Weingarten surface M reduces to a surface with constant Gaussian curvature. When the constant $a=0$, a linear Weingarten surface M reduces to a surface with constant mean curvature. In such a sense, the linear Weingarten surfaces can be regarded as a natural generalization of surfaces with constant Gaussian curvature or with constant mean curvature [10].

Several geometers $[1,10,14]$ have studied tubes in Euclidean 3-space and Minkowski 3 -space satisfying some equation in terms of the Gaussian curvature, the mean curvature and the second Gaussian curvature.Following the Jacobi equation and the linear equation with respect to the Gaussian curvature K and the mean curvature H an interesting geometric question is raised: Classify all surfaces in Galilean and Pseudo-Galilean 3-spaces satisfying the conditions

[^0]\[

$$
\begin{gathered}
\Phi(X, Y)=0 \\
a X+b Y=c
\end{gathered}
$$
\]

where $(X, Y) \in\{K, H\}, X \neq Y$ and $(a, b, c) \neq(0,0,0)$.If a surface satisfies the equations

$$
\begin{equation*}
a H^{2}+2 b H K+c K^{2}=\text { constant }, a \neq 0 \tag{1}
\end{equation*}
$$

then a surface is said to be a $H K$-quadric surface [8].
In this paper, we have defined canal surfaces in Galilean and Pseudo-Galilean 3-spaces.Then, we have studied Weingarten and linear Weingarten tubular surfaces and also $H K$-quadric surface. We have obtained some conditions for that surfaces in Galilean and Pseudo Galilean 3 -space.We show that tubular surfaces are not umbilical and minimal by using their principal curvatures.

2. Preliminaries

2.1. Galilean 3-Space G_{3}. The Galilean space is a three dimensional complex projective space, P_{3}, in which the absolute figure $\left\{w, f, I_{1}, I_{2}\right\}$ consists of a real plane w (the absolute plane), a real line $f \subset w$ (the absolute line) and two complex conjugate points, $I_{1}, I_{2} \in f$ (the absolute points).

We shall take, as a real model of the space G_{3}, a real projective space P_{3}, with the absolute $\{w, f\}$ consisting of a real plane $w \subset G_{3}$ and a real line $f \subset w$, on which an elliptic involution ϵ has been defined. Let ϵ be in homogeneous coordinates

$$
\begin{gathered}
w \ldots x_{0}=0, \quad f \ldots x_{0}=x_{1}=0 \\
\epsilon:\left(0: 0: x_{2}: x_{3}\right) \rightarrow\left(0: 0: x_{3}:-x_{2}\right) .
\end{gathered}
$$

In the nonhomogeneous coordinates, the similarity group H_{8} has the form

$$
\begin{gathered}
\bar{x}=a_{11}+a_{12} x \\
\bar{y}=a_{21}+a_{22} x+a_{23} \cos \theta+a_{23} \sin \theta \\
\bar{z}=a_{31}+a_{32} x-a_{23} \sin \theta+a_{23} \cos \theta
\end{gathered}
$$

where $a_{i j}$ and θ are real numbers.For $a_{11}=a_{23}=1$, we have have the subgroup B_{6} , the group of Galilean motions:

$$
\begin{gathered}
\bar{x}=a_{11}+a_{12} x \\
\bar{y}=b+c x+y \cos \theta+z \sin \theta \\
\bar{z}=d+e x-y \sin \theta+z \cos \theta
\end{gathered}
$$

In G_{3}, there are four classes of lines:
a) (proper) nonisotropic lines - they do not meet the absolute line f.
b) (proper) isotropic lines - lines that do not belong to the plane w but meet the absolute line f.
c) unproper nonisotropic lines - all lines of w but f.
d) the absolute line f.

Planes $x=$ constant are Euclidean and so is the plane w. Other planes are isotropic.In what follows, the coefficients a_{12} and a_{23} a will play a special role. In particular, for $a_{12}=a_{23}=1$, (2) defines the group $B_{6} \subset H_{8}$ of isometries of the Galilean space G_{3}.

The scalar product in Galilean space G_{3} is defined by

$$
\langle X, Y\rangle_{G_{3}}= \begin{cases}x_{1} y_{1} & , \quad \text { if } \quad x_{1} \neq 0 \vee y_{1} \neq 0 \\ x_{2} y_{2}+x_{3} y_{3}, & \text { if } \quad x_{1}=0 \wedge y_{1}=0\end{cases}
$$

where $X=\left(x_{1}, x_{2}, x_{3}\right)$ and $Y=\left(y_{1}, y_{2}, y_{3}\right)$. The Galilean cross product is defined for $a=\left(a_{1}, a_{2}, a_{3}\right), b=\left(b_{1}, b_{2}, b_{3}\right)$ by

$$
a \wedge_{G_{3}} b=\left|\begin{array}{ccc}
0 & e_{2} & e_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

The unit Galilean sphere is defined by [5]

$$
S_{ \pm}^{2}=\left\{\alpha \in G_{3} \mid\langle\alpha, \alpha\rangle_{G_{3}}=\mp r^{2}\right\}
$$

A curve $\alpha: I \subseteq R \rightarrow G_{3}$ of the class $C^{r}(r \geq 3)$ in the Galilean space G_{3} is given defined by

$$
\alpha(x)=(s, y(s), z(s)),
$$

where s is a Galilean invariant and the arc length on α. The curvature $\kappa(s)$ and the torsion $\tau(s)$ are defined by

$$
\kappa(s)=\sqrt{\left(y^{\prime \prime}(s)\right)^{2}+\left(z^{\prime \prime}(s)\right)^{2}}, \quad \tau(x)=\frac{\operatorname{det}\left(\alpha^{\prime}(s), \alpha^{\prime \prime}(s), \alpha^{\prime \prime \prime}(s)\right)}{\kappa^{2}(s)} .
$$

The orthonormal frame in the sense of Galilean space G_{3} is defined by

$$
\begin{align*}
T & =\alpha^{\prime}(s)=\left(1, y^{\prime}(s), z^{\prime}(s)\right) \tag{3}\\
N & =\frac{1}{\kappa(s)} \alpha^{\prime \prime}(s)=\frac{1}{\kappa(s)}\left(0, y^{\prime \prime}(s), z^{\prime \prime}(s)\right) \\
B & =\frac{1}{\kappa(s)}\left(0,-z^{\prime \prime}(s), y^{\prime \prime}(s)\right)
\end{align*}
$$

The vectors T, N and B in (3) are called the vectors of the tangent, principal normal and the binormal line of α, respectively.They satisfy the following Frenet equations

$$
\begin{aligned}
T^{\prime} & =\kappa N \\
N^{\prime} & =\tau B \\
B^{\prime} & =-\tau N .
\end{aligned}
$$

[9].For the treatment of Weingarten surfaces we need the Gaussian and the mean curvature of a surface. They are defined by

$$
\begin{align*}
K & =\frac{L_{11} L_{22}-L_{12}^{2}}{W^{2}}=\frac{e g-f^{2}}{E G-F^{2}}, \tag{4}\\
2 H & =g_{11} L_{11}+2 g_{12} L_{12}+g_{22} L_{22}=\frac{E g-2 F f+G e}{\left(E G-F^{2}\right)}
\end{align*}
$$

where

$$
g_{11}=\frac{x_{2}^{2}}{W^{2}} \quad, g_{12}=-\frac{x_{1} x_{2}}{W^{2}} \quad, g_{12}=\frac{x_{1}^{2}}{W^{2}}
$$

where

$$
x_{1}=\frac{\partial x}{\partial u} \quad, \quad x_{2}=\frac{\partial x}{\partial v} \quad, W=\left|x_{1} x_{2}-x_{2} x_{1}\right| .
$$

The coefficients of the second fundamental form (which are the normal components of $x_{i}=1,2$) can be determined from

$$
L_{i j}=\left(\frac{x_{1} x_{i j}-x_{i j} x_{1}}{x_{1}}\right) U=\left(\frac{x_{2} x_{i j}-x_{i j} x_{2}}{x_{2}}\right) U
$$

The unit normal field U is an isotropic vector obtained by means of the Galilean cross product

$$
U=\frac{x_{1} \wedge_{G_{3}} x_{2}}{W}
$$

[12]. The principal curvatures of the surface can be found by the following equations

$$
k_{1}=H+\sqrt{H^{2}-K}, \quad k_{2}=H-\sqrt{H^{2}-K}
$$

2.2. Pseudo-Galilean 3-Space G_{3}^{1}. The geometry of the pseudo-Galilean space is similar (but not the same) to the Galilean space. The pseudo-Galilean space G_{3}^{1} is a three-dimensional projective space in which the absolute consists of a real plane w (the absolute plane), a real line $f \subset w$ (the absolute line) and a hyperbolic involution on f. Projective transformations which presere the absolute form of a group H_{8} and are in nonhomogeneous coordinates can be written in the form

$$
\begin{aligned}
\bar{x} & =a+b x \\
\bar{y} & =c+d x+r \cosh \theta \cdot y+r \sinh \theta \cdot z \\
\bar{z} & =e+f x+r \sinh \theta \cdot y+r \cos \theta \cdot z
\end{aligned}
$$

where a, b, c, d, e, f, r and θ are real numbers. Particularly, for $b=r=1$, the group (4.1) becomes the group $B_{6} \subset H_{8}$ of isometries (proper motions) of the pseudo-Galilean space G_{3}^{1}. The motion group leaves invariant the absolute figure and defines the other invariants of this geometry.It has the following form

$$
\begin{aligned}
\bar{x} & =a+x \\
\bar{y} & =c+d x+\cosh \theta \cdot y+\sinh \theta \cdot z \\
\bar{z} & =e+f x+\sinh \theta \cdot y+\cos \theta \cdot z
\end{aligned}
$$

According to the motion group in the pseudo-Galilean space, there are nonisotropic vectors $X(x, y, z)$ (for which holds $x \neq 0$) and four types of isotropic vectors: spacelike $\left(x=0, y^{2}-z^{2}>0\right)$, timelike $\left(x=0, y^{2}-z^{2}<0\right)$ and two types of lightlike vectors $(x=0, y=\mp z)$. The scalar product of two vectors $A=\left(a_{1}, a_{2}, a_{3}\right)$ and $B=\left(b_{1}, b_{2}, b_{3}\right)$ in G_{3}^{1} is defined by

$$
\langle A, B\rangle_{G_{3}^{1}}= \begin{cases}a_{1} b_{1} & , \quad \text { if } \quad a_{1} \neq 0 \vee b_{1} \neq 0 \\ a_{2} b_{2}-a_{3} b_{3}, & \text { if } a_{1}=0 \wedge b_{1}=0\end{cases}
$$

The Pseudo-Galilean cross product is defined for $a=\left(a_{1}, a_{2}, a_{3}\right), b=\left(b_{1}, b_{2}, b_{3}\right)$ by

$$
a \wedge_{G_{3}^{1}} b=\left|\begin{array}{ccc}
0 & -e_{2} & e_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| .
$$

The unit Pseudo-Galilean sphere is defined by [2]

$$
S_{\mp}^{2}=\left\{\alpha \in G_{3}^{1} \mid\langle\alpha, \alpha\rangle_{G_{3}^{1}}=\mp r^{2}\right\} .
$$

A curve $\alpha(t)=(x(t), y(t), z(t))$ is admissible if it has no inflection points, no isotropic tangents or tangents or normals whose projections on the absolute plane would be light-like vectors.For an admissible curve $\alpha: I \subseteq R \rightarrow G_{3}^{1}$ the curvature $\kappa(t)$ and the torsion $\tau(t)$ are defined by

$$
\kappa(s)=\frac{\sqrt{\left(y^{\prime \prime}(t)\right)^{2}-\left(z^{\prime \prime}(t)\right)^{2}}}{\left(x^{\prime}(t)\right)^{2}}, \quad \tau(x)=\frac{y^{\prime \prime}(t) z^{\prime \prime \prime}(t)-y^{\prime \prime \prime}(t) z^{\prime \prime}(t)}{\left|x^{\prime}(t)\right|^{5} \kappa^{2}(t)}
$$

expressed in components.Hence, for an admissible curve $\alpha: I \subseteq R \rightarrow G_{3}^{1}$ parameterized by the arc length s with differential form $d s=d x$, given by

$$
\begin{equation*}
\alpha(t)=(x, y(s), z(s)) \tag{5}
\end{equation*}
$$

the formulas (5) have the following form

$$
\kappa(s)=\sqrt{\left|\left(y^{\prime \prime}(s)\right)^{2}-\left(z^{\prime \prime}(s)\right)^{2}\right|}, \quad \tau(x)=\frac{y^{\prime \prime}(s) z^{\prime \prime \prime}(s)-y^{\prime \prime \prime}(s) z^{\prime \prime}(s)}{\kappa^{2}(s)}
$$

The associated trihedron is given by

$$
\begin{aligned}
T & =\alpha^{\prime}(s)=\left(1, y^{\prime}(s), z^{\prime}(s)\right) \\
N & =\frac{1}{\kappa(s)} \alpha^{\prime \prime}(s)=\frac{1}{\kappa(s)}\left(0, y^{\prime \prime}(s), z^{\prime \prime}(s)\right) \\
B & =\frac{1}{\kappa(s)}\left(0, \epsilon z^{\prime \prime}(s), \epsilon y^{\prime \prime}(s)\right)
\end{aligned}
$$

where $\epsilon=\mp 1$, chosen by criterion $\operatorname{det}(T, N, B)=1$, that means

$$
\left|\left(y^{\prime \prime}(s)\right)^{2}-\left(z^{\prime \prime}(s)\right)^{2}\right|=\epsilon\left(\left(y^{\prime \prime}(s)\right)^{2}-\left(z^{\prime \prime}(s)\right)^{2}\right)
$$

We derive an important relation

$$
\alpha^{\prime \prime \prime}(s)=\kappa^{\prime}(s) N(s)+\kappa(s) \tau(s) B(s)
$$

The curve α given by (5) is timelike (resp. spacelike) if $N(s)$ is a spacelike(resp. timelike) vector. The principal normal vector or simply normal is spacelike if $\epsilon=1$ and timelike if $\epsilon=-1$. For derivatives of the tangent (vector) T, the normal N and the binormal B, respectively, the following Serret-Frenet formulas hold

$$
\begin{aligned}
T^{\prime} & =\kappa N \\
N^{\prime} & =\tau B \\
B^{\prime} & =\tau N
\end{aligned}
$$

[6].
A C^{r}-surface, $r \geq 2$, is a subset $\Phi \subset G_{3}^{1}$ for which there exists an open subset D of R^{2} and C^{r}-mapping $M: D \rightarrow G_{3}^{1}$ satisfying $\Phi=x(D)$. A C^{r} surface $\Phi \subset G_{3}^{1}$ is called regular if M is an immersion, and simple if M is an embedding. It is admissible if it does not have pseudo-Euclidean tangent planes. If we denote

$$
M=M\left(x\left(u_{1}, u_{2}\right), y\left(u_{1}, u_{2}\right), z\left(u_{1}, u_{2}\right)\right), x_{i}=\frac{\partial x}{\partial u_{i}}, y_{i}=\frac{\partial y}{\partial u_{i}}, z_{i}=\frac{\partial z}{\partial u_{i}}, i=1,2
$$

then a surface is admissible if and only if $x_{i} \neq 0$, for some $i=1,2$.
Let $\Phi \subset G_{3}^{1}$ be a regular admissible surface. Then the unit normal vector field of a surface $M(u, v)$ is equal to

$$
\begin{aligned}
N(u, v) & =\frac{\left(0, x_{1} z_{2}-x_{2} z_{1}, x_{1} y_{2}-x_{2} y_{1}\right)}{W(u, v)} \\
W(u, v) & =\sqrt{\left|\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}-\left(x_{1} z_{2}-x_{2} z_{1}\right)^{2}\right|}
\end{aligned}
$$

The function W is equal to the pseudo-Galilean norm the vector $x_{1} x_{2}-x_{2} x_{1}$. Vector defined by

$$
\sigma=\frac{\left(x_{1} x_{2}-x_{2} x_{1}\right)}{W}
$$

is called a side tangential vector. We will not consider surfaces with $W=0$, i.e. surfaces having lightlike side tangential vector (lightlike surfaces).

Since the normal vector field satisfies $\langle N, N\rangle_{G_{3}^{1}}=\epsilon= \pm 1$, we distinguish two basic types of admissible surfaces: spacelike surfaces having timelike surface normals $(\epsilon=-1)$ and timelike surfaces having spacelike normals $(\epsilon=1)$. A surface is spacelike if $\left(x_{1} x_{2}-x_{2} x_{1}\right)=\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}-\left(x_{1} z_{2}-x_{2} z_{1}\right)^{2}>0$ in all of its points, timelike otherwise.

The first fundamental form of a surface is induced from the metric of the ambient space G_{3}^{1}

$$
d s^{2}=\left(x_{1} d u_{1}+x_{2} d u_{2}\right)^{2}+\delta\left(\widetilde{M_{1}} d u_{1}+\widetilde{M_{2}} d u_{2}\right)^{2}
$$

where

$$
\delta=\left\{\begin{array}{c}
0 ; \text { if direction } d u_{1}: d u_{2} \text { is non-isotropic } \\
1 ; \text { if direction } d u_{1}: d u_{2} \text { is isotropic. }
\end{array}\right.
$$

By^{\sim} above a vector, the projection of a vector on the pseudo-Euclidean $y z$-plane is denoted.The Gaussian curvature of a surface is defined by means of the coefficients of the second fundamental form

$$
\begin{equation*}
K=-\epsilon \frac{L_{11} L_{22}-L_{12}^{2}}{W^{2}}=\frac{e g-f^{2}}{E G-F^{2}} \tag{6}
\end{equation*}
$$

where $\langle N, N\rangle_{G_{3}^{1}}=\epsilon=-1$ for spacelike surfaces and $\langle N, N\rangle_{G_{3}^{1}}=\epsilon=1$ for timelike surfaces. The second fundamental form $I I$ is given by

$$
I I=L_{11} d u_{1}^{2}+2 L_{12} d u_{1} d u_{2}+L_{22} d u_{2}^{2}
$$

where $L_{i j}, i ; j=1 ; 2$, are the normal components of $M_{11} ; M_{12} ; M_{22}$, respectively. It holds

$$
L_{i j}=\epsilon\left(\frac{x_{1} \widetilde{M_{i j}}-x_{i j} \widetilde{M_{1}}}{x_{1}}\right) \widetilde{U}=\epsilon\left(\frac{x_{2} \widetilde{M_{i j}}-x_{i j} \widetilde{M_{2}}}{x_{2}}\right) \widetilde{U}
$$

The mean curvature of a surface is defined by

$$
\begin{equation*}
H=-\epsilon \frac{x_{2}^{2} L_{11}-2 x_{1} x_{2} L_{12}+x_{1}^{2} L_{22}}{2 W^{2}} \tag{7}
\end{equation*}
$$

The unit normal field U is an isotropic vector obtained by means of the Galilean cross product

$$
U=\frac{x_{1} \wedge_{G_{3}^{1}} x_{2}}{W}
$$

[3,4,13].

3. Weingarten Tubular Surface in Galilean 3-Space

Our purpose in this section, we will obtain the tubular surface from the canal surface in Galilean 3 -space.If we find the canal surface with taking variable radius $r(s)$ as constant, then the tubular surface can be found, since the canal surface is a general case of the tubular surface.

An envelope of a 1-parameter family of surfaces is constructed in the same way that we constructed a 1 -parameter family of curves. The family is described by a differentiable function $F(x, y, z, \lambda)=0$, where λ is a parameter. When λ can be eliminated from the equations

$$
F(x, y, z, \lambda)=0
$$

and

$$
\frac{\partial F(x, y, z, \lambda)}{\partial \lambda}=0
$$

we get the envelope, which is a surface described implicitly as $G(x, y, z)=0$.For example, for a 1-parameter family of planes we get a develople surface [11].
Definition 3.1. The envelope of a 1-parameter family $s \rightarrow S_{ \pm}^{2}(s)$ of the spheres in G_{3} is called a canal surface in Galilean 3 -space. The curve formed by the centers of the Galilean spheres is called center curve of the canal surface. The radius of the canal surface is the function r such that $r(s)$ is the radius of the Galilean sphere $S_{ \pm}^{2}(s)$.

Definition 3.2. Let $\alpha:(a, b) \rightarrow G_{3}$ be a unit speed curve whose curvature does not vanish. Consider a tube of radius r around α. Since the normal N and binormal B are perpendicular to α, the Galilean circle is perpendicular α and $\alpha(s)$.As this Galilean circle moves along α, it traces out a surface about α which will be the tube about α, provided r is not too large.

Theorem 3.3. Let $\alpha: I \rightarrow G_{3}$ be a curve in Galilean 3-space. Suppose the center curve of a canal surface is a unit speed curve α with nonzero curvature . Then the canal surface can be parametrized

$$
C(s, t)=\alpha(s)+r(s)(N(s) \cos t+B(s) \cos t),
$$

where T, N and B denote the tangent, principal normal and binormal of the curve α.

Proof. Let C denote a patch that parametrizes the envelope of the Galilean spheres defining the canal surface. Since the curvature of α is nonzero, the Frenet- Serret frame $\{T, N, B\}$ is well-defined, and we can write

$$
\begin{equation*}
C(s, t)-\alpha(s)=a(s, t) T+b(s, t) N+c(s, t) B \tag{8}
\end{equation*}
$$

where a, b and c are differentiable on the interval on which α is defined. We must have

$$
\|C(s, t)-\alpha(s)\|_{G_{3}}^{2}=\left\{\begin{array}{c}
a^{2}=r^{2}(s), \text { If } a(s, t) \neq 0 \tag{9}\\
b^{2}+c^{2}=r^{2}(s), \text { If } a(s, t)=0
\end{array}\right.
$$

Equation (9) expresses analytically the geometric fact that $C(s, t)$ lies on a Galilean sphere $S_{ \pm}^{2}(s)$ of radius $r(s)$ centered at $\alpha(s)$. Furthermore, $C(s, t)-\alpha(s)$ is a normal vector to the canal surface; this fact implies that

$$
\begin{align*}
& \left\langle C(s, t)-\alpha(s), C_{s}\right\rangle_{G_{3}}=0 \tag{10}\\
& \left\langle C(s, t)-\alpha(s), C_{t}\right\rangle_{G_{3}}=0 \tag{11}
\end{align*}
$$

Case 1: Let $a(s, t) \neq 0$. Equations (9) and (10) say that the vectors C_{s} and C_{t} are tangent to $S_{ \pm}^{2}(s)$. From (8) and (9) we get

$$
\left\{\begin{array}{c}
a^{2}=r^{2} \tag{12}\\
a a_{s}=r r^{\prime}
\end{array}\right.
$$

When we differentiate (8) with respect to s and use the Frenet-Serret formulas, we obtain

$$
\begin{equation*}
C_{s}=\left(1+a_{s}\right) T+\left(a \kappa+b_{s}-c \tau\right) N+\left(c_{s}+b \tau\right) B . \tag{13}
\end{equation*}
$$

Then (9), (12), (13), and (10) imply that

$$
\begin{equation*}
\left(1+a_{s}\right) a=0 \tag{14}
\end{equation*}
$$

From (12) and (14), we get

$$
\begin{equation*}
r= \pm\left(c_{1}-s\right) \tag{15}
\end{equation*}
$$

Thus (8) is not a surface.
Case 2: Let $a(s, t)=0$.Equations (9) and (10) say that the vectors C_{s} and C_{t} are tangent to $S_{ \pm}^{2}(s)$. From (8) and (9) we get

$$
\left\{\begin{array}{c}
b^{2}+c^{2}=r^{2} \tag{16}\\
b b_{s}+c c_{s}=r r_{s}
\end{array}\right.
$$

When we differentiate (8) with respect to t and use the Frenet-Serret formulas, we obtain

$$
\begin{equation*}
C_{t}=b_{t} N+c_{t} B \tag{17}
\end{equation*}
$$

Then (11), (16), (17) imply that

$$
\begin{equation*}
b b_{t}+c c_{t}=0\left(r_{t}=0\right) \tag{18}
\end{equation*}
$$

From (16) and (18), we get

$$
\begin{align*}
& b=r(s) \cos t \tag{19}\\
& c=r(s) \sin t
\end{align*}
$$

Thus (8) becomes

$$
\begin{equation*}
C(s, t)=\alpha(s)+r(s)(N(s) \cos t+B(s) \sin t) \tag{20}
\end{equation*}
$$

The equation (20) means that, the surface is galilean sphere (cylinder) at the point $\alpha(s)$ with radius in $r(s)$.

It is easy to see that when the radius function $r(s)$ is constant , the definition of canal surface reduces to the definition of a tube.In fact, we can characterize tubes among all canal surfaces.With the Frenet-Serret system in hand, we can construct a "tubular surface" of radius $r=$ const. about the curve by defining a surface with parameters s and t :

$$
\begin{equation*}
\text { Tube }(s, t)=\alpha(s)+r(N(s) \cos t+B(s) \sin t) \text {. } \tag{21}
\end{equation*}
$$

Definition 3.4. Let $\alpha: I \subset R \rightarrow G^{3}$ be a admissible curve in Galilean 3-space. A tubular surface of radius $\lambda>0$ about α is the surface with parametrization

$$
\begin{equation*}
M(s, \theta)=\alpha(s)+\lambda[N(s) \cos \theta+B(s) \sin \theta] \tag{22}
\end{equation*}
$$

Theorem 3.5. Let $(X, Y) \in\{(K, H)\}$ and let M a tubular surface defined by (3.15). If M is a (X, Y)-Weingarten surface, then the curvature of α is a nonzero constant. If α has non-zero constant torsion, then M is generated by a circular helix α in Galilean 3-space.

Proof. We have the natural frame $\left\{M_{s}, M_{\theta}\right\}$ of the surface M given by

$$
\begin{aligned}
& M_{s}=T-(\lambda \tau \sin \theta) N+(\lambda \tau \cos \theta) B \\
& M_{\theta}=-(\lambda \sin \theta) N+(\lambda \cos \theta) B
\end{aligned}
$$

The components of the curvatures K and H are

$$
\begin{aligned}
E & =1, F=0, G=\lambda^{2} \\
e & =\lambda \tau^{2}-\kappa \cos \theta, f=\lambda \tau, g=\lambda
\end{aligned}
$$

On the other hand, the unit normal vector field U is obtained by

$$
U=-(N \cos \theta+B \sin \theta)
$$

According to (4), the curvatures K and H are

$$
\begin{equation*}
K=\frac{-\kappa \cos \theta}{\lambda}, \quad H=-\frac{1-\lambda \kappa \cos \theta+\lambda^{2} \tau^{2}}{2 \lambda} \tag{23}
\end{equation*}
$$

respectively. Differentiating K and H with respect to s and θ, we get

$$
\begin{gather*}
K_{s}=-\frac{\kappa^{\prime} \cos \theta}{\lambda}, \quad K_{\theta}=\frac{\kappa \sin \theta}{\lambda} \tag{24}\\
H_{s}=\frac{-\kappa^{\prime} \cos \theta+2 \lambda \tau \tau^{\prime}}{2}, \quad H_{\theta}=\frac{\kappa \sin \theta}{2}, \tag{25}
\end{gather*}
$$

Now, we investigate a tubular surface M in G_{3} satisfying the Jacobi equation $\Phi(X, Y)=0$. We consider tubular surface M in G_{3} satisfying $\Phi(K, H)=0$, by using (23) and (24), we have

$$
K_{s} H_{\theta}-K_{\theta} H_{s}=\kappa \tau \tau^{\prime} \sin \theta=0
$$

for every θ. Therefore we conclude that $\tau^{\prime}=0$.
Theorem 3.6. Let M be a tubular surface satisfying the linear equation $a K+b H=$ c. If $\left(a+a \lambda^{2} \tau^{2}+\lambda^{2} c\right) \neq 0$, then it is an open part of a circular cylinder in Galilean 3-space. Let $(X, Y) \in\{(K, H)\}$. Then there are no (X, Y)-tubular linear Weingarten surface M in Galilean 3-space.

Proof. We suppose that tubular surface M in G_{3} is a linear Weingarten surface, that is, it satisfies the equation

$$
\begin{equation*}
a K+b H=c \tag{26}
\end{equation*}
$$

Then, by (23), we have

$$
(-2 a \kappa-\lambda b \kappa) \cos \theta+\left(b+b \lambda^{2} \tau^{2}-2 \lambda c\right)=0
$$

According to the definition of the linear independent of vectors, we have

$$
\begin{gathered}
2 a \kappa+b \lambda \kappa=0 \\
b+b \lambda^{2} \tau^{2}-2 \lambda c=0
\end{gathered}
$$

which imply

$$
\kappa\left(a+a \lambda^{2} \tau^{2}+\lambda^{2} c\right)=0
$$

If $\left(a+a \lambda^{2} \tau^{2}+\lambda^{2} c\right) \neq 0$, then $\kappa=0$ and $\tau=0$. Thus, M is an open part of a circular cylinder in Galilean 3 -space.

Theorem 3.7. The tubular surface $M(s, \theta)$ is not umblical and minimal.

Proof. Let k_{1}, k_{2} be the principal curvatures of $M(s, \theta)$ in G_{3}. The principal curvatures are obtained as follows;

$$
\begin{align*}
& k_{1}=-\frac{1-\lambda \kappa \cos \theta+\lambda^{2} \tau^{2}}{2 \lambda}+\sqrt{\left(\frac{1-\lambda \kappa \cos \theta+\lambda^{2} \tau^{2}}{2 \lambda}\right)^{2}+\frac{\kappa \cos \theta}{\lambda}} \tag{27}\\
& k_{2}=-\frac{1-\lambda \kappa \cos \theta+\lambda^{2} \tau^{2}}{2 \lambda}-\sqrt{\left(\frac{1-\lambda \kappa \cos \theta+\lambda^{2} \tau^{2}}{2 \lambda}\right)^{2}+\frac{\kappa \cos \theta}{\lambda}}
\end{align*}
$$

Since M has not a curvature diagram such that $k_{1}-k_{2}=0$ and $k_{1}+k_{2}=0$ then M is not umblical and minimal.

Theorem 3.8. Let M be a tubular surface in Galilean 3-space. Then M is a $H K-$ quadric surface if and only if M is a circular cylinder.

At this point, we conclude that, only $H K$-quadratic tubular surface in Galilean 3 -space is circular cylinder

Proof. Suppose that the surface M is $H K$-quadric. Then the equation (1) implies

$$
\begin{equation*}
a H H_{s}+b\left(H_{s} K+H K_{s}\right)+c K K_{s}=0 \tag{28}
\end{equation*}
$$

Then, by substituting (23), (24) and (25) into (28) it follows that
$\left(8 b \lambda \kappa-2 a \lambda^{2} \kappa^{2}-8 c \kappa^{2}\right) \cos \theta \sin \theta+\left(2 a \lambda \kappa-4 b \lambda^{2} \kappa \tau^{2}+2 a \lambda^{3} \kappa \tau^{2}-4 b \kappa\right) \sin \theta=0$.
Since the identity holds for every θ, all the coefficients must be zero. Therefore, we have

$$
\begin{aligned}
\left(8 b \lambda \kappa-2 a \lambda^{2} \kappa^{2}-8 c \kappa^{2}\right) & =0 \\
\left(2 a \lambda \kappa-4 b \lambda^{2} \kappa \tau^{2}+2 a \lambda^{3} \kappa \tau^{2}-4 b \kappa\right) & =0
\end{aligned}
$$

Thus, we get $\kappa=0$. Then M is a circular cylinder.

Now, we illustrated an example of Tubular surface about a admissible curve in Galilean 3-space.Let us consider a curve:

$$
\alpha(s)=(a s, b \cos s, b \sin s) .
$$

In this case, one cancalculate its Frenet-Serret trihedra as

$$
\begin{aligned}
T(s) & =(a,-b \sin s, b \cos s) \\
N(s) & =(0,-\cos s,-\sin s) \\
B(s) & =(0, \sin s,-\cos s)
\end{aligned}
$$

Thus, we obtained tubular surface as follow:
$M(s, \theta)=(a s, b \cos s-\lambda \cos \theta \cos s+\lambda b \sin \theta \sin s, b \sin s-\lambda \cos \theta \sin s-\lambda b \sin \theta \cos s)$.

Figure 1. Tubes in Galilean 3-space

4. Weingarten Tubular Surface in Pseudo-Galilean 3-Space

Theorem 4.1. Let $\alpha: I \rightarrow G_{3}$ be a curve in Pseudo-Galilean 3-space. Suppose the center curve of a canal surface is a unit speed curve α with nonzero curvature . Then the canal surface can be parametrized

$$
C(s, t)=\alpha(s)+r(s)(N(s) \cosh t+B(s) \sinh t),
$$

where T, N and B denote the tangent, principal normal and binormal of the curve α.

Definition 4.2. Let $\alpha: I \subset R \rightarrow G_{3}^{1}$ be a admissible curve in Pseudo-Galilean 3space. A tubular surface of radius $\lambda>0$ about α is the surface with parametrization

$$
\begin{equation*}
M(s, \theta)=\alpha(s)+\lambda[N(s) \cosh \theta+B(s) \sinh \theta] \tag{29}
\end{equation*}
$$

Theorem 4.3. Let $(X, Y) \in\{(K, H)\}$ and let M a tubular surface defined by (29). If M is $a(X, Y)$-Weingarten surface, then the curvature of α is a non-zero constant. If α has non-zero constant torsion, then M is generated by a circular helix α in Pseudo-Galilean 3-space.

Proof. We have the natural frame $\left\{M_{s}, M_{\theta}\right\}$ of the surface M given by

$$
\begin{aligned}
& M_{s}=T+(\lambda \tau \sinh \theta) N+(\lambda \tau \cosh \theta) B \\
& M_{\theta}=(\lambda \sinh \theta) N+(\lambda \cosh \theta) B
\end{aligned}
$$

The components of the curvatures K and H are

$$
\begin{aligned}
E & =1, F=0, G=-\lambda^{2} \\
e & =\lambda \tau^{2}+\kappa \cosh \theta, f=\lambda \tau, g=\lambda
\end{aligned}
$$

On the other hand, the unit normal vector field U is obtained by

$$
U=(N \cosh \theta+B \sinh \theta)
$$

Since $\langle U, U\rangle_{G_{3}^{1}}=1$, then the surface M is timelike. On the other hand, according to (6) and (7), the curvatures K and H are

$$
\begin{equation*}
K=\frac{-\kappa \cosh \theta}{\lambda}, \quad H=\frac{-1+\lambda \kappa \cosh \theta+\lambda^{2} \tau^{2}}{2 \lambda} \tag{30}
\end{equation*}
$$

respectively. Differentiating K and H with respect to s and θ, we get

$$
\begin{gather*}
K_{s}=-\frac{\kappa^{\prime} \cosh \theta}{\lambda}, \quad K_{\theta}=-\frac{\kappa \sinh \theta}{\lambda} \tag{31}\\
H_{s}=\frac{\kappa^{\prime} \cosh \theta+2 \lambda \tau \tau^{\prime}}{2}, \quad H_{\theta}=\frac{\kappa \sinh \theta}{2} \tag{32}
\end{gather*}
$$

Now, we investigate a tubular surface M in G_{3} satisfying the Jacobi equation $\Phi(X, Y)=0$. We consider tubular surface M in G_{3} satisfying $\Phi(K, H)=0$, by using (31) and (32), we have

$$
K_{s} H_{\theta}-K_{\theta} H_{s}=\kappa \tau \tau^{\prime} \sinh \theta=0
$$

for every θ. Therefore we conclude that $\tau^{\prime}=0$.
Theorem 4.4. Let M be a tubular surface satisfying the linear equation $a K+b H=$ c. If $\left(-2 b+a \lambda^{2} \tau^{2}+2 \lambda c\right) \neq 0$, then it is an open part of a circular cylinder in Pseudo-Galilean 3-space. Let $(X, Y) \in\{(K, H)\}$. Then there are no (X, Y)-tubular linear Weingarten surface M.

Proof. We suppose that tubular surface M in G_{3}^{1} is a linear Weingarten surface, that is, it satisfies the equation

$$
a K+b H=c
$$

Then, by (30), we have

$$
(-2 b \kappa+\lambda a \kappa) \cosh \theta+\left(-a-2 \lambda c+a \lambda^{2} \tau^{2}\right)=0
$$

According to the definition of the linear independent of vectors, we have

$$
\begin{gathered}
-2 b \kappa+\lambda a \kappa=0 \\
-a-2 \lambda c+a \lambda^{2} \tau^{2}=0
\end{gathered}
$$

which imply

$$
\kappa\left(-2 b+a \lambda^{2} \tau^{2}+2 \lambda c\right)=0
$$

If $\left(-2 b+a \lambda^{2} \tau^{2}+2 \lambda c\right) \neq 0$, then $\kappa=0$ and $\tau=0$. Thus, M is an open part of a circular cylinder in Pseudo-Galilean 3-space.

Theorem 4.5. The tubular surface $M(s, \theta)$ is not umblical and minimal.
Proof. Let k_{1}, k_{2} be the principal curvatures of $M(s, \theta)$ in G_{3}. The principal curvatures are obtained as follows;

$$
\begin{aligned}
& k_{1}=\frac{-1+\lambda \kappa \cosh \theta+\lambda^{2} \tau^{2}}{2 \lambda}+\sqrt{\left(\frac{-1+\lambda \kappa \cosh \theta+\lambda^{2} \tau^{2}}{2 \lambda}\right)^{2}+\frac{\kappa \cosh \theta}{\lambda}} \\
& k_{2}=\frac{-1+\lambda \kappa \cosh \theta+\lambda^{2} \tau^{2}}{2 \lambda}-\sqrt{\left(\frac{-1+\lambda \kappa \cosh \theta+\lambda^{2} \tau^{2}}{2 \lambda}\right)^{2}+\frac{\kappa \cosh \theta}{\lambda}} .
\end{aligned}
$$

Since M has not a curvature diagram such that $k_{1}-k_{2}=0$ and $k_{1}+k_{2}=0$ then M is not umblical and minimal.

Theorem 4.6. Let M be a tubular surface in Pseudo-Galilean 3-space. Then M is a $H K-$ quadric surface if and only if M is a circular cylinder.

At this point, we conclude that, only $H K$-quadric tubular surface is circular cylinder in Pseudo-Galilean 3-space.

Proof. Suppose that the surface M is $H K$-quadric. Then the equation (1) implies

$$
\begin{equation*}
a H H_{\theta}+b\left(H_{\theta} K+H K_{\theta}\right)+c K K_{\theta}=0 \tag{33}
\end{equation*}
$$

Then, by substituting (30), (31) and (32) into (33) it follows that
$(\kappa \sinh \theta)\left[\left(-a \lambda+a \lambda^{3} \tau^{2}+2 b-2 b \lambda^{2} \tau^{2}\right)+\left(a \lambda^{2} \kappa \cosh \theta-4 b \lambda \kappa \cosh \theta+4 c \kappa \cosh \theta\right)\right]=0$.
Since the identity holds for every θ, all the coefficients must be zero. Therefore, we have

$$
\begin{aligned}
(\kappa \sinh \theta)\left(-a \lambda+a \lambda^{3} \tau^{2}+2 b-2 b \lambda^{2} \tau^{2}\right) & =0 \\
\left(\kappa^{2} \sinh \theta \cosh \theta\right)\left(a \lambda^{2}-4 b \lambda+4 c\right) & =0
\end{aligned}
$$

Thus, we get $\kappa=0$. Then M is a circular cylinder.
Example 4.7. Now, we illustrated an example of Tubular surface about a admissible curve in Pseudo-Galilean 3-space.Let us consider a curve:

$$
\alpha(s)=\left(a s, a \cosh \frac{s}{b}, a \sinh \frac{s}{b}\right) .
$$

In this case, one cancalculate its Frenet-Serret trihedra as

$$
\begin{aligned}
T(s) & =\left(a, \frac{a}{b} \sinh \frac{s}{b}, \frac{a}{b} \cosh \frac{s}{b}\right) \\
N(s) & =\left(0, \cosh \frac{s}{b}, \sinh \frac{s}{b}\right) \\
B(s) & =\left(0, \sinh \frac{s}{b}, \cosh \frac{s}{b}\right)
\end{aligned}
$$

Thus, we obtained tubular surface as follow:
$M(s, \theta)=\left(a s, a \cosh \frac{s}{b}+\lambda \cosh \theta \cosh \frac{s}{b}+\lambda \sinh \theta \sinh \frac{s}{b}, a \sinh \frac{s}{b}+\lambda \cosh \theta \sinh \frac{s}{b}+\lambda \sinh \theta \cosh \frac{s}{b}\right)$.

Figure 2. Tubes in Pseudo-Galilean 3-space

References

[1] Abdel-Aziz,H.S., Khalifa Saad,M.,Weingarten Timelike Tube Surfaces around a Spacelike Curve,Int. Journal of Math. Analysis, 5-25 (2011),1225-1236
[2] Bektas,M.,The Characterizations of General Helices in the 3-Dimensional Pseudo-Galilean Space,Soochow Journal of Mathematics,31-3(2005), 441-447
[3] Divjak,B.,Sipus, Z.M.,Minding isometries of ruled surfaces in pseudo-Galilean space, J. geom. 77 (2003) , 35-47.
[4] Divjak,B.,Sipus,Z.M.,Some Special Surfaces in the Pseudo-Galilean Space,Acta Math. Hungar.,118,(2008), 209-226
[5] Ergut,M.,Ogrenmis,A.O.,Some Characterizations of a Spherical Curves in Galilean Space G_{3},Journal of Advanced Research in Pure Mathematics,1-2(2009),18-26
[6] Erjavec,Z.,Divjak,B.,The equiform differential geometry of curves in the PseudoGalilean space,Mathematical Communications, 13(2008), 321-332
[7] Gray,A., Modern Differential Geometry of Curves and Surfaces with Mathematica,CRC Press, (1998)
[8] Kim,Y.H., Yoon, D.W.,On Non-Developable Ruled Surface in LorentzMinkowski 3-Spaces,Taiwanese Journal of Mathematics,11-1 (2007) ,197-214
[9] Ogrenmis,A.O.,Ergut ,M.and Bektas,M.,On Helices in the Galilean space G_{3}, Iranian Journal of Science and Technology,Transaction A,,31-A02 (2007),177181
[10] Ro,J.S. ,Yoon, D.W.,Tubes of Weingarten Types in a Euclidean 3Space,Journal of the Chungcheong Mathematical Society, 22-3(2009),359-366
[11] Sahin,T., Yilmaz,M.,The Rectifying Developable And The Tangent Indicatrix of A Curve In Galilean 3-Space,Acta Math. Hungar., 132-(1-2) (2011), 154167
[12] Sipus,Z.M.,Ruled Weingarten Surfaces in The Galilean Space, Periodica Mathematica Hungarica ,56-2(2008), 213-225
[13] Sipus,Z.M.,On a Certain Class of Translation Surfaces in a Pseudo-Galilean Space,International Mathematical Forum, ,6-23(2011),1113-1125
[14] Tunçer,Y.,Yoon, D.W.,Karacan, M. K.,Weingarten and Linear Weingarten Type Tubular Surfaces in E^{3},Mathematical Problems in Engineering, , Article ID 191849(2011)

[^1]
[^0]: ${ }^{0} 2000$ Mathematics Subject Classification: 53A05,56B34,53B25,53A35,53B30.
 Keywords and phrases. Tubular surface, Gaussian curvature, Mean curvature, Weingarten surfaces, Galilean 3-space, Pseudo-Galilean 3-space.
 (C) 2012 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted June 15, 2011. Published May 22, 2013.

[^1]: ${ }^{1}$ Department of Mathematics,
 Uşak University University,
 Uşak, Turkey
 E-mail address: murat.karacan@usak.edu.tr
 2 Department of Mathematics, Uşak University University,
 Uşak, Turkey
 E-mail address: yilmaz.tuncer@usak.edu.tr

