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(COMMUNICATED BY HÜSEYIN BOR)
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Abstract. Recently, Lal [9] has determined the degree of approximation
of function belonging to Lip α and weighted classes using Product C1 . Np

summability with non-increasing weights{pn}. In this paper, we determine the

degree of approximation of function f̃ , conjugate to a 2π-periodic function f

belonging to Lip (ξ (t), r)−class using semi-monotonicity on the generating se-
quence {pn} with proper set of conditions. Few applications of approximation
of functions will also be highlighted.

1. Introduction

The method of summability considered here was first introduced by Woronoi
[20]. Summability techniques were also applied on some engineering problems like,
Chen and Jeng [3] implemented the Cesàro sum of order (C, 1) and(C, 2), in order
to accelerate the convergence rate to deal with the Gibbs phenomenon, for the
dynamic response of a finite elastic body subjected to boundary traction. Chen et
al. [2] applied regularization with Cesàro sum technique for the derivative of the
double layer potential. Similarly, Chen and Hong [1] used Cesàro sum regularization
technique for hyper singularity of dual Integral equation.

The degree of approximation of functions belonging to Lipα, Lip (α, r), Lip (ξ(t), r)
and weighted classes by Nörlund (Np) matrices and general summability matrices
has been proved by various investigators like Govil [5], Khan [7], Qureshi [18], Mo-
hapatra and Chandra [15], Leindler [8], Rhoades et al. [19], Guven and Israfilov
[4] and Mishra et al.[[10]-[12]]. Here, Lal [9] has assumed monotonicity on the
generating sequence {pn} to prove their theorems.

The approximation of function f̃ , conjugate to a periodic function f ∈ Lip (ξ (t), r) (r ≥ 1)
using product

(
C1 . Np

)
− summability has not been studied so far. In this paper,
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we obtain a new theorem on the degree of approximation of function f̃ , conjugate
to a periodic function f ∈ Lip (ξ (t), r) (r ≥ 1)− class using semi-monotonicity
on the generating sequence {pn} and a proper set of the conditions.

Let
∑∞

n=0 an be a given infinite series with the sequence of nth partial sums {sn}.
Let {pn} be a non-negative sequence of constants, real or complex, and let us write

Pn =
n∑

k=0

pk 6= 0 ∀ n ≥ 0, p−1 = 0 = P−1 and Pn → ∞ asn→ ∞ .

The sequence to sequence transformation tNn =
∑n

ν =0 p n− ν sν/Pn defines the

sequence
{
tNn
}
of Nörlund means of the sequence {sn} , generated by the sequence

of coefficients {pn} . The series
∑∞

n=0 an is said to be summable Np to the sum s

if lim
n→ ∞

tNn exists and is equal to s. In the special case in which

pn =

(
n + α − 1
α − 1

)
=

(n+ α)

(n+ 1) (α)
; (α > −1) .

The Nörlund summability Np reduces to the familiar Cα summability. The product
of C1 summability with a Np summability defines C1 . Np summability.

Thus the C1 . Npmean is given by tC N
n = 1

n+1

∑n
k=0 P

−1
k

∑ k
ν =0 pk− ν sν . If

tC N
n → s as n → ∞ then the infinite series

∑∞
n=0 an or the sequence {sn} is

said to be summable C1 . Np to the sum s if lim
n→ ∞

tC N
n exists and is equal to s.

sn → s ⇒ Np (sn) = tNn = P−1
n

∑n
ν =0 pn− ν sν → s, as n → ∞ , Np method

is regular,

⇒ C1 (Np (sn) ) = tC N
n → s, as n → ∞ , C1 method is regular, ⇒ C1 . Np

method is regular.

Let L 2π be the space of all 2 π- periodic and Lebesgue integrable functions over
[−π, π].
Then the Fourier series of f ∈ L 2π at x is given by

f(x) ∼ a0

2
+

∞∑

n=1

(an cos x+ bn sin n x) ≡
∞∑

n=0

An (x) (1.1)

with nth partial sum sn(f ; x), where an and bn are the Fourier coefficients of f.
The conjugate series of Fourier series is given by

∞∑

n=1

(bn cosnx− an sinnx) ≡
∞∑

n = 1

Bn (x) . (1.2)

A function f(x) ∈ Lipα if | f(x+ t)− f(x) | = O(| t|α) for 0 < α ≤ 1, t > 0 and

f(x) ∈ Lip (α, r), [7] for 0 ≤ x ≤ 2π, if ‖ f(x+ t)− f(x) ‖r =
(∫ 2π

0 | f(x+ t)− f(x) | rdx
)1/r

=

O(|t|α) , 0 < α ≤ 1, r ≥ 1, t > 0.
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A signal f(x) ∈ Lip(ξ(t), r) if

‖ f(x+ t)− f(x) ‖ r =

(∫ 2π

0

|f(x+ t)− f(x)| rdx

)1/r

= O(ξ(t)) , r ≥ 1, t > 0.

If ξ(t) = tα then Lip (ξ(t), r) class coincides with the class Lip(α, r) and if r →
∞ then Lip(α, r) reduces to the class Lipα.
Thus, we observe that

Lip(ξ(t), r)
ξ(t)=tα−→ Lip(α, r)

r→∞−→ Lipα for 0 < α ≤ 1, r ≥ 1, t > 0.

L∞- norm of a function f : R → R is defined by ‖ f ‖∞ = sup {| f (x) | : x ∈ R} .
Lr- norm of a function is defined by ‖f‖ r =

(∫ 2 π

0
|f(x)| r dx

)1/r
, r ≥ 1.

The degree of approximation of a function f : R → R by trigonometric poly-
nomial tn of order n under sup norm ‖ ‖∞ is defined by ([21]) ‖ tn − f ‖∞ =
sup {| tn (x)− f (x) | : x ∈ R} and En(f) of a function f ∈ L r is given by

En(f) = min
n

‖ tn − f ‖ r . The conjugate function f̃(x) is defined for almost ev-

ery x by

f̃(x) = − 1

2π

∫ π

0

ψ (t) cot t/2 dt = lim
h→ 0

(
− 1

2π

∫ π

h

ψ (t) cot t/2 dt

)
.

We note that tNn and tC N
n are also trigonometric polynomials of degree (or order)

n.

Abel’s Transformation: The formula

n∑

k=m

uk vk =
n− 1∑

k=m

Uk (vk − vk+1) − Um− 1 vm + Un vn , (1.3)

where 0 ≤ m ≤ n, Uk = u0 + u1 + u2 + ....+uk, if k ≥ 0, U− 1 = 0, which can
be verified, is known as Abel’s transformation and will be used extensively in what
follows. If vm, vm+1, ..., vn are non-negative and non-increasing, the left hand side
of (1.3) does not exceed 2 vm max

m− 1 ≤ k ≤ n
|Uk| in absolute value. In fact,

∣∣∣∣∣

n∑

k=m

uk vk

∣∣∣∣∣ ≤ max |Uk |
{

n− 1∑

k=m

(vk − vk+1) + vm + vn

}

= 2 vm max |Uk | . (1.4)

We write throughout φ (t) = f (x + t) − 2 f (x) + f (x − t) ,

Wn =
1

2 π (n + 1)

n∑

k=0

P−1
k

k∑

ν =0

(ν + 1) | pν − pν −1 | ,

J̃ (n, t) =
1

2 π (n + 1)

n∑

k=0

P−1
k

k∑

ν =0

pν
cos (k − v + 1/2) t

sin t/2
(1.5)

τ = [1/t] , where τ denotes the greatest integer not exceeding 1/t. Furthermore, C
denotes an absolute positive constant, not necessarily the same at each occurrence.
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2. Main Theorem

It is well known that the theory of approximations i.e., TFA, which originated from
a well-known theorem of Weierstrass, has become an exciting interdisciplinary field
of study for the last 130 years. These approximations have assumed important
new dimensions due to their wide applications in signal analysis [16], in general
and in Digital Signal Processing [17] in particular, in view of the classical Shannon
sampling theorem. Mittal et. al.
([[13], [14]]) have obtained many interesting results on TFA using summability
methods without monotonicity on the rows of the matrix T: a digital filter.

Broadly speaking, signals are treated as functions of one variable and images are
represented by functions of two variables. But till now, nothing seems to have been
done so far to obtain the degree of approximation of conjugate of a function using
C1 . Np product summability method of its conjugate series of Fourier series.

Therefore, the purpose of present paper is to establish a quite new theorem on
degree of approximation of a function f̃ (x) , conjugate to a 2π− periodic function
f belonging to Lip (ξ(t), r), (r ≥ 1)− class by C1 . Np means of conjugate series
of Fourier series using semi-monotonicity on the generating sequence {pn}and a
proper set of conditions. We prove

Theorem 2.1. If f̃ (x) ,conjugate to a 2π− periodic function fbelonging to Lip (ξ(t), r)
class, then its degree of approximation by C1 . Np means of conjugate series of
Fourier series (1.2) is given by

∥∥∥ t̃C N
n − f̃

∥∥∥
r
= O

(
(n) 1 / 2 r

ξ

(
1√
n

))
, (2.1)

provided {pn} satisfies the

Wn < C, (2.2)

and ξ (t) satisfies the following conditions: {ξ (t)/t} is non-increasing in

′t′ , (2.3)

(∫ π/
√

n

0

( |ψ (t) |
ξ (t)

)r

dt

)1/r

= O(1) , (2.4)

(∫ π

π /
√

n

(
t−δ |ψ (t) |

ξ (t)

)r

dt

)1/r

= O
((√

n
)δ)

, (2.5)

where δ is an arbitrary number such that s (1− δ)− 1 > 0, r−1 + s−1 = 1, 1 ≤ r ≤
∞, conditions (2.4) and (2.5) hold uniformly in x.

Note 2.2. ξ
(

π√
n

)
≤ π ξ

(
1√
n

)
, for

(
π√
n

)
≥
(

1√
n

)
.

Note 2.3. Condition Wn < C ⇒ n pn < C Pn, ([6]).

Note 2.4. The product transform C1. Np plays an important role in signal theory
as a double digital filter [10] and theory of Machines in Mechanical Engineering
[10].
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We need the following lemmas for the proof of our theorem:

Lemma 3.1.
∣∣∣J̃ (n, t)

∣∣∣ = O [1/t] for 0 < t ≤ π/
√
n.

Proof. For 0 < t ≤ π/
√
n, sin (t/2) ≥ (t/π) and | cosnt | ≤ 1.

∣∣∣J̃ (n, t)
∣∣∣ =

∣∣∣∣∣
1

2 π (n + 1)

n∑

k=0

P −1
k

k∑

v = 0

pν
cos (k − v + 1/2) t

sin t/2

∣∣∣∣∣

≤ 1

2 π (n + 1)

n∑

k=0

P −1
k

k∑

v = 0

pν
|cos (k − v + 1/2) t|

|sin t/2|

≤ 1
2 t (n+1)

∑n
k=0 P

−1
k

∑k
v = 0 pν

= 1
2 t (n+1)

∑n
k=0 P

−1
k Pk

= O [τ ] .

This completes the proof of Lemma 3.1.

Lemma 3.2. Let {pn} be a non-negative sequence and satisfies (3.2), then

∣∣∣J̃ (n, t)
∣∣∣ = O(τ) + O

(
τ2

n

) (∑n
k= τ P

−1
k

∑ k− 1
ν = 0 |∆ pν |

)
uniformly in

0 < t ≤ π . (3.1)

Proof. We have

J̃ (n, t) =
1

2 π (n + 1)

n∑

k=0

P −1
k

k∑

v = 0

pν
cos (k − v + 1/2) t

sin t/2

=
1

2 π (n + 1)

(
τ −1∑

k=0

+
n∑

k= τ

)
P −1

k

k∑

v = 0

pν
cos (k − v + 1/2) t

sin t/2

= J̃1 (n, t) + J̃2 (n, t) , (3.2)

say,
where

∣∣∣J̃1 (n, t)
∣∣∣ =

∣∣∣∣∣
1

2 π (n + 1)

τ − 1∑

k=0

P −1
k

k∑

v = 0

pν
cos (k − v + 1/2) t

sin t/2

∣∣∣∣∣

≤ 1

2 π (n + 1)

τ − 1∑

k=0

P −1
k

k∑

v = 0

pν
|cos (k − v + 1/2) t|

|sin t/2| ≤ 1

2 t (n + 1)

τ − 1∑

k=0

P −1
k

k∑

v = 0

pν

= O

(
τ2

(n + 1)

)
, (3.3)

and using Abel’s transformation and sin (t/2) ≥ (t/π) , for 0 < t ≤ π, we get

∣∣∣J̃2 (n, t)
∣∣∣ =

∣∣∣∣∣
1

2 π (n + 1)

n∑

k= τ

P −1
k

k∑

v = 0

pν
cos (k − v + 1/2) t

sin t/2

∣∣∣∣∣
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≤ 1

2 t (n + 1)

n∑

k= τ

P −1
k

{
k− 1∑

v = 0

|∆ pν |
∣∣∣∣∣

(
ν∑

γ =0

cos (k − γ + 1/2) t

) ∣∣∣∣∣

+

∣∣∣∣∣

(
k∑

γ =0

cos (k − γ + 1/2) t

)∣∣∣∣∣ pk
}

=
O
(
t−1
)

2 t (n + 1)

(
n∑

k= τ

P −1
k

k− 1∑

v = 0

|∆ pν | +
n∑

k= τ

P −1
k pk

)

by virtue of the fact that
∑µ

k=λ exp (−ikt) = O
(
t−1
)
, 0 ≤ λ ≤ k ≤ µ.

∣∣∣J̃2 (n, t)
∣∣∣ = O

(
τ2

(n + 1)

) ( n∑

k= τ

P −1
k

k− 1∑

v = 0

|∆ pν | +

n∑

k= τ

P −1
k pk

k

k

)

= O

(
τ2

(n + 1)

) ( n∑

k= τ

P −1
k

k− 1∑

v = 0

|∆ pν | +
(n + 1)

τ

)

= O(τ) + O

(
τ2

(n + 1)

) n∑

k= τ

P −1
k

k− 1∑

v = 0

|∆ pν | ,

∣∣∣J̃2 (n, t)
∣∣∣ = O(τ) + O

(
τ2

n

) n∑

k= τ

P −1
k

k− 1∑

v = 0

|∆ pν | (3.4)

in view of note 2.3. Combining (3.2), (3.3) and (3.4) yields (3.1).
This completes the proof of Lemma 3.2.

Proof of Theorem 2.1: Let s̃n (f ; x) denotes the partial sum of series (1.2), we
have

s̃n (f ; x) − f̃ (x) =
1

2π

∫ π

0

ψ (t)
cos (n+ 1/2) t

sin t/2
dt.

Denoting C1. Np means of s̃n (f ; x) by t̃
C N
n , we write

t̃C N
n (x)− f̃ (x) =

∫ π

0

ψ (t)
1

2 π (n + 1)

n∑

k=0

P−1
k

k∑

ν =0

pν
cos (k − v + 1/2) t

sin t/2
dt

=

∫ π

0

ψ (t) J̃ (n, t) dt =

[∫ π /
√

n

0

+

∫ π

π /
√

n

]
ψ (t) J̃ (n, t) dt

= I1 + I2 (say). (4.1)

Clearly, |ψ (x + t) − ψ (t)| ≤ |f (u + x + t) − f (u + x)|+ |f (u − x − t) − f (u − x)| .
Hence, by Minkowski’s inequality,
{∫ 2π

0

|(ψ (x + t) − ψ (t)) | r dx
}1 / r

≤
{∫ 2π

0

|(f (u + x + t) − f (u + x)) | r dx
}1 / r

+

{∫ 2π

0

|(f (u − x − t) − f (u − x)) | r dx
}1 / r

= O (ξ (t)) .
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Then f ∈ Lip (ξ (t) , r) ⇒ ψ ∈ Lip (ξ (t) , r) . Using Hlder’s Inequality, ψ (t) ∈
Lip (ξ (t) , r) , condition (2.4) , sin (t/2) ≥ (t/π) , for 0 < t ≤ π, Lemma 3.1, note
2.2 and Second Mean Value Theorem for integrals, we have

|I1| ≤
[∫ π /

√
n

0

( |ψ(t) |
ξ(t)

) r

dt

]1/r [∫ π /
√

n

0

(
ξ(t)

∣∣∣J̃(n, t)
∣∣∣
) s

dt

]1/s

= O(1)

[∫ π /
√

n

0

(
ξ(t)

t

) s

dt

]1/s

= O

{
ξ

(
π√
n

)}[∫ π /
√

n

h

(
1

t

)s

dt

]1 / s

, as h → 0

= O

(
(n)

r / 2
ξ

(
1√
n

))
, r−1 + s−1 = 1. (4.2)

Using Lemma 3.2, we have

|I2| = O

[∫ π

π /
√

n

|ψ (t) |
t

dt

]
+O

[∫ π

π /
√

n

|ψ (t) |
t n

(
τ

n∑

k= τ

P −1
k

k− 1∑

ν = 0

| pν |
)
dt

]

= O (I2 1) + O (I2 2) .

Using Hlder’s Inequality, conditions (2.3) and (2.5), note 2.2 and Second Mean
Value Theorem for integrals, we have

|I2 1| ≤
[∫ π

π /
√

n

(
t−δ |ψ (t) |

ξ(t)

)r

dt

]1 /r [∫ π

π /
√

n

(
ξ(t)

t− δ+1

)s

dt

]1 / s

= O
((√

n
)δ)

[∫ π

π /
√

n

(
ξ(t)

t−δ+1

)s

dt

]1/s
= O

{(√
n
)δ}



∫ √

n/π

1 / π



ξ
(
1/y

)

yδ−1




s

dy

y2



1/s

= O


(√n

)δ ξ
(
π/√n

)

π/√n



[∫ √

n/π

1 /π

(
dy

y δ s + 2

)]1 / s

= O

((√
n
)δ+1

ξ

(
1√
n

))(
(
√
n)

−δ s−1 − (π)
δ s+1

−δ s− 1

)1 / s

= O

(
(n) r / 2

ξ

(
1√
n

))
. (4.3)

Similarly, as above conditions (2.2), (2.3), (2.5), note 2.2 and Second Mean Value
Theorem for integrals, we have

|I2 2| ≤
[∫ π

π /
√

n

(
t−δ |ψ (t) |

ξ(t)

) r

dt

]1 / r
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[∫ π

π /
√

n

(
ξ(t)

t− δ+1

1

n

(
τ

n∑

k= τ

P −1
k

k− 1∑

ν = 0

| pν |
)) s

dt

] 1 / s

= O

(
(
√
n)

δ

n

)[∫ π

π /
√

n

(
ξ(t)

t−δ+1

(
τ

n∑

k= τ

P −1
k

k− 1∑

ν = 0

| pν |
)) s

dt

]1 / s

= O

(
(
√
n)

δ

n

)[∫ π

π /
√

n

(
ξ(t)

t−δ+1

(
n∑

k= τ

P −1
k

k− 1∑

ν = 0

(ν + 1) | pν |
)) s

dt

]1 / s

= O

(
(
√
n)

δ

n

)[∫ π

π /
√

n

(
ξ(t)

t−δ+1

(
n∑

k=0

P −1
k

k∑

ν = 0

(ν + 1) | pν |
)) s

dt

]1 / s

= O

(
(
√
n)

δ

n

)[∫ π

π /
√

n

(
ξ(t)

t−δ+1
Wn 2 π (n)

) s

dt

]1 / s

= O
((√

n
)δ)

[∫ π

π /
√

n

(
ξ(t)

t−δ+1

) s

dt

]1 / s

= O
{(√

n
)δ}



∫ √

n/π

1/π



ξ
(
1/y

)

yδ−1




s

dy

y2



1 / s

= O

(
(n)

r / 2
ξ

(
1√
n

))
. (4.4)

Collecting (4.1)-(4.4), we have

∣∣∣ t̃C N
n − f̃

∣∣∣ = O

(
(n)

r / 2
ξ

(
1√
n

))
. (4.5)

Now, using the L r-norm of a function, we get

∥∥∥ t̃C N
n − f̃

∥∥∥
r
=
{∫ 2π

0

∣∣∣ t̃C N
n (x)− f̃ (x)

∣∣∣
r

dx
}1 / r

= O
(∫ 2 π

0

(
(n) r / 2 ξ

(
1√
n

)) r

dx
) 1 / r

= O

(
(n )r / 2

ξ

(
1√
n

) (∫ 2 π

0

dx

)1 / r
)

= O

(
(n )

r / 2
ξ

(
1√
n

))
.

This completes the proof of Theorem 2.1.
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3. Applications

Some interesting applications of the Cesàro summability can be seen [[1], [2], [3]].
The following corollaries can be derived from Theorem 2.1.

Corollary 5.1. If ξ(t) = tα, 0 < α ≤ 1, then the class Lip (ξ(t), r) , r ≥ 1,
reduces to the class Lip (α, r) , 1

r < α < 1 and the degree of approximation of

a function f̃ (x), conjugate to a 2π− periodic function f belonging to the class
Lip (α, r) , is given by

∣∣∣ t̃C N
n − f̃

∣∣∣ = O
(
(n)

−α / 2 + 1 / 2 r
)
. (5.1)

Proof. Putting ξ(t) = tα, 0 < α ≤ 1 in Theorem 2.1, we have

∥∥∥ t̃C N
n − f̃

∥∥∥
r
=

{∫ 2π

0

∣∣∣ t̃C N
n (x)− f̃ (x)

∣∣∣
r

dx

}1 / r

= O
(
(n)

r / 2
ξ
(
1
/√

n
))

= O
(
(n)−α / 2+ r / 2

)
.

Thus we get

∣∣∣ t̃C N
n − f̃

∣∣∣ ≤
{∫ 2 π

0

∣∣∣ t̃C N
n (x)− f̃ (x)

∣∣∣
r

dx

}1 / r

= O
(
(n )

−α / 2 + r / 2
)
, r ≥ 1.

This completes the proof of corollary 5.1.

Corollary 5.2. If ξ (t) = tαfor 0 < α < 1and r → ∞ in (5.1), then f ∈ Lipα. In
this case, using (5.1), we have

∥∥∥ f̃(x) − t̃C N
n (x)

∥∥∥
∞

= O
(
(n)

−α / 2
)
. (5.2)

Proof. For r → ∞, we get
∥∥∥ f̃(x) − t̃C N

n (x)
∥∥∥
∞

= sup
0 ≤ x ≤ 2π

∣∣∣f̃(x) − t̃C N
n (x)

∣∣∣
r
= O

(
(n)−α / 2

)
.

This completes the proof of corollary 5.2.

4. Conclusion

Various results concerning to the degree of approximation of periodic signals (func-
tions) belonging to the Lip (ξ(t), r), (r = 1)-class by Matrix Operator have been
reviewed and the condition of monotonicity on the weights {pn} has been relaxed
(i.e. weakening the conditions on the filter, we improve the quality of digital fil-
ter). Further, a proper (correct) set of conditions have been discussed to rectify the
errors. Some interesting application of the operator (C1. Np) used in this paper
pointed out in Note 2.4.
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