BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS
ISSN: 1821-1291, URL: HTTP://WWW.BMATHAA.ORG
VOLUME 5 ISSUE 3 (2013), PAGES 27-38

QUATERNIONIC BERTRAND CURVES IN EUCLIDEAN
4-SPACE

(COMMUNICATED BY UDAY CHAND DE)

OSMAN KECILIOGLU AND KAZIM ILARSLAN

ABSTRACT. In this paper, by using the similar idea of Matsuda and Yorozu
|12], we prove that if bitorsion of a quatenionic curve « is no vanish, then
there is no quaternionic curve in E4 is a Bertrand curve. Then we define (1, 3)
type Bertrand curves for quatenionic curve in Euclidean 4-space. We give some
characterizations for a (1,3) type quaternionic Bertrand curves in Euclidean
4-space by means of the curvature functions of the curve.

1. INTRODUCTION

Characterization of a regular curve is one of the important and interesting prob-
lems in the theory of curves in Euclidean space. There are two ways widely used
to solve these problems: to figure out the relationship between the Frenet vectors
of the curves (see [11]), and to determine the shape and size of a regular curve by
using its curvatures. kq (or ») and ko (or 7), the curvature functions of a regular
curve, have an effective role. For example: if k; =constant# 0 and ko = 0, the
curve is a circle with radius (1/k1), etc.

In 1845, Saint Venant (see [14]) proposed the question whether the principal
normal of a curve is the principal normal of another’s on the surface generated by
the principal normal of the given one. Bertrand answered this question in ([3])
published in 1850. He proved that a necessary and sufficient condition for the
existence of such a second curve is required in fact a linear relationship calculated
with constant coefficients should exist between the first and second curvatures of
the given original curve. In other words, if we denote first and second curvatures
of a given curve by kjand ks respectively, we have Aky + pke = 1, A, € R. Since
1850, after the paper of Bertrand, the pairs of curves like this have been called
Conjugate Bertrand Curves, or more commonly Bertrand Curves (see [11]).

There are many important papers on Bertrand curves in Euclidean space (see:
(.5, 09):

When we investigate the properties of Bertrand curves in Euclidean n-space, it
is easy to see that either ko or k3 is zero which means that Bertrand curves in
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E"™ (n > 3) are degenerate curves (see |13]). This result is restated by Matsuda
and Yorozu |12] . They proved that there was not any special Bertrand curves in
E™ (n > 3) and defined a new kind, which is called (1, 3)-type Bertrand curves in
4-dimensional Euclidean space. Bertrand curves and their characterizations were
studied by many researchers in Minkowski 3- space and Minkowski space-time ( see
[1,17,110]) as well as in Euclidean space.

K. Bharathi and M. Nagaraj (in [2]) studied a quaternionic curve in Euclidean
3-space E? and Euclidean 4-space E* and gave the Frenet formula for quaternionic
curve. For the newest results for quaternioonic curves, we refer the papers [g, 19,
16].

In this paper, by using the similar idea of Matsuda and Yorozu |12], we prove that
if bitorsion of a quatenionic curve « is no vanish, then there is no quaternionic
curves in E* is a Bertrand curve. Then we define (1,3)— type Bertrand curves
for quatenionic curves in Euclidean 4-space. We give some characterizations for a
(1,3) — type quaternionic Bertrand curves in Euclidean 4-space by means of the
curvature functions of the curve

2. PRELIMINARIES

Let Qg denote a four dimensional vector space over a field H whose characteristic
grater than 2. Let ¢; (1 < i < 4) denote a basis for the vector space. Let the rule
of multiplication on Qg be defined on e; (1 < i < 4) and extended to the whole of
the vector space by distributivity as follows:

A real quaternion is defined by ¢ = ae; + bes + ces + dey where a,b, c,d are
ordinary numbers. Such that

eq =1 e?=e3=e3=-1
€1€2 = —€2€1 = €3, €263 = —€3€2 = €1,
€3€1 = —€1€3 = €2

If we denote S, = d and V; = aej +bes+ces, we can rewrite a real quaternion whose

basic algebric form is ¢ = S, + V, where S, is scalar part and Vj, is vectorial part of

q. Using these basic products we can now expand the product of two quatenions as
pXq=58pSqg— (Vp, Vo) + SpVy + 54V + V, AV, for every p,q € Qu

where we have used the inner and cross products in Euclidean space E3. There
is a unige involutory antiautomorphism of the quaternion algebra, denoted by the
symbol v and defined as follows:

vq = —aey — bey — ces + dey for every aey + beg + ces +dey € Qn

which is called the ”Hamilton conjugation”. This defines the symmetric, real valued,
non-degenerate, bilinear form h as follows:

1
h(p,q) = 5[1)><7q+q><vp] for every p,q € Qmu.

And then, the norm of any ¢ real quaternion denoted

lqll* = h(g,9) = g x 7q.

q is called a spatial quaternion whenever ¢ + vg =0 ( [6]).
The Serret-Frenet formulae for quaternionic curves in E2 and E* are as follows

(12)):
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Theorem 2.1. The three-dimensional Euclidean space E® is identified with the
space of spatial quaternions {p € Qu |p+vp =0} in an obvious manner. Let I =
[0,1] denote the unit interval in the real line R. Let

a: ICR — Q#n
s — a(s):iai(s)ei (1<i<3)
i=1

be an arc-lenghted curve with nonzero curvatures {k,r} and {t(s),n(s),b(s)} de-
note the Frenet frame of the curve a. Then Frenet formulas are given by

t 0 kE 0 t
n = -k 0 r n
v 0O —r 0 b

where k is principal curvature, r is torsion of a.

Theorem 2.2. The four-dimensional Euclidean space E* are identified with the
space of unique quaternions. Let I = [0,1] denote the unit interval in the real line
R and

a: ICR — Qg
4

s — a(s) = a;i(s)ey,

i=1
be a smooth curve in E* with nonzero curvatures {K,k,r — K} and {T (s), N (s)
,B1(8),Ba(s)} denotes the Frenet frame of the curve a. Then the frenet formulas
are given by

T 0 K 0 0 T
N | | =K 0 k 0 N
B, |~ | o -k 0 (r—K) B
B) 0 0 —(r-K) 0 B,

where K is the principal curvature, k is torsion of § and (r — K) is bitorsion of «.

Definition 2.3. Let « (s) and (3 (s*) be two quaternionic curves in E*. {T (s),
T(s),N(s),B1(s), Ba(s)} and {T*(s*), N*(s*), By (s*), Bj (s*)} are Frenet
frames, respectively, on these curves. « and (3 are called Bertrand curves if there
exist a bijection
p: I — I
s — @(s)=s", %750

and the principal normal lines of o and § at corresponding points coincide.

3. MAIN RESULTS

Theorem 3.1. Let o be a quaternionic curve in E*. If bitorsion of « is no vanish,
then there is no quaternionic curve in E* is a Bertrand curve.

Proof. Let o be a Bertrand curve in E* and 3 a Bertrand mate of 3. 8 distinct
from f. Let the pair of a(s) and 8 (s*) = B (¢ (s)) be of corresponding points of «
and 8. Then the curve 3 is given by

B(s7) =B (p(s) = als) +A(s) N (s) (1)
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where A is a C* function on I. Differentiating () with respect to s, we obtain

d *
¢ () P o () 4 X () N () + A () V().
Here and hereafter, the prime denotes the derivative with respect to s. By the
Frenet equations, it holds that
@ ()T (0 (5)) = (L= A(s) K (5)) T (s) + X () N (s) + A(s) k (s) By (s).-

Since (T* (¢ (s)) , N* (¢ (s))) = 0and N* (¢ (s)) = FN (s), we obtain, for all s € I,

N (s) =0,
that is, A is a constant function on I. Thus (Il are rewritten as
B(s7) = Blp(s)) = als) + AN (s) (2)
and we obtain
' (5)T" (¢ (5)) = (1 = AK (5)) T'(5) + Ak () B1 (s) 3)
for all s € I. By (@), we can set
T" (¢ (5)) = (cos0(5)) T (s) + (sinf (s)) Bu (s), (4)
where 6 is a C°°-function on I and
cosf (s) = 1=K ()
() = s (5)
sinf (s) = Ak (s)
o) =75 (6)
Differentiating ) and using the Frenet equations, we obtain
K(e() ¢ (N (o)) = L2y
+ (K (s)cosf (s) —k(s)sinf(s)) N (s)
+dsucll§ (s) B (s)

+(r—K)(s)sinf (s) B2 (s).
Since N* (¢ (s)) = FN (s) for all s € I, we obtain

(r—K)(s)sinf (s) = 0. (7)
By (r— K) (s) # 0 and (@), we obtain that sinf (s) = 0. Thus, by & (s) # 0 and
([6) , we obtain that A = 0. This completes the proof of theorem. ([

Definition 3.2. Let a (s) and 3 (s*) be two quaternionic curves in E4. {T (s), N (s),
Bi1(s),Bz2(s)} and {T™(s*),N*(s*),Bj (s*), B3 (s*)} are Frenet frames, respec-
tively, on these curves. a and § are called quaternionic (1,3)-Bertrand curves if
there exist a bijection

I*

p: I —
s — @(s):s*,%;ﬁo
(

and the plane spanned by N (s),B2 (s) at the each point a (s)of a coincides with
the plane spanned by N* (s*),B5 (s*) corresponding point 8 (s*) = 8 (¢ (s)) of B.
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Theorem 3.3. Let a be a quaternionic curve in E* with curvature functions
K k,r— K andr — K #0. Then « is a (1,3)-Bertrand curve if and only if there
exist constant real numbers \, ,y,d satisfying

(i) A () p(r—K)(s)#0
(ii) A ()+7(/\/€() plr—K)(s) =1
(11i) VK (s) — k ()—5(7“— K) (s)
2 2 2
(iv) {(v — 1) B () K (5) 47 [(K () = (K (5)° = (= K)* (5)] } £ 0
for all s € I.

Proof. We assume that « is a (1,3)-Bertrand curve parametrized by arclenght s.
The (1, 3)-Bertrand mate S is given by

B(s7) =B(p(s) =al(s)+A(s) N (s) + p(s) Bz (s) (8)
for all s € I. Here A and p are C*°-function on I, and s* is the arclenght parameter
of 8. Differentiating (8] with respect to s, and using the Frenet equations, we obtain

¢ ()T (p(s) = (1=A(s)K(s)T(s)+ XN (s)N(s)
+(A(8)k(s) = p(s)(r—K)(s) Bi(s)+ p' (s) B2 (s)
for all s € I.

Since the plane spanned by N (s) and Bs (s) coincides with the plane spanned
by N*((s)) and Bj (¢ (s)), we can put

N* (¢ (s)) = (cos(s)) N (s) + (sinf (s)) Bz (s) (9)
B; (¢ (s)) = (=sinf (s)) N (s) + (cos b (s)) Bz (s) (10)
and we notice that siné (s) # 0 for all s € I. By the following facts
0=(¢" (s)T" (¢ (), N" (¢ (s))) = X (s) cos b (s) + 4 (s) sin 0 (s)
0= (¢! (5) " (4(5)) B (9 (5))) = — (s sin8 (s) + ' (5) cos 6 (s)

we obtain

N(s)=0,p'(s)=0
that is, A and p are constant function on I with values A and u, respectively.
Therefore, for all s € I, (§) is rewritten as

B(s") = B(p(s) = als) + AN (s) + uBs (5) (11)

and we obtain

¢ (5)T" (9 (5)) = (1= AK (5)) T (s) + (Ak (s) = p(r = K) (5)) B (s).  (12)

Here we notice that

(¢ (5)" = (1= AK (5))" + (M (s) — pu (r — K) (5))° # 0 (13)
for all s € I. Thus we can set
T* (¢ (s)) = (cosT(8)) T (s) 4 (sinT (s)) Bi (s) (14)
and
cosT(s) = LK(S)
()= s (15)
sinr (s) = 2 Zplr ZF) () (16)

¢ (s)
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where 7 is a C*°-function on I. Differentiating (I4]) with respect to s and using the
Frenet equations, we obtain

dcosT (s)

K(p) e ()N (p(s) = 10T Ep)
+ (K (s)cosT (s) — k(s)sinT (s)) N (s)
—i—ds%;(S)Bl () + (r—K)(s)sinT (s) B2 (s).
Since N* (¢ (s)) is expressed by linear combination of N (s) and Bz (s), it holds
that
dcosT (s) :O,dSinT(S) ~o,
ds ds
that is, 7 is a constant function on I with value 79. Thus we obtain
T* (¢ (s)) = (cosTo) T (s) + (sintg) By (s) (17)
¢ (s)cosTg =1— \K (s) (18)
@' (s)sintg = Mk (5) — p(r — K) (s) (19)
for all s € I. There fore we obtain
(1 =AK (s))sintg = (Ak(s) — p(r — K)(s)) cos g (20)

for all s € I.
If sintp = 0, then it holds cosTg = F1. Thus ([[T) implies that T (¢ (s)) =
FT (s) . Differentiating this equality, we obtain

K (p(s)¢' (s)N* (0 (s)) = FK (s) N (s),
that is,
N*(p(s)) = FN (s),
for all s € I. By Theorem B.1] this fact is a contradiction. Thus we must consider
only the case of sin 7y # 0. Then (I9) imlies

Nk (3) = 1 (r = K) (5) £ 0
that is, we obtain the relation (7).
The fact sinty # 0 and (20) imply

MK () 4 sin™ ! 7g cos 1o (Mk (s) — pu (r — K) (s)) = 1.
From this, we obtain
AK (s) +79 Ak (s) —p(r— K)(s)) =1

for all s € I, where v = sin~! 7y cos 7y is a constant number. Thus we obtain the
relation (i) .
Differentiating (17) with respect to s and using the Frenet equations, we obtain

K(p())¢' (s)N"(¢(5)) = (K (s)cosmo—k(s)sinmo) N (s)
+(r—K)(s)sintgBs (s)
for all s € I. From the above equality, (18), (19) and (), we obtain
K@) 6)° = |
= (Wk(s) —p(r—K)(s))
x| (7 (5) = B () + (0 = K) (5))°] (¢ (5)) 7

K (s)costo — k (s)sino]® + [(r — K) (s) sin 7]
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for all s € I. From (13) and (47), it holds
(¢ ()" = (V*+1) (ki () = (r = K) (5))°

Thus we obtain

(K (6D ¢! () = g [0F () =K ) + (= K) ()]
By [8), (I3) and (ii), we can set
N*((5)) = (cosn (5)) N (5) + (sinn () Ba (s).
where
cosny (s) = QEG) == K) () (K () =k (s))
K (2 (5) (¢ ()
dinn () = T2 EV S Ok (s) — (= K) (5)

K (¢ () (¢ ()

for all s € I. Here, n is a C'°*°-function on I.
Differentiating ([22)) with respect to s and using Frenet equations, we get

—¢' (5) K (0(5)) T (¢ (5)) + ¢’ (5) k (0 (5)) BY (12 (5))

= —K(s)cosn(s)T (s)+ dco(sig (S)N (s)
+{k(s) cosn (s) = (r = K) (s) sing (s)} Bu (s)
+dsu;;7 (s) By (s)

for all s € I.From the above fact, it holds

dcosn (s) _o dsinn (s) _0
ds - ds

that is, n is a constant function on I with value n9. Let § = (cosnyg) (sinng)
constant number. Then (23)) and (24) imply

VK (5) =k (s) = 6 (r — K) (s)

that is we obtain the relation (i7) .
Moreover, we obtain

() K (p ()T (9 (5)) + ¢/ (5)F (o) Bi (o (5))
= —K(s)cosn(s)T(s)
+{k(s)cosn(s) = (r — K) (s)sinn (s)} B1 (s) .
By the above equality and ([Z) , we obtain
¢ (5)k(p () Bi (p(s)) = ¢ ()K(0(s)T" (¢(5))
—K (s)cosnoT (s)
+{k (s)cosno — (r — K) (s) sinno} By (s)

- {W O K6}
X {A ()T () + B (5) B1 (5)}

33

1 be
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where

A(s) = {P (K ()} (1 - K (s))
— K (s) (M (8) = p(r — K) (5)) (7K (s) — K (5))

B(s) = {¢ (K (2 (s)} (We(s) = pu(r—K)(s))
+{ fi(s) (Mo (s) = i (r = K) (5)) (YK (5) — K (5)) }
—(r=K)" () Ak (s) = p(r = K) ()
From (it) and 21I)), A (s) and B (s) are rewritten as:
A(s) = k() =p(r=K) () (P +1)
< { (1= K () () =7 [(K () = (R (5))° = ((r = K) ())*] }

B(s) = v(*+1) (Mi(s) = p(r — K) (5))
{52 = ) k() K () + 7 [(K () = (k())” = (= K)* (s)] }.
Since K (¢ (s)) ¢’ (s) N* (¢ (s)) # 0 for all s € I, it holds

{(P =Dk K () +7 (K () = (k()* = (r = K)* ()] } #0

for all s € I. Thus we obtain the relation (iv) .

We assume that « (a: T — Qpg) is a C®special Frenet curve in Qg with cur-
vature functions K, k and (r — K) satisfying the relation (4), (i), (i74) and (iv) for
constant numvers A, i,y and 0. Then we define a C°°—curve § by

B(s) =a(s)+ AN (s) + uBa (s) (25)

for all s € I,where s is arclenght parameter of a. Diffferentiating (25) with
recpect to s and using the Frenet equations, we obtain

B (1 MK T () + Mk (3) — a (v~ K)) B (s)
for all s € I. Thus, by the relation (i), we obtain
B (k) = K) () BT () + B (9)]

for all s € I. Since the relation (i) holds, the curve j3 is a regular curve. Then there
exists a regular map ¢ : I — I defined by

s =p)= [ |52

where s* denotes the arclenght parameter of 3, and we obtain

' (s) =V +1(Me(s) = p(r = K)(s)) > 0, (26)

where e = 1if M (s) —p(r—K)(s) > 0,and e = =1 if Ak (s) —p(r— K)(s) <
0.Thus the curve 3 is rewritten as

B(s") = Blels)

|«
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for all s € I. Differentiating the above equality with respect to s, we obtain
dg (s*
¢ P k() - )BT B (@D

We can define the unit vector field T* along 8 by T™ (s*) = dg(;:) for all s* € I.
By (26) and (21]), we obtain

1
T*(p(s) = (v +1) > VT (s) + Bi (s)] (28)
for all s € I. Differentiating (28] with respect to s and using the Frenet equations,
we obtain
dT* (s*)
/
o (s) —

— e (12 +1) T {[yK (s) — k()] N (s) + (r — K) (5) B2 (s)}

s*=p(s)

and

VDK () =k (@) + ((r = £) (5))°
¢ (s)vV(7? +1) '

By the fact that (r — K) (s) # 0 for all s € I, we obtain

dT* (s*)

H dT* (5)
ds* s*=p(s)

K(p(s)) = >0 29
)= "5 (29)
for all s € I. Then we can define a unit vector field N* along 8 by
N*(s") = N"(p(s))
_ 1 dT* (s*)
K ((p (S)) ds* s*=p(s)

1
VIE (5) = k() + ((r — ) (5))?
< {[VK (s) = k()] N (s) + (r — ) (s) B2 (s)}
for all s € I. Thus we can put

N* (1p(s)) = cos& (s) N (s) + sin& (s) By (s) (30)
where
cosé (s) = 1K (s) k() (31)
VIE () = k() + ((r — K) (5))?
sin € (s) = r—K)) (32)

VIE (5) = k() + ((r — K) (5))°
for all s € I. Here £ is a C*°function on I. Differentiating (B0) with respect to s
and using the Frenet equations, we obtain
dN* (s*)
" (8) —— = —cosé&(s)K (s)T (s
L £(5) K (5)T (5)
dcosé (s)
t—— N (s)
+ (k(s)cos& (s) — (r — K) (s)sin & (s)) Bi ()
dsin (s)
—B .
* ds 2()
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Differentiatin (¢i¢) with respect to s, we obtain
(K (3) = K () (r — K) (5) — (K (5) =k (5)) (r — K (5) =0.  (33)
Differentiating (31)) and ([B2]) with respect to s and using ([B3)) , we obtain
dcosé (s) dsiné (s)

ds =90, ds =0

that is, € is a constant function on I with value &;. Thus we obtain

cosfy = VK (s) —k(s) (34)
e/ K (5) = k() + ((r — K) (5))?
singy = (r— I? () _ £ 0, (35)
e/ K (5) = k()% + ((r — K) (s))
From (30), it holds

N* (¢ (5)) = cos &0V (5) + sin o Ba (s) (36)

Thus we obtain, by 28) and 29)),
[V (5) = k ()] + ((r = K) ()

e/ (5) (72 + 1) /YK (5) = k()] + ((r — K) (5))°
x BT (3) + Bu (s)]

K(p(s) T (p(s) =

and by (34),(30) and (B4
AN* (S*) _ K (S) (/VK (S) —k (S)) T (S)
ds*  sr=p(s) ¢’ (s) \/ WK (s) =k (s)]” + ((r = K) (s))?

N ( E() (0K (5) ~ k(s)) — (= K) (5) ) B )
g’ (s) \/hK (5) =k ()" + ((r — K) ()
for all s € I. By the above equalities, we obtain

dN* (s*) - i _ P(s) Q(s)
ds* s*=¢(s) +K((p (S))T (90 (S)) - R(S)T(S)+ Bl (S)v

where

Q) =7 [y {(K (5)° = k() = (r = K) ()} + (42 = 1) K () k (s)]

R(s)=c¢'(s) (v* +1) \/[7K (5) = k()] + ((r = K) (5))* #0
for all s € I. We notice that, by (iii), P (s) # 0 for all s € I. Thus we obtain
AN (s") - .
Blo@) = |Tm= R T )
{6 () = () = (= K) ()} + (22 = 1) K () K (5)]

& () VT IE (5) = k() + ((r = K) (s)?
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for all s € I. Thus we can define a unit vector field B} (s*) along 8 by

Bi(s) = Bi(e(s)
- o (T FE O )
that is, 1
Bilo () = (T (5) + B2 (s)) (31)

evyi+1

for all s € I. Next we can define a unit vector field B along 3 by
By (s") = By(p(s))

1
s) =k (s)]” + ((r = K) (5))*
{=(r=K)(s)N(s) + (vK (s) = k(s)) B2 (s)}

™m
i
2
fa

that is
B (¢ (s)) = —sin&oN (s) + cos&oBa (s) (38)
for all s € I. Now we obtain, by (2]), B6) , (&1) and (BT),
det [T (¢ (s)), N (¢ (5)), Bl (¢ (5)), B3 (¢ (s))] = 1

and {T™ (¢ (5)), N* (¢ (), B5 (¢ (s)), B3 (¢ (s))} is orthonormal for all s € I.Thus
the frame {T*, N* B}, B4} along § is of orthonormal and of positive. And we
obtain

—_— dB; (s*) >

r—K)(s) = — 7 , B s

o - (B Bee)

_ Y2+ 1K (s)(r— K)(s) 40

¢’ (s) \/[”YK () = k(s)]” + ((r = K) ()
for all s € I. Thus the curve 5 is a Frenet curve in Q. And it is trivial that he
plane spanned by N (s),Bz (s) at the each point « (s)of a coincides with the plane
spanned by N* (s*),B3 (s*) corresponding point S (s*) = 8 (¢ (s)) of 5. Therefore
a is a (1, 3)-Bertrand curve in Qp. O
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