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TUBULAR SURFACES OF WEINGARTEN TYPES IN

GALILEAN AND PSEUDO-GALILEAN

(COMMUNICATED BY KRISHAN L. DUGGAL)

MURAT KEMAL KARACAN1 AND YILMAZ TUNCER2

Abstract. In this paper, we have defined canal surfaces in Galilean and
Pseudo-Galilean 3-spaces.Then, we have studied Tubular surface in Galilean

and Pseudo-Galilean 3-space satisfying some equations in terms of the Gauss-
ian curvature and the mean curvature.We have discussed Weingarten,linear
Weingarten conditions and HK−quadric type for this surface with respect to
their curvatures

1. Introduction

A surface M in Euclidean space E3 or Minkowski space E3
1 is called a Wein-

garten surface if there is a smooth relation U(k1, k2) = 0 between its two principal
curvatures k1 and k2. If K and H denote respectively the Gauss curvature and the
mean curvature of M , U(k1, k2) = 0 implies a relation Φ(K,H) = 0. The existence
of a non-trivial functional relation Φ(K,H) = 0 on a surface M parameterized by
a patch x(s, t) is equivalent to the vanishing of the corresponding Jacobian deter-

minant, namely
∣∣∣∂(K,H)

∂(s,t)

∣∣∣ = 0 [10].

The simplest case when U = ak1 + bk2 − c or Φ = aH + bK − c (a,b and c
are constants with a2 + b2 ̸= 0 ), the surfaces are called linear Weingarten surfaces.
When the constant b = 0, a linear Weingarten surface M reduces to a surface
with constant Gaussian curvature. When the constant a = 0, a linear Weingarten
surface M reduces to a surface with constant mean curvature. In such a sense, the
linear Weingarten surfaces can be regarded as a natural generalization of surfaces
with constant Gaussian curvature or with constant mean curvature [10].

Several geometers [1,10,14] have studied tubes in Euclidean 3-space and Minkowski
3-space satisfying some equation in terms of the Gaussian curvature, the mean cur-
vature and the second Gaussian curvature.Following the Jacobi equation and the
linear equation with respect to the Gaussian curvature K and the mean curvature
H an interesting geometric question is raised: Classify all surfaces in Galilean and
Pseudo-Galilean 3−spaces satisfying the conditions
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Φ(X,Y ) = 0

aX + bY = c

where (X,Y ) ∈ {K,H}, X ̸= Y and (a, b, c) ̸= (0, 0, 0).If a surface satisfies the
equations

aH2 + 2bHK + cK2 = constant, a ̸= 0, (1)

then a surface is said to be a HK−quadric surface [8].
In this paper, we have defined canal surfaces in Galilean and Pseudo-Galilean

3-spaces.Then, we have studied Weingarten and linear Weingarten tubular surfaces
and also HK−quadric surface.We have obtained some conditions for that surfaces
in Galilean and Pseudo Galilean 3-space.We show that tubular surfaces are not
umbilical and minimal by using their principal curvatures.

2. Preliminaries

2.1. Galilean 3-Space G3. The Galilean space is a three dimensional complex
projective space, P3, in which the absolute figure {w, f, I1, I2} consists of a real
plane w (the absolute plane), a real line f ⊂ w (the absolute line) and two complex
conjugate points, I1, I2 ∈ f (the absolute points).

We shall take, as a real model of the space G3, a real projective space P3, with
the absolute {w, f} consisting of a real plane w ⊂ G3 and a real line f ⊂ w, on
which an elliptic involution ϵ has been defined. Let ϵ be in homogeneous coordinates

w...x0 = 0, f...x0 = x1 = 0
ϵ : (0 : 0 : x2 : x3) → (0 : 0 : x3 : −x2).

In the nonhomogeneous coordinates, the similarity group H8 has the form

x = a11 + a12x (2)

y = a21 + a22x+ a23 cos θ + a23 sin θ

z = a31 + a32x− a23 sin θ + a23 cos θ

where aij and θ are real numbers.For a11 = a23 = 1,we have have the subgroup B6

, the group of Galilean motions:

x = a11 + a12x
y = b+ cx+ y cos θ + z sin θ
z = d+ ex− y sin θ + z cos θ.

In G3, there are four classes of lines:
a) (proper) nonisotropic lines - they do not meet the absolute line f .
b) (proper) isotropic lines - lines that do not belong to the plane w but meet

the absolute line f .
c) unproper nonisotropic lines - all lines of w but f .
d) the absolute line f .
Planes x =constant are Euclidean and so is the plane w. Other planes are

isotropic.In what follows, the coefficients a12 and a23 a will play a special role. In
particular, for a12 = a23 = 1, (2) defines the group B6 ⊂ H8 of isometries of the
Galilean space G3.

The scalar product in Galilean space G3 is defined by

⟨X,Y ⟩G3
=

{
x1y1 , if x1 ̸= 0 ∨ y1 ̸= 0
x2y2 + x3y3 , if x1 = 0 ∧ y1 = 0
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where X = (x1,x2, x3) and Y = (y1,y2, y3) . The Galilean cross product is defined
for a = (a1, a2, a3), b = (b1, b2, b3) by

a ∧G3 b =

∣∣∣∣∣∣
0 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ .
The unit Galilean sphere is defined by [5]

S2
± =

{
α ∈ G3

∣∣ ⟨α, α⟩G3
= ∓r2

}
.

A curve α : I ⊆ R → G3 of the class Cr (r ≥ 3) in the Galilean space G3 is
given defined by

α(x) = (s, y(s), z(s)) ,

where s is a Galilean invariant and the arc length on α.The curvature κ(s) and the
torsion τ(s) are defined by

κ(s) =

√
(y′′(s))

2
+ (z′′(s))

2
, τ(x) =

det(α′(s),α′′(s),α′′′(s))
κ2(s) .

The orthonormal frame in the sense of Galilean space G3 is defined by

T = α′(s) = (1, y′(s), z′(s)) (3)

N =
1

κ(s)
α′′(s) =

1

κ(s)
(0, y′′(s), z′′(s))

B =
1

κ(s)
(0,−z′′(s), y′′(s))

The vectors T,N and B in (3) are called the vectors of the tangent, principal normal
and the binormal line of α, respectively.They satisfy the following Frenet equations

T ′ = κN

N ′ = τB

B′ = −τN.

[9].For the treatment of Weingarten surfaces we need the Gaussian and the mean
curvature of a surface. They are defined by

K =
L11L22 − L2

12

W 2
=

eg − f2

EG− F 2
, (4)

2H = g11L11 + 2g12L12 + g22L22 =
Eg − 2Ff +Ge

(EG− F 2)

where

g11 =
x2
2

W 2
, g12 = −x1x2

W 2
, g12 =

x2
1

W 2

where

x1 = ∂x
∂u , x2 = ∂x

∂v , W = |x1x2 − x2x1| .
The coefficients of the second fundamental form (which are the normal components
of xi = 1, 2) can be determined from

Lij =
(

x1xij−xijx1

x1

)
U =

(
x2xij−xijx2

x2

)
U.

The unit normal field U is an isotropic vector obtained by means of the Galilean
cross product

U =
x1∧G3

x2

W
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[12]. The principal curvatures of the surface can be found by the following equa-
tions

k1 = H +
√
H2 −K, k2 = H −

√
H2 −K.

2.2. Pseudo-Galilean 3-Space G1
3. The geometry of the pseudo-Galilean space

is similar (but not the same) to the Galilean space.The pseudo-Galilean space G1
3 is

a three-dimensional projective space in which the absolute consists of a real plane
w (the absolute plane), a real line f ⊂ w (the absolute line) and a hyperbolic
involution on f . Projective transformations which presere the absolute form of a
group H8 and are in nonhomogeneous coordinates can be written in the form

x = a+ bx

y = c+ dx+ r cosh θ.y + r sinh θ.z

z = e+ fx+ r sinh θ.y + r cos θ.z

where a, b, c, d, e, f, r and θ are real numbers. Particularly, for b = r = 1, the
group (4.1) becomes the group B6 ⊂ H8 of isometries (proper motions) of the
pseudo-Galilean space G1

3. The motion group leaves invariant the absolute figure
and defines the other invariants of this geometry.It has the following form

x = a+ x

y = c+ dx+ cosh θ.y + sinh θ.z

z = e+ fx+ sinh θ.y + cos θ.z.

According to the motion group in the pseudo-Galilean space, there are nonisotropic
vectors X (x, y, z) (for which holds x ̸= 0) and four types of isotropic vectors:
spacelike

(
x = 0, y2 − z2 > 0

)
, timelike

(
x = 0, y2 − z2 < 0

)
and two types of light-

like vectors (x = 0, y = ∓z).The scalar product of two vectors A = (a1, a2, a3) and
B = (b1, b2, b3) in G1

3 is defined by

⟨A,B⟩G1
3
=

{
a1b1 , if a1 ̸= 0 ∨ b1 ̸= 0
a2b2 − a3b3 , if a1 = 0 ∧ b1 = 0.

The Pseudo-Galilean cross product is defined for a = (a1, a2, a3), b = (b1, b2, b3) by

a ∧G1
3
b =

∣∣∣∣∣∣
0 −e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ .
The unit Pseudo-Galilean sphere is defined by [2]

S2
∓ =

{
α ∈ G1

3

∣∣∣ ⟨α, α⟩G1
3
= ∓r2

}
.

A curve α(t) = (x(t), y(t), z(t)) is admissible if it has no inflection points, no
isotropic tangents or tangents or normals whose projections on the absolute plane
would be light-like vectors.For an admissible curve α : I ⊆ R → G1

3 the curvature
κ(t) and the torsion τ(t) are defined by

κ(s) =

√
(y′′(t))

2 − (z′′(t))
2

(x′(t))
2 , τ(x) =

y′′(t)z′′′(t)− y′′′(t)z′′(t)

|x′(t)|5 κ2(t)
.
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expressed in components.Hence, for an admissible curve α : I ⊆ R → G1
3 parame-

terized by the arc length s with differential form ds = dx, given by

α(t) = (x, y(s), z(s)) , (5)

the formulas (5) have the following form

κ(s) =

√∣∣∣(y′′(s))2 − (z′′(s))
2
∣∣∣ , τ(x) =

y′′(s)z′′′(s)− y′′′(s)z′′(s)

κ2(s)
.

The associated trihedron is given by

T = α′(s) = (1, y′(s), z′(s))

N =
1

κ(s)
α′′(s) =

1

κ(s)
(0, y′′(s), z′′(s))

B =
1

κ(s)
(0, ϵz′′(s), ϵy′′(s))

where ϵ = ∓1, chosen by criterion det (T,N,B) = 1, that means∣∣∣(y′′(s))2 − (z′′(s))
2
∣∣∣ = ϵ

(
(y′′(s))

2 − (z′′(s))
2
)
.

We derive an important relation

α′′′(s) = κ′(s)N(s) + κ(s)τ(s)B(s).

The curve α given by (5) is timelike (resp. spacelike) if N(s) is a spacelike(resp.
timelike) vector. The principal normal vector or simply normal is spacelike if ϵ = 1
and timelike if ϵ = −1. For derivatives of the tangent (vector) T , the normal N
and the binormal B, respectively, the following Serret-Frenet formulas hold

T ′ = κN

N ′ = τB

B′ = τN.

[6].
A Cr-surface, r ≥ 2, is a subset Φ ⊂ G1

3 for which there exists an open subset D
of R2 and Cr -mapping M : D → G1

3 satisfying Φ = x(D). A Cr surface Φ ⊂ G1
3

is called regular if M is an immersion, and simple if M is an embedding. It is
admissible if it does not have pseudo-Euclidean tangent planes. If we denote

M = M(x(u1, u2), y(u1, u2), z(u1, u2)), xi =
∂x

∂ui
, yi =

∂y

∂ui
, zi =

∂z

∂ui
, i = 1, 2

then a surface is admissible if and only if xi ̸= 0, for some i = 1, 2.
Let Φ ⊂ G1

3 be a regular admissible surface. Then the unit normal vector field
of a surface M(u, v) is equal to

N(u, v) =
(0, x1z2 − x2z1, x1y2 − x2y1)

W (u, v)
,

W (u, v) =

√∣∣∣(x1y2 − x2y1)
2 − (x1z2 − x2z1)

2
∣∣∣.

The function W is equal to the pseudo-Galilean norm the vector x1x2−x2x1.Vector
defined by

σ =
(x1x2 − x2x1)

W
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is called a side tangential vector.We will not consider surfaces with W = 0, i.e.
surfaces having lightlike side tangential vector (lightlike surfaces).

Since the normal vector field satisfies ⟨N, N⟩G1
3
= ϵ = ±1, we distinguish two

basic types of admissible surfaces: spacelike surfaces having timelike surface normals
(ϵ = −1) and timelike surfaces having spacelike normals (ϵ = 1). A surface is

spacelike if (x1x2 − x2x1) = (x1y2 − x2y1)
2−(x1z2 − x2z1)

2
> 0 in all of its points,

timelike otherwise.
The first fundamental form of a surface is induced from the metric of the ambient

space G1
3

ds2 = (x1du1 + x2du2)
2
+ δ

(
M̃1du1 + M̃2du2

)2
,

where

δ =

{
0; if direction du1 : du2 is non-isotropic

1; if direction du1 : du2 is isotropic.

By˜above a vector, the projection of a vector on the pseudo-Euclidean yz−plane is
denoted.The Gaussian curvature of a surface is defined by means of the coefficients
of the second fundamental form

K = −ϵ
L11L22 − L2

12

W 2
=

eg − f2

EG− F 2
, (6)

where ⟨N, N⟩G1
3
= ϵ = −1 for spacelike surfaces and ⟨N, N⟩G1

3
= ϵ = 1 for timelike

surfaces. The second fundamental form II is given by

II = L11 du2
1 + 2L12 du1du2 + L22du

2
2

where Lij , i; j = 1; 2, are the normal components of M11;M12;M22, respectively.
It holds

Lij = ϵ

(
x1M̃ij − xijM̃1

x1

)
Ũ = ϵ

(
x2M̃ij − xijM̃2

x2

)
Ũ.

The mean curvature of a surface is defined by

H = −ϵ
x2
2L11 − 2x1x2L12 + x2

1L22

2W 2
. (7)

The unit normal field U is an isotropic vector obtained by means of the Galilean
cross product

U =
x1 ∧

G1
3

x2

W
[3,4,13].

3. Weingarten Tubular Surface in Galilean 3-Space

Our purpose in this section, we will obtain the tubular surface from the canal
surface in Galilean 3-space.If we find the canal surface with taking variable radius
r(s) as constant, then the tubular surface can be found, since the canal surface is
a general case of the tubular surface.

An envelope of a 1-parameter family of surfaces is constructed in the same way
that we constructed a 1−parameter family of curves.The family is described by
a differentiable function F (x, y, z, λ) = 0,where λ is a parameter.When λ can be
eliminated from the equations

F (x, y, z, λ) = 0
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and
∂F (x, y, z, λ)

∂λ
= 0,

we get the envelope,which is a surface described implicitly as G(x, y, z) = 0.For
example, for a 1-parameter family of planes we get a develople surface [11].

Definition 3.1. The envelope of a 1-parameter family s → S2
±(s) of the spheres

in G3 is called a canal surface in Galilean 3-space.The curve formed by the centers
of the Galilean spheres is called center curve of the canal surface.The radius of the
canal surface is the function r such that r(s) is the radius of the Galilean sphere
S2
±(s).

Definition 3.2. Let α : (a, b) → G3 be a unit speed curve whose curvature does
not vanish.Consider a tube of radius r around α. Since the normal N and binormal
B are perpendicular to α, the Galilean circle is perpendicular α and α(s).As this
Galilean circle moves along α, it traces out a surface about α which will be the
tube about α , provided r is not too large.

Theorem 3.3. Let α : I → G3 be a curve in Galilean 3-space. Suppose the center
curve of a canal surface is a unit speed curve α with nonzero curvature . Then the
canal surface can be parametrized

C (s, t) = α(s) + r(s) (N(s) cos t+B(s) cos t) ,

where T,N and B denote the tangent, principal normal and binormal of the curve
α.

Proof. Let C denote a patch that parametrizes the envelope of the Galilean spheres
defining the canal surface. Since the curvature of α is nonzero, the Frenet- Serret
frame {T,N,B} is well-defined, and we can write

C (s, t)− α(s) = a(s, t)T + b(s, t)N + c(s, t)B (8)

where a, b and c are differentiable on the interval on which α is defined. We must
have

∥C(s, t)−α(s)∥2G3
=

{
a2 = r2(s), If a(s, t) ̸= 0

b2 + c2 = r2(s), If a(s, t) = 0
(9)

Equation (9) expresses analytically the geometric fact that C (s, t) lies on a Galilean
sphere S2

±(s) of radius r(s) centered at α(s). Furthermore, C (s, t)−α(s) is a normal
vector to the canal surface; this fact implies that

⟨C(s, t)−α(s),Cs⟩G3
= 0, (10)

⟨C(s, t)−α(s),Ct⟩G3
= 0. (11)

Case 1: Let a(s, t) ̸= 0. Equations (9) and (10) say that the vectors Cs and Ct are
tangent to S2

±(s). From (8) and (9) we get{
a2 = r2

aas = rr′
(12)

When we differentiate (8) with respect to s and use the Frenet-Serret formulas, we
obtain

Cs = (1+as)T + (aκ+bs−cτ)N + (cs+bτ)B. (13)
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Then (9),(12), (13), and (10) imply that

(1 + as)a = 0. (14)

From (12) and (14), we get

r = ±(c1 − s). (15)

Thus (8) is not a surface.
Case 2: Let a(s, t) = 0.Equations (9) and (10) say that the vectors Cs and Ct

are tangent to S2
±(s). From (8) and (9) we get{

b2 + c2 = r2

bbs + ccs = rrs.
(16)

When we differentiate (8) with respect to t and use the Frenet-Serret formulas, we
obtain

Ct = btN + ctB. (17)

Then (11), (16), (17) imply that

bbt + cct = 0 (rt = 0). (18)

From (16) and (18), we get

b = r(s) cos t, (19)

c = r(s) sin t .

Thus (8) becomes

C (s, t) = α(s) + r(s) (N(s) cost+B(s) sint) . (20)

The equation (20) means that, the surface is galilean sphere (cylinder) at the
point α(s) with radius in r(s).

It is easy to see that when the radius function r(s) is constant ,the definition of
canal surface reduces to the definition of a tube.In fact, we can characterize tubes
among all canal surfaces.With the Frenet-Serret system in hand, we can construct
a ”tubular surface” of radius r = const. about the curve by defining a surface with
parameters s and t:

Tube (s, t) = α(s) + r (N(s) cost+B(s) sint) . (21)

�

Definition 3.4. Let α : I ⊂ R → G3 be a admissible curve in Galilean 3-space.
A tubular surface of radius λ > 0 about α is the surface with parametrization

M(s, θ) = α(s) + λ [N(s) cos θ +B(s) sin θ] . (22)

Theorem 3.5. Let (X,Y ) ∈ {(K,H)} and let M a tubular surface defined by
(3.15). If M is a (X,Y ) -Weingarten surface, then the curvature of α is a non-
zero constant. If α has non-zero constant torsion, then M is generated by a circular
helix α in Galilean 3-space.

Proof. We have the natural frame {Ms,Mθ} of the surface M given by

Ms = T − (λτ sin θ)N + (λτ cos θ)B,

Mθ = − (λ sin θ)N + (λ cos θ)B.
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The components of the curvatures K and H are

E = 1, F = 0, G = λ2,

e = λτ2 − κ cos θ, f = λτ, g = λ.

On the other hand, the unit normal vector field U is obtained by

U = − (N cos θ +B sin θ) .

According to (4), the curvatures K and H are

K =
−κ cos θ

λ
, H = −1− λκ cos θ + λ2τ2

2λ
, (23)

respectively. Differentiating K and H with respect to s and θ, we get

Ks = −κ′ cos θ

λ
, Kθ =

κ sin θ

λ
, (24)

Hs =
−κ′ cos θ + 2λττ ′

2
, Hθ =

κ sin θ

2
, (25)

Now, we investigate a tubular surface M in G3 satisfying the Jacobi equation
Φ(X,Y ) = 0.We consider tubular surface M in G3 satisfying Φ(K,H) = 0, by
using (23) and (24), we have

KsHθ −KθHs = κττ ′ sin θ = 0,

for every θ.Therefore we conclude that τ ′ = 0. �

Theorem 3.6. Let M be a tubular surface satisfying the linear equation aK+bH =
c. If

(
a+ aλ2τ2 + λ2c

)
̸= 0, then it is an open part of a circular cylinder in

Galilean 3-space. Let (X,Y ) ∈ {(K,H)}. Then there are no (X,Y )-tubular linear
Weingarten surface M in Galilean 3-space.

Proof. We suppose that tubular surface M in G3 is a linear Weingarten surface,
that is, it satisfies the equation

aK + bH = c. (26)

Then, by (23) , we have

(−2aκ− λbκ) cos θ +
(
b+ bλ2τ2 − 2λc

)
= 0.

According to the definition of the linear independent of vectors, we have

2aκ+ bλκ = 0

b+ bλ2τ2 − 2λc = 0

which imply

κ
(
a+ aλ2τ2 + λ2c

)
= 0.

If
(
a+ aλ2τ2 + λ2c

)
̸= 0, then κ = 0 and τ = 0. Thus, M is an open part of a

circular cylinder in Galilean 3-space. �

Theorem 3.7. The tubular surface M(s, θ) is not umblical and minimal.



96 MURAT KEMAL KARACAN AND YILMAZ TUNCER

Proof. Let k1, k2 be the principal curvatures of M(s, θ) in G3 . The principal
curvatures are obtained as follows;

k1 = −1− λκ cos θ + λ2τ2

2λ
+

√(
1− λκ cos θ + λ2τ2

2λ

)2

+
κ cos θ

λ
, (27)

k2 = −1− λκ cos θ + λ2τ2

2λ
−

√(
1− λκ cos θ + λ2τ2

2λ

)2

+
κ cos θ

λ
.

Since M has not a curvature diagram such that k1 − k2 = 0 and k1 + k2 = 0 then
M is not umblical and minimal. �

Theorem 3.8. Let M be a tubular surface in Galilean 3-space. Then M is a HK−
quadric surface if and only if M is a circular cylinder.

At this point, we conclude that, only HK−quadratic tubular surface in Galilean
3-space is circular cylinder

Proof. Suppose that the surface M is HK−quadric.Then the equation (1) implies

aHHs + b(HsK +HKs) + cKKs = 0. (28)

Then, by substituting (23), (24) and (25) into (28) it follows that(
8bλκ− 2aλ2κ2 − 8cκ2

)
cos θ sin θ +

(
2aλκ− 4bλ2κτ2 + 2aλ3κτ2 − 4bκ

)
sin θ = 0.

Since the identity holds for every θ, all the coefficients must be zero. Therefore, we
have (

8bλκ− 2aλ2κ2 − 8cκ2
)

= 0,(
2aλκ− 4bλ2κτ2 + 2aλ3κτ2 − 4bκ

)
= 0.

Thus, we get κ = 0.Then M is a circular cylinder. �

Now, we illustrated an example of Tubular surface about a admissible curve in
Galilean 3-space.Let us consider a curve:

α(s) = (as, b cos s, b sin s) .

In this case, one cancalculate its Frenet-Serret trihedra as

T (s) = (a,−b sin s, b cos s)

N(s) = (0,− cos s,− sin s)

B(s) = (0, sin s,− cos s) .

Thus, we obtained tubular surface as follow:

M(s, θ) = (as, b cos s− λ cos θ cos s+ λb sin θ sin s, b sin s− λ cos θ sin s− λb sin θ cos s) .
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Figure 1. Tubes in Galilean 3-space

4. Weingarten Tubular Surface in Pseudo-Galilean 3-Space

Theorem 4.1. Let α : I → G3 be a curve in Pseudo-Galilean 3-space. Suppose
the center curve of a canal surface is a unit speed curve α with nonzero curvature
. Then the canal surface can be parametrized

C (s, t) = α(s) + r(s) (N(s) cosh t+B(s) sinh t) ,

where T,N and B denote the tangent, principal normal and binormal of the curve
α.

Definition 4.2. Let α : I ⊂ R → G1
3 be a admissible curve in Pseudo-Galilean 3-

space. A tubular surface of radius λ > 0 about α is the surface with parametrization

M(s, θ) = α(s) + λ [N(s) cosh θ +B(s) sinh θ] . (29)

Theorem 4.3. Let (X,Y ) ∈ {(K,H)} and let M a tubular surface defined by
(29). If M is a (X,Y ) -Weingarten surface, then the curvature of α is a non-zero
constant. If α has non-zero constant torsion, then M is generated by a circular
helix α in Pseudo-Galilean 3-space.

Proof. We have the natural frame {Ms,Mθ} of the surface M given by

Ms = T + (λτ sinh θ)N + (λτ cosh θ)B,

Mθ = (λ sinh θ)N + (λ cosh θ)B.

The components of the curvatures K and H are

E = 1, F = 0, G = −λ2,

e = λτ2 + κ cosh θ, f = λτ, g = λ.

On the other hand, the unit normal vector field U is obtained by

U = (N cosh θ +B sinh θ) .

Since ⟨U,U⟩G1
3
= 1, then the surface M is timelike. On the other hand, according

to (6) and (7), the curvatures K and H are

K =
−κ cosh θ

λ
, H =

−1 + λκ cosh θ + λ2τ2

2λ
, (30)
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respectively. Differentiating K and H with respect to s and θ, we get

Ks = −κ′ cosh θ

λ
, Kθ = −κ sinh θ

λ
, (31)

Hs =
κ′ cosh θ + 2λττ ′

2
, Hθ =

κ sinh θ

2
, (32)

Now, we investigate a tubular surface M in G3 satisfying the Jacobi equation
Φ(X,Y ) = 0.We consider tubular surface M in G3 satisfying Φ(K,H) = 0, by
using (31) and (32), we have

KsHθ −KθHs = κττ ′ sinh θ = 0.

for every θ.Therefore we conclude that τ ′ = 0. �

Theorem 4.4. Let M be a tubular surface satisfying the linear equation aK+bH =
c. If

(
−2b+ aλ2τ2 + 2λc

)
̸= 0, then it is an open part of a circular cylinder in

Pseudo-Galilean 3-space. Let (X,Y ) ∈ {(K,H)}. Then there are no (X,Y )-tubular
linear Weingarten surface M.

Proof. We suppose that tubular surface M in G1
3 is a linear Weingarten surface,

that is, it satisfies the equation

aK + bH = c.

Then, by (30) , we have

(−2bκ+ λaκ) cosh θ +
(
−a− 2λc+ aλ2τ2

)
= 0.

According to the definition of the linear independent of vectors, we have

−2bκ+ λaκ = 0

−a− 2λc+ aλ2τ2 = 0

which imply

κ
(
−2b+ aλ2τ2 + 2λc

)
= 0.

If
(
−2b+ aλ2τ2 + 2λc

)
̸= 0, then κ = 0 and τ = 0. Thus, M is an open part of a

circular cylinder in Pseudo-Galilean 3-space. �

Theorem 4.5. The tubular surface M(s, θ) is not umblical and minimal.

Proof. Let k1, k2 be the principal curvatures of M(s, θ) in G3 . The principal
curvatures are obtained as follows;

k1 =
−1 + λκ cosh θ + λ2τ2

2λ
+

√(
−1 + λκ cosh θ + λ2τ2

2λ

)2

+
κ cosh θ

λ

k2 =
−1 + λκ cosh θ + λ2τ2

2λ
−

√(
−1 + λκ cosh θ + λ2τ2

2λ

)2

+
κ cosh θ

λ
.

Since M has not a curvature diagram such that k1 − k2 = 0 and k1 + k2 = 0
then M is not umblical and minimal.

�

Theorem 4.6. Let M be a tubular surface in Pseudo-Galilean 3-space. Then M
is a HK− quadric surface if and only if M is a circular cylinder.
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At this point, we conclude that, only HK−quadric tubular surface is circular
cylinder in Pseudo-Galilean 3-space.

Proof. Suppose that the surface M is HK−quadric. Then the equation (1) implies

aHHθ + b(HθK +HKθ) + cKKθ = 0. (33)

Then, by substituting (30), (31) and (32) into (33) it follows that

(κ sinh θ)
[(
−aλ+ aλ3τ2 + 2b− 2bλ2τ2

)
+
(
aλ2κ cosh θ − 4bλκ cosh θ + 4cκ cosh θ

)]
= 0.

Since the identity holds for every θ, all the coefficients must be zero. Therefore,
we have

(κ sinh θ)
(
−aλ+ aλ3τ2 + 2b− 2bλ2τ2

)
= 0,(

κ2 sinh θ cosh θ
) (

aλ2 − 4bλ+ 4c
)

= 0.

Thus, we get κ = 0.Then M is a circular cylinder. �

Example 4.7. Now, we illustrated an example of Tubular surface about a admis-
sible curve in Pseudo-Galilean 3-space.Let us consider a curve:

α(s) =
(
as, a cosh

s

b
, a sinh

s

b

)
.

In this case, one cancalculate its Frenet-Serret trihedra as

T (s) =
(
a,

a

b
sinh

s

b
,
a

b
cosh

s

b

)
N(s) =

(
0, cosh

s

b
, sinh

s

b

)
B(s) =

(
0, sinh

s

b
, cosh

s

b

)
.

Thus, we obtained tubular surface as follow:

M(s, θ) =
(
as, a cosh

s

b
+ λ cosh θ cosh

s

b
+ λ sinh θ sinh

s

b
, a sinh

s

b
+ λ cosh θ sinh

s

b
+ λ sinh θ cosh

s

b

)
.

Figure 2. Tubes in Pseudo-Galilean 3-space
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