CLOSE-TO-CONVEXITY AND STARLIKENESS OF CERTAIN ANALYTIC FUNCTIONS DEFINED BY A LINEAR OPERATOR

(COMMUNICATED BY INDRAJIT LAHIRI)

RASOUL AGHALARY AND SANTOSH JOSHI

Abstract

The main object of the present paper is to derive some results for multivalent analytic functions defined by a linear operators. As a special case of these results, we obtain several sufficient conditions for close-to-convexity and starlikeness of certain analytic functions.

1. Introduction

Let $\mathcal{A}(p, n)$ denote the class of functions f in the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=n+p}^{\infty} a_{k} z^{k} \quad(p, n \in \mathbb{N}=\{1,2, \ldots\}) \tag{1}
\end{equation*}
$$

which are analytic and p-valent in the open unit disc $\Delta=\{z \in \mathbb{C}:|z|<1\}$. We write $\mathcal{A}(p, 1)=\mathcal{A}(p), \mathcal{A}(1, n)=\mathcal{A}_{n}$ and $\mathcal{A}_{1}=\mathcal{A}$. A function $f \in \mathcal{A}(p, n)$ is said to be p-valent starlike of order $\alpha(0 \leq \alpha<p)$ in Δ if

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, \quad z \in \Delta
$$

and we denote by $S_{p}^{*}(\alpha)$ the class of all such functions. A function $f \in \mathcal{A}(p, n)$ is said to be p-valent convex of order $\alpha(0 \leq \alpha<p)$ in Δ if

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, \quad z \in \Delta
$$

and we denote by $K_{p}^{*}(\alpha)$ the class of all such functions. Further a function $f \in \mathcal{A}$ is said to be close-to-convex if there exists a (not necessarily normalized) convex function g such that

$$
\operatorname{Re}\left(\frac{f^{\prime}(z)}{g^{\prime}(z)}\right)>0, z \in \Delta
$$

We shall denote by \mathcal{C} the class of close-to-convex functions in Δ.

[^0]For two functions f given by (1) and g given by

$$
g(z)=z^{p}+\sum_{k=n+p}^{\infty} b_{k} z^{k} \quad(p, n \in \mathbb{N})
$$

their Hadamard product (or convolution) is defined by

$$
(f * g)(z)=z^{p}+\sum_{k=n+p}^{\infty} b_{k} a_{k} z^{k} .
$$

Define the function $\phi_{p}(a, c ; z)$ by

$$
\phi_{p}(a, c ; z):=z^{p}+\sum_{k=n}^{\infty} \frac{(a)_{k}}{(c)_{k}} z^{k+p} \quad(c \neq 0,-1,-2, \ldots, z \in \Delta)
$$

where $(a)_{n}$ is the Pochhammer symbol defined by

$$
(a)_{n}:= \begin{cases}1, & (n=0) \\ a(a+1)(a+2) \ldots(a+n-1), & (n \in \mathbb{N}:=\{1,2,3 \ldots\})\end{cases}
$$

Corresponding to the function $\phi_{p}(a, c ; z)$, Saitoh [7] introduced a linear operator $\mathcal{L}_{p}(a, c)$ which is defined by means of the following Hadamard product:

$$
\mathcal{L}_{p}(a, c) f(z)=\phi_{p}(a, c) * f(z) \quad(f \in \mathcal{A}(p, n))
$$

or, equivalently, by

$$
\begin{equation*}
\mathcal{L}_{p}(a, c) f(z)=z^{p}+\sum_{k=n}^{\infty} \frac{(a)_{k}}{(c)_{k}} a_{k+p} z^{k+p}, z \in \Delta \tag{2}
\end{equation*}
$$

It follows from (2) that

$$
\begin{equation*}
z\left(\mathcal{L}_{p}(a, c) f(z)\right)^{\prime}=a \mathcal{L}_{p}(a+1, c) f(z)-(a-p) \mathcal{L}_{p}(a, c) f(z) \tag{3}
\end{equation*}
$$

Note that $\mathcal{L}_{p}(a, a) f(z)=f(z), \mathcal{L}_{p}(p+1, p) f(z)=\frac{z f^{\prime}(z)}{p}, \mathcal{L}_{1}(3,1) f(z)=z f^{\prime}(z)+$ $\frac{1}{2} z^{2} f^{\prime \prime}(z)$ and $\mathcal{L}_{p}(\delta+1,1) f(z)=D^{\delta+p} f(z)$, where $D^{\delta+p} f$ is the Ruscheweyh derivative of order $\delta+p$.

Many properties of analytic functions defined by the linear operator $\mathcal{L}_{p}(a, c) f(z)$ were studied by (among others), Aghalary and Ebadian [1], Owa and Srivastava [6], Cho et al. [3], and Carlson and Shaffer [2].

In the present paper we aim to find simple sufficient conditions for close-toconvexity and starlikeness of multivalent analytic functions. The following lemma will be required in our present investigations.

Lemma 1.1. (see[4]) Let the (nonconstant) function ω be analytic in Δ with $\omega(z)=\omega_{n} z^{n}+\cdots$. If $|\omega|$ attains its maximum value on the circle $|z|=r<1$ at a point $z_{0} \in \Delta$, then

$$
z_{0} \omega^{\prime}\left(z_{0}\right)=c \omega\left(z_{0}\right)
$$

where c is a real number and $c \geq n$.

2. Main Results

Theorem 2.1. Let $a \in \mathbb{C},|a|>0, \beta \geq 0, \gamma \geq 0$, and $0 \leq \alpha<p$. If the function $f \in \mathcal{A}(p, n)$ satisfies

$$
\begin{equation*}
\left|\frac{\mathcal{L}_{p}(a, c) f(z)}{z^{p}}-1\right|^{\gamma}\left|\frac{\mathcal{L}_{p}(a+1, c) f(z)-\mathcal{L}_{p}(a, c) f(z)}{z^{p}}\right|^{\beta}<\frac{1}{|a|^{\beta}}\left(1-\frac{\alpha}{p}\right)^{\gamma+\beta} n^{\beta}, z \in \Delta \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\mathcal{L}_{p}(a, c) f(z)}{z^{p}}\right)>\frac{\alpha}{p}, z \in \Delta \tag{5}
\end{equation*}
$$

Proof. Define the function ω by

$$
\begin{equation*}
\frac{\mathcal{L}_{p}(a, c) f(z)}{z^{p}}=\frac{1+\left(1-\frac{2 \alpha}{p}\right) \omega(z)}{1-\omega(z)}, \quad(\omega(z) \neq-1, z \in \Delta) \tag{6}
\end{equation*}
$$

Then, clearly, $\omega(z)=\omega_{n} z^{n}+\cdots$ is analytic in Δ. By a simple computation and by making use of the familiar identity (3), we find from (6) that

$$
\begin{aligned}
& \left|\frac{\mathcal{L}_{p}(a, c) f(z)}{z^{p}}-1\right|^{\gamma}\left|\frac{\mathcal{L}_{p}(a+1, c) f(z)-\mathcal{L}_{p}(a, c) f(z)}{z^{p}}\right|^{\beta} \\
& =\frac{1}{|a|^{\beta}} \frac{2^{\gamma+\beta}\left(1-\frac{\alpha}{p}\right)^{\gamma+\beta}}{|1-\omega(z)|^{\gamma+\beta}}\left|z \omega^{\prime}(z)\right|^{\beta}
\end{aligned}
$$

Suppose now that there exists a point $z_{0} \in \Delta$ such that

$$
\left|\omega\left(z_{0}\right)\right|=1 \quad \text { and } \quad|\omega(z)|<1, \quad \text { when } \quad|z|<\left|z_{0}\right|
$$

Then by using Lemma 1.1, we have $\omega\left(z_{0}\right)=e^{i \theta}, 0<\theta \leq 2 \pi$ and $z_{0} \omega^{\prime}\left(z_{0}\right)=$ $\xi \omega\left(z_{0}\right), \xi \geq n$. Therefore

$$
\begin{aligned}
& \left|\frac{\mathcal{L}_{p}(a, c) f\left(z_{0}\right)}{z_{0}^{p}}-1\right|^{\gamma}\left|\frac{\mathcal{L}_{p}(a+1, c) f\left(z_{0}\right)-\mathcal{L}_{p}(a, c) f\left(z_{0}\right)}{z_{0}^{p}}\right|^{\beta} \\
& =\frac{1}{|a|^{\beta}} \frac{2^{\gamma+\beta}\left(1-\frac{\alpha}{p}\right)^{\gamma+\beta}}{\left|1-e^{i \theta}\right|^{\gamma+\beta}}|\xi|^{\beta} \\
& >\frac{1}{|a|^{\beta}}\left(1-\frac{\alpha}{p}\right)^{\gamma+\beta} n^{\beta}
\end{aligned}
$$

which contradicts our hypothesis (4). Thus, we have

$$
|w(z)|<1, z \in \Delta
$$

and the proof is complete.
By letting $a=c=1$ and $p=n=1$ in Theorem 2.1 we obtain Theorem 3 of [5] that is:

Corollary 2.2. Let $\gamma \geq 0, \beta \geq 0$ and $0 \leq \alpha<1$. If the function $f \in \mathcal{A}$ satisfies

$$
\left|f^{\prime}(z)-1\right|^{\gamma}\left|z f^{\prime \prime}(z)\right|^{\beta}<2^{\beta}(1-\alpha)^{\gamma+\beta}, z \in \Delta
$$

then

$$
\operatorname{Re} f^{\prime}(z)>\alpha, z \in \Delta
$$

i.e. f is close-to-convex function.

Theorem 2.3. Let $a \in \mathbb{C}$ with $\operatorname{Re} a>0$, let $\beta \geq 0, \gamma>0$ and $0 \leq \alpha<p$. If $f \in \mathcal{A}(p)$ satisfies the inequality

$$
\begin{equation*}
\left|\frac{\mathcal{L}_{p}(a, c) f(z)}{z^{p}}-1\right|^{\gamma}\left|\frac{\mathcal{L}_{p}(a+1, c) f(z)}{z^{p}}-1\right|^{\beta} \leq \frac{\left(1-\frac{\alpha}{p}\right)^{\gamma+\beta}}{|a|^{\beta}}\left(\operatorname{Re} a+\frac{n}{2}\right)^{\beta}, z \in \Delta \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\mathcal{L}_{p}(a, c) f(z)}{z^{p}}\right)>\frac{\alpha}{p}, z \in \Delta . \tag{8}
\end{equation*}
$$

Proof. Let define the function ω by

$$
\frac{\mathcal{L}_{p}(a, c) f(z)}{z^{p}}=\frac{1+\left(1-\frac{2 \alpha}{p}\right) \omega(z)}{1-\omega(z)}, \quad(\omega(z) \neq-1, z \in \Delta)
$$

Then ω is analytic in $\Delta, \omega(z)=\omega_{n} z^{n}+\cdots$. By making use of the identity (3), we obtain

$$
\begin{aligned}
& \left|\frac{\mathcal{L}_{p}(a, c) f(z)}{z^{p}}-1\right|^{\gamma}\left|\frac{\mathcal{L}_{p}(a+1, c) f(z)}{z^{p}}-1\right|^{\beta} \\
& =\left|\frac{2\left(1-\frac{\alpha}{p}\right) \omega(z)}{1-\omega(z)}\right|^{\gamma}\left|\frac{1}{a} \frac{2\left(1-\frac{\alpha}{p}\right) z \omega^{\prime}(z)}{(1-\omega(z))^{2}}+\frac{2\left(1-\frac{\alpha}{p}\right) \omega(z)}{1-\omega(z)}\right|^{\beta} \\
& =\frac{2^{\gamma+\beta}\left(1-\frac{\alpha}{p}\right)^{\gamma+\alpha}}{|a|^{\beta}}\left|\frac{\omega(z)}{1-\omega(z)}\right|^{\gamma+\beta}\left|a+\frac{z \omega^{\prime}(z)}{(1-\omega(z)) \omega(z)}\right|^{\beta} .
\end{aligned}
$$

Suppose that there exists a point $z_{0} \in \Delta$ such that $\max |\omega(z)|=\left|\omega\left(z_{0}\right)\right|=1 \quad(|z| \leq$ $\left.\left|z_{0}\right|\right)$. Then by using Lemma 1.1, we have $\omega\left(z_{0}\right)=e^{i \theta}, 0<\theta \leq 2 \pi$ and $z_{0} \omega^{\prime}\left(z_{0}\right)=$ $\xi \omega\left(z_{0}\right), \xi \geq n$. Therefore

$$
\begin{aligned}
& \left|\frac{\mathcal{L}_{p}(a, c) f\left(z_{0}\right)}{z_{0}^{p}}-1\right|^{\gamma}\left|\frac{\mathcal{L}_{p}(a+1, c) f\left(z_{0}\right)}{z_{0}^{p}}-1\right|^{\beta} \\
& =\frac{2^{\gamma+\beta}\left(1-\frac{\alpha}{p}\right)^{\gamma+\beta}}{|a|^{\beta}} \frac{1}{\left|1-\omega\left(z_{0}\right)\right|^{\gamma+\beta}}\left|a+\frac{\xi}{\left(1-e^{i \theta}\right)}\right|^{\beta} \\
& \geq \frac{\left(1-\frac{\alpha}{p}\right)^{\gamma+\beta}}{|a|^{\beta}}\left(\operatorname{Re} a+\frac{n}{2}\right)^{\beta} .
\end{aligned}
$$

Which contradicts obviously our hypothesis (7). Thus, we have $|\omega(z)|<1$ for all $z \in \Delta$, and hence (8) holds true.

By letting $c=a-1=1, \gamma=\beta=\frac{1}{2}$ and $p=n=1$ in Theorem 2.1, we obtain the following Corollary:
Corollary 2.4. If the function $f \in \mathcal{A}$ satisfies the inequality

$$
\left|f^{\prime}(z)-1\right|^{\frac{1}{2}}\left|f^{\prime}(z)+\frac{1}{2} z f^{\prime \prime}(z)-1\right|^{\frac{1}{2}}<\frac{(1-\alpha)}{\sqrt{2}}\left(2+\frac{1}{2}\right)^{\frac{1}{2}}, z \in \Delta
$$

then

$$
\operatorname{Re} f^{\prime}(z)>\alpha, z \in \Delta
$$

i.e. f is close-to-convex function.

By letting $c=a=1, \gamma=\beta=\frac{1}{2}$ and $p=1$ in Theorem 2.3, we conclude the following result:

Corollary 2.5. If the function $f \in \mathcal{A}$ satisfies the inequality

$$
|f(z)-1|^{\frac{1}{2}}\left|f^{\prime}(z)-1\right|^{\frac{1}{2}}<\frac{3}{2}(1-\alpha), z \in \Delta
$$

then

$$
\operatorname{Re}\left(\frac{f(z)}{z}\right)>\alpha, z \in \Delta
$$

Finally we prove:
Theorem 2.6. Suppose that $a \in \mathbb{C}$, Re $a \geq 0, \beta \geq 0, \gamma \geq 0$ and $0 \leq \alpha<p$. If the function $f \in \mathcal{A}(p, n)$ satisfies the inequality

$$
\begin{equation*}
\left|\frac{\mathcal{L}_{p}(a+1, c) f(z)}{\mathcal{L}_{p}(a, c) f(z)}-1\right|^{\gamma}\left|\frac{\mathcal{L}_{p}(a+2, c) f(z)}{\mathcal{L}_{p}(a+1, c) f(z)}-1\right|^{\beta}<N(\alpha, p, n, \gamma, \beta), z \in \Delta \tag{9}
\end{equation*}
$$

where

$$
N(\alpha, p, n, \gamma, \beta)= \begin{cases}\frac{\left(1-\frac{\alpha}{p}\right)^{\gamma}\left((\operatorname{Re} a)\left(1-\frac{\alpha}{p}\right)+\frac{n}{2}\right)^{\beta}}{|a+1|^{\beta}}, & 0 \leq \alpha \leq \frac{p}{2} \tag{10}\\ \frac{\left(1-\frac{\alpha}{p}\right)^{\gamma+\beta}}{|a+1|^{\beta}}(\operatorname{Re} a+n)^{\beta}, & \frac{p}{2} \leq \alpha<p\end{cases}
$$

Then

$$
\operatorname{Re}\left(\frac{\mathcal{L}_{p}(a+1, c) f(z)}{\mathcal{L}_{p}(a, c) f(z)}\right)>\frac{\alpha}{p}, z \in \Delta
$$

Proof. Define the function M by

$$
M(z)=\frac{\mathcal{L}_{p}(a+1, c) f(z)}{\mathcal{L}_{p}(a, c) f(z)}
$$

Then by a simple computation and by making use of the identity (3), we have

$$
\begin{align*}
& \left|\frac{\mathcal{L}_{p}(a+1, c) f(z)}{\mathcal{L}_{p}(a, c) f(z)}-1\right|^{\gamma}\left|\frac{\mathcal{L}_{p}(a+2, c) f(z)}{\mathcal{L}_{p}(a+1, c) f(z)}-1\right|^{\beta} \\
& =|M(z)-1|^{\gamma}\left|\frac{1}{a+1}\left(\frac{z M^{\prime}(z)}{M(z)}+a(M(z)-1)\right)\right|^{\beta} . \tag{11}
\end{align*}
$$

Now we distinguish two cases,
Case(i). If $0 \leq \alpha \leq \frac{p}{2}$, define a function ω

$$
M(z)=\frac{1+\left(1-\frac{2 \alpha}{p}\right) \omega(z)}{1-\omega(z)}, z \in \Delta
$$

Then ω is analytic in $\Delta, \omega(z)=\omega_{n} z^{n}+\cdots$ and $\omega(z) \neq 1$ in Δ. we find from (11) that

$$
\begin{align*}
& \left|\frac{\mathcal{L}_{p}(a+1, c) f(z)}{\mathcal{L}_{p}(a, c) f(z)}-1\right|^{\gamma}\left|\frac{\mathcal{L}_{p}(a+2, c) f(z)}{\mathcal{L}_{p}(a+1, c) f(z)}-1\right|^{\beta} \\
& =\frac{2^{\gamma+\beta}\left(1-\frac{\alpha}{p}\right)^{\gamma+\beta}}{|a+1|^{\beta}}\left|\frac{\omega(z)}{1-\omega(z)}\right|^{\gamma+\beta}\left|a+\frac{z \omega^{\prime}(z)}{\left[1+\left(1-\frac{2 \alpha}{p}\right) \omega(z)\right] \omega(z)}\right|^{\beta} . \tag{12}
\end{align*}
$$

Suppose now that there exists a point $z_{0} \in \Delta$ such that $\max |\omega(z)|=\left|\omega\left(z_{0}\right)\right|=$ $1\left(|z| \leq\left|z_{0}\right|\right)$. Then by using Lemma 1.1, we have $\omega\left(z_{0}\right)=e^{i \theta}, 0<\theta \leq 2 \pi$ and $z_{0} \omega^{\prime}\left(z_{0}\right)=m \omega\left(z_{0}\right), m \geq n$. Therefore from (12), we obtain

$$
\begin{aligned}
& \left|\frac{\mathcal{L}_{p}(a+1, c) f\left(z_{0}\right)}{\mathcal{L}_{p}(a, c) f\left(z_{0}\right)}-1\right|^{\gamma}\left|\frac{\mathcal{L}_{p}(a+2, c) f\left(z_{0}\right)}{\mathcal{L}_{p}(a+1, c) f\left(z_{0}\right)}-1\right|^{\beta} \\
& \geq \frac{\left(1-\frac{\alpha}{p}\right)^{\gamma+\beta}}{|a+1|^{\beta}}\left(\operatorname{Re} a+\frac{n}{2\left(1-\frac{\alpha}{p}\right)}\right)^{\beta} \\
& =\frac{1}{|a+1|^{\beta}}\left(1-\frac{\alpha}{p}\right)^{\gamma}\left(\operatorname{Re}\left(1-\frac{\alpha}{p}\right)+\frac{n}{2}\right)^{\beta}
\end{aligned}
$$

which contradicts (10) for $0 \leq \alpha \leq \frac{p}{2}$, Hence, we must have $|\omega(z)|<1$ for all $z \in \Delta$, and the first part of theorem complete.
Case(ii). When $\frac{p}{2} \leq \alpha<p$, let a function ω be defined by

$$
M(z)=\frac{\frac{\alpha}{p}}{\frac{\alpha}{p}-\left(1-\frac{\alpha}{p}\right) \omega(z)}, z \in \Delta
$$

Then ω is analytic in Δ and $\omega(z)=\omega_{n} z^{n}+\cdots$ proceeding the same as case(i). We find from (12) that

$$
\begin{align*}
& \left|\frac{\mathcal{L}_{p}(a+1, c) f(z)}{\mathcal{L}_{p}(a, c) f(z)}-1\right|^{\gamma}\left|\frac{\mathcal{L}_{p}(a+2, c) f(z)}{\mathcal{L}_{p}(a+1, c) f(z)}-1\right|^{\beta} \\
& =\frac{\left(1-\frac{\alpha}{p}\right)^{\gamma+\beta}}{|a+1|^{\beta}}\left|\frac{\omega(z)}{\frac{\alpha}{p}-\left(1-\frac{\alpha}{p}\right) \omega(z)}\right|^{\gamma+\beta}\left|a+\frac{z \omega^{\prime}(z)}{\omega(z)}\right|^{\beta} . \tag{13}
\end{align*}
$$

Suppose that there exists a point $z_{0} \in \Delta$ such that $\max |\omega(z)|=\left|\omega\left(z_{0}\right)\right|=1(|z| \leq$ $\left.\left|z_{0}\right|\right)$. Then by using Lemma 1.1, we have obtain $\omega\left(z_{0}\right)=e^{i \theta}, 0 \leq \theta \leq 2 \pi$ and $z_{0} \omega^{\prime}\left(z_{0}\right)=m \omega\left(z_{0}\right), m \geq n$. Now from (13) we have

$$
\begin{aligned}
& \left|\frac{\mathcal{L}_{p}(a+1, c) f\left(z_{0}\right)}{\mathcal{L}_{p}(a, c) f\left(z_{0}\right)}-1\right|^{\gamma}\left|\frac{\mathcal{L}_{p}(a+2, c) f\left(z_{0}\right)}{\mathcal{L}_{p}(a+1, c) f\left(z_{0}\right)}-1\right|^{\beta} \\
& =\frac{\left(1-\frac{\alpha}{p}\right)^{\gamma+\beta}}{|a+1|^{\beta}}\left|\frac{\omega\left(z_{0}\right)}{\frac{\alpha}{p}-\left(1-\frac{\alpha}{p}\right) \omega\left(z_{0}\right)}\right|^{\gamma+\beta}\left|a+\frac{z_{0} \omega^{\prime}\left(z_{0}\right)}{\omega\left(z_{0}\right)}\right|^{\beta} \\
& \geq \frac{\left(1-\frac{\alpha}{p}\right)^{\gamma+\beta}}{|a+1|^{\gamma+\beta}}(\operatorname{Re} a+n)^{\beta},
\end{aligned}
$$

which contradicts (9) for $\frac{p}{2} \leq \alpha<p$. Therefore, we must have $|\omega(z)|<1$ for all $z \in \Delta$, and the proof is complete.

By letting $c=a=1$ and $p=1$ in the theorem 2.6, we have:
Corollary 2.7. If the function $f \in \mathcal{A}_{n}$ satisfies the inequality

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|^{\gamma}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|^{\beta} \leq M(\alpha, \beta, \gamma, n), z \in \Delta
$$

where

$$
M(\alpha, \beta, \gamma, n)= \begin{cases}(1-\alpha)^{\gamma}\left(1+\frac{n}{2}-\alpha\right)^{\beta}, & 0 \leq \alpha \leq \frac{1}{2} \\ (1-\alpha)^{\gamma+\beta}(1+n)^{\beta}, & \frac{1}{2} \leq \alpha<1\end{cases}
$$

Then

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in \Delta
$$

Acknowledgement. The authors would like to express their gratitude to the referee for many valuable comments that improved the paper.

References

[1] R. Aghalary and A. Ebadian, Univalence of certain linear operators defined by hypergeometric functions, J. Ineq and Appl. (2009), 1-12.
[2] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15(4)(1984), 737-745.
[3] N. Cho, J. Patel and G. P. Mohapatra, Argument estimates of certain multivalent functions involving a linear operator, IJMMS. 31(11)(2002), 659-673.
[4] I. S. Jack, Functions starlike and convex of order alpha, J. London Math. Soc. 3(2)(1971), 469-474.
[5] S. Owa, M. Nunokawa, H. Saitoh and H. M. Srivastava, Close-To-Convexity, starlikeness and convexity of certain analytic functions, Appl. Math. Letter. 15(2002), 63-69.
[6] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canada. J. Math. 33(1987), 1057-1077.
[7] H. Saitoh, A linear operator and its application of first order diffrentioal subordinations, Math. Japan. 44(1996), 31-38.

Rasoul Aghalary
Department of Mathematics, Faculty of Science, Urmia University
Urmia, Iran.
E-mail address: raghalary@yahoo.com
Santosh Joshi
Department of Mathematics, Walechand college of Engineering
SANGLI, India.

E-mail address: joshisb@hotmail.com

[^0]: ${ }^{0} 2000$ Mathematics Subject Classification: Primary 30C45; Secondary 30C80.
 Keywords and phrases. Convex functions, Close-to-Convex functions, Starlike function, Convolution product.
 (C) 2013 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted October 30, 2013. Published April 26, 2013.

