BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 5 Issue 3 (2013), Pages 27-38

QUATERNIONIC BERTRAND CURVES IN EUCLIDEAN 4-SPACE

(COMMUNICATED BY UDAY CHAND DE)

OSMAN KEÇİLİOĞLU AND KAZIM İLARSLAN

ABSTRACT. In this paper, by using the similar idea of *Matsuda and Yorozu* [12], we prove that if bitorsion of a quaternionic curve α is no vanish, then there is no quaternionic curve in E^4 is a Bertrand curve. Then we define (1, 3) type Bertrand curves for quaternionic curve in Euclidean 4-space. We give some characterizations for a (1,3) type quaternionic Bertrand curves in Euclidean 4-space by means of the curvature functions of the curve.

1. INTRODUCTION

Characterization of a regular curve is one of the important and interesting problems in the theory of curves in Euclidean space. There are two ways widely used to solve these problems: to figure out the relationship between the Frenet vectors of the curves (see [11]), and to determine the shape and size of a regular curve by using its curvatures. k_1 (or \varkappa) and k_2 (or τ), the curvature functions of a regular curve, have an effective role. For example: if $k_1 = \text{constant} \neq 0$ and $k_2 = 0$, the curve is a circle with radius $(1/k_1)$, etc.

In 1845, Saint Venant (see [14]) proposed the question whether the principal normal of a curve is the principal normal of another's on the surface generated by the principal normal of the given one. Bertrand answered this question in ([3]) published in 1850. He proved that a necessary and sufficient condition for the existence of such a second curve is required in fact a linear relationship calculated with constant coefficients should exist between the first and second curvatures of the given original curve. In other words, if we denote first and second curvatures of a given curve by k_1 and k_2 respectively, we have $\lambda k_1 + \mu k_2 = 1$, $\lambda, \mu \in \mathbb{R}$. Since 1850, after the paper of Bertrand, the pairs of curves like this have been called *Conjugate Bertrand Curves*, or more commonly *Bertrand Curves* (see [11]).

There are many important papers on Bertrand curves in Euclidean space (see: [4],[5],[13]).

When we investigate the properties of Bertrand curves in Euclidean *n*-space, it is easy to see that either k_2 or k_3 is zero which means that Bertrand curves in

Submitted April 22, 2013. Published August 21, 2013.

⁰2000 Mathematics Subject Classification: 53A04.

Keywords and phrases. Euclidean 4-space, Quaternionic Frenet frame, (1,3) type Bertrand curve. © 2013 Universiteti i Prishtinës, Prishtinë, Kosovë.

 \mathbb{E}^n (n > 3) are degenerate curves (see [13]). This result is restated by *Matsuda* and Yorozu [12]. They proved that there was not any special Bertrand curves in \mathbb{E}^n (n > 3) and defined a new kind, which is called (1,3)-type Bertrand curves in 4-dimensional Euclidean space. Bertrand curves and their characterizations were studied by many researchers in Minkowski 3- space and Minkowski space-time (see [1, 7, 10]) as well as in Euclidean space.

K. Bharathi and M. Nagaraj (in [2]) studied a quaternionic curve in Euclidean 3-space \mathbb{E}^3 and Euclidean 4-space \mathbb{E}^4 and gave the Frenet formula for quaternionic curve. For the newest results for quaternioonic curves, we refer the papers [8, 9, 16].

In this paper, by using the similar idea of *Matsuda and Yorozu* [12], we prove that if bitorsion of a quatenionic curve α is no vanish, then there is no quaternionic curves in \mathbb{E}^4 is a Bertrand curve. Then we define (1,3) – type Bertrand curves for quatenionic curves in Euclidean 4-space. We give some characterizations for a (1,3) – type quaternionic Bertrand curves in Euclidean 4-space by means of the curvature functions of the curve

2. Preliminaries

Let Q_H denote a four dimensional vector space over a field H whose characteristic grater than 2. Let e_i $(1 \le i \le 4)$ denote a basis for the vector space. Let the rule of multiplication on Q_H be defined on e_i $(1 \le i \le 4)$ and extended to the whole of the vector space by distributivity as follows:

A real quaternion is defined by $q = ae_1 + be_2 + ce_3 + de_4$ where a, b, c, d are ordinary numbers. Such that

$$\begin{array}{ll} e_4 = 1 & e_1^2 = e_2^2 = e_3^2 = -1 \\ e_1 e_2 = -e_2 e_1 = e_3, & e_2 e_3 = -e_3 e_2 = e_1, \\ e_3 e_1 = -e_1 e_3 = e_2 \end{array}$$

If we denote $S_q = d$ and $V_q = ae_1 + be_2 + ce_3$, we can rewrite a real quaternion whose basic algebric form is $q = S_q + V_q$ where S_q is scalar part and V_q is vectorial part of q. Using these basic products we can now expand the product of two quaternions as

$$p \times q = S_p S_q - \langle V_p, V_q \rangle + S_p V_q + S_q V_p + V_p \wedge V_q \text{ for every } p, q \in Q_H$$

where we have used the inner and cross products in Euclidean space E^3 . There is a unique involutory antiautomorphism of the quaternion algebra, denoted by the symbol γ and defined as follows:

$$\gamma q = -ae_1 - be_2 - ce_3 + de_4$$
 for every $ae_1 + be_2 + ce_3 + de_4 \in Q_H$

which is called the "Hamilton conjugation". This defines the symmetric, real valued, non-degenerate, bilinear form h as follows:

$$h(p,q) = \frac{1}{2} \left[p \times \gamma q + q \times \gamma p \right]$$
 for every $p, q \in Q_H$.

And then, the norm of any q real quaternion denoted

$$\|q\|^2 = h(q,q) = q \times \gamma q.$$

q is called a spatial quaternion whenever $q + \gamma q = 0$ ([6]).

The Serret-Frenet formulae for quaternionic curves in E^3 and E^4 are as follows ([2]):

Theorem 2.1. The three-dimensional Euclidean space E^3 is identified with the space of spatial quaternions $\{p \in Q_H | p + \gamma p = 0\}$ in an obvious manner. Let I = [0, 1] denote the unit interval in the real line \mathbb{R} . Let

$$\begin{array}{rcccc} \alpha: & I \subset \mathbb{R} & \longrightarrow & Q_H \\ & s & \longrightarrow & \alpha\left(s\right) = \sum\limits_{i=1}^{3} \alpha_i\left(s\right) e_i & \left(1 \leq i \leq 3\right) \end{array}$$

be an arc-lenghted curve with nonzero curvatures $\{k, r\}$ and $\{t(s), n(s), b(s)\}$ denote the Frenet frame of the curve α . Then Frenet formulas are given by

$$\begin{bmatrix} t'\\n'\\b' \end{bmatrix} = \begin{bmatrix} 0 & k & 0\\-k & 0 & r\\0 & -r & 0 \end{bmatrix} \begin{bmatrix} t\\n\\b \end{bmatrix}$$

where k is principal curvature, r is torsion of α .

Theorem 2.2. The four-dimensional Euclidean space E^4 are identified with the space of unique quaternions. Let I = [0, 1] denote the unit interval in the real line \mathbb{R} and

$$\begin{array}{rccc} \alpha : & I \subset \mathbb{R} & \longrightarrow & Q_H \\ & s & \longrightarrow & \alpha \left(s \right) = \sum_{i=1}^4 \alpha_i \left(s \right) e_i, \end{array}$$

be a smooth curve in E^4 with nonzero curvatures $\{K, k, r - K\}$ and $\{T(s), N(s), B_1(s), B_2(s)\}$ denotes the Frenet frame of the curve α . Then the frenet formulas are given by

$\begin{bmatrix} T' \end{bmatrix}$	=	0	K	0	0	$\begin{bmatrix} T \end{bmatrix}$
N'		-K	0	k	0	N
B'_1		0	-k	0	(r-K)	B_1
B'_2		0	0	-(r-K)	0	B_2

where K is the principal curvature, k is torsion of β and (r - K) is bitorsion of α .

Definition 2.3. Let $\alpha(s)$ and $\beta(s^*)$ be two quaternionic curves in E^4 . {T(s), T(s), N(s), $B_1(s)$, $B_2(s)$ } and { $T^*(s^*)$, $N^*(s^*)$, $B_1^*(s^*)$, $B_2^*(s^*)$ } are Frenet frames, respectively, on these curves. α and β are called Bertrand curves if there exist a bijection

$$\begin{array}{rccc} \varphi: & I & \longrightarrow & I^* \\ & s & \longrightarrow & \varphi\left(s\right) = s^*, \ \frac{ds^*}{ds} \neq 0 \end{array}$$

and the principal normal lines of α and β at corresponding points coincide.

3. Main Results

Theorem 3.1. Let α be a quaternionic curve in E^4 . If bitorsion of α is no vanish, then there is no quaternionic curve in E^4 is a Bertrand curve.

Proof. Let α be a Bertrand curve in E^4 and β a Bertrand mate of β . β distinct from β . Let the pair of $\alpha(s)$ and $\beta(s^*) = \beta(\varphi(s))$ be of corresponding points of α and β . Then the curve β is given by

$$\beta(s^*) = \beta(\varphi(s)) = \alpha(s) + \lambda(s)N(s) \tag{1}$$

where λ is a C^{∞} function on I. Differentiating (1) with respect to s, we obtain

$$\varphi'(s) \frac{d\beta(s^*)}{ds^*} = \alpha'(s) + \lambda'(s) N(s) + \lambda(s) N'(s)$$

Here and hereafter, the prime denotes the derivative with respect to s. By the Frenet equations, it holds that

$$\varphi'(s) T^*(\varphi(s)) = (1 - \lambda(s) K(s)) T(s) + \lambda'(s) N(s) + \lambda(s) k(s) B_1(s) + \lambda(s) K(s) + \lambda(s$$

Since $\langle T^* \left(\varphi \left(s \right) \right), N^* \left(\varphi \left(s \right) \right) \rangle = 0$ and $N^* \left(\varphi \left(s \right) \right) = \mp N \left(s \right)$, we obtain, for all $s \in I$, $\lambda' \left(s \right) = 0$,

that is, λ is a constant function on *I*. Thus (1) are rewritten as

$$\beta(s^*) = \beta(\varphi(s)) = \alpha(s) + \lambda N(s)$$
(2)

and we obtain

$$\varphi'(s) T^*(\varphi(s)) = (1 - \lambda K(s)) T(s) + \lambda k(s) B_1(s)$$
(3)

for all $s \in I$. By (3), we can set

$$T^*\left(\varphi\left(s\right)\right) = \left(\cos\theta\left(s\right)\right)T\left(s\right) + \left(\sin\theta\left(s\right)\right)B_1\left(s\right),\tag{4}$$

where θ is a C^{∞} -function on I and

$$\cos\theta\left(s\right) = \frac{1 - \lambda K\left(s\right)}{\varphi'\left(s\right)} \tag{5}$$

$$\sin\theta\left(s\right) = \frac{\lambda k\left(s\right)}{\varphi'\left(s\right)}.\tag{6}$$

Differentiating (4) and using the Frenet equations, we obtain

$$\bar{K}(\varphi(s))\varphi'(s)N^{*}(\varphi(s)) = \frac{d\cos\theta(s)}{ds}T(s) + (K(s)\cos\theta(s) - k(s)\sin\theta(s))N(s) + \frac{d\sin\theta(s)}{ds}B_{1}(s) + (r - K)(s)\sin\theta(s)B_{2}(s).$$

Since $N^*(\varphi(s)) = \mp N(s)$ for all $s \in I$, we obtain

$$(r - K)(s)\sin\theta(s) = 0. \tag{7}$$

By $(r - K)(s) \neq 0$ and (7), we obtain that $\sin \theta(s) = 0$. Thus, by $k(s) \neq 0$ and (6), we obtain that $\lambda = 0$. This completes the proof of theorem.

Definition 3.2. Let $\alpha(s)$ and $\beta(s^*)$ be two quaternionic curves in E^4 . { $T(s), N(s), B_1(s), B_2(s)$ } and { $T^*(s^*), N^*(s^*), B_1^*(s^*), B_2^*(s^*)$ } are Frenet frames, respectively, on these curves. α and β are called quaternionic (1,3)-Bertrand curves if there exist a bijection

$$\begin{array}{rccc} \varphi: & I & \longrightarrow & I^* \\ & s & \longrightarrow & \varphi\left(s\right) = s^*, \ \frac{ds^*}{ds} \neq 0 \end{array}$$

and the plane spanned by $N(s), B_2(s)$ at the each point $\alpha(s)$ of α coincides with the plane spanned by $N^*(s^*), B_2^*(s^*)$ corresponding point $\beta(s^*) = \beta(\varphi(s))$ of β .

30

Theorem 3.3. Let α be a quaternionic curve in E^4 with curvature functions K, k, r - K and $r - K \neq 0$. Then α is a (1,3)-Bertrand curve if and only if there exist constant real numbers $\lambda, \mu, \gamma, \delta$ satisfying

(i)
$$\lambda k(s) - \mu (r - K)(s) \neq 0$$

(ii) $\lambda K(s) + \gamma (\lambda k(s) - \mu (r - K)(s)) = 1$
(iii) $\gamma K(s) - k(s) = \delta (r - K)(s)$
(iv) $\{ (\gamma^2 - 1) k(s) K(s) + \gamma [(K(s))^2 - (k(s))^2 - (r - K)^2(s)] \} \neq 0$
for all $s \in I$.

Proof. We assume that α is a (1,3)-Bertrand curve parametrized by arclenght s. The (1,3)-Bertrand mate β is given by

$$\beta(s^*) = \beta(\varphi(s)) = \alpha(s) + \lambda(s)N(s) + \mu(s)B_2(s)$$
(8)

for all $s \in I$. Here λ and μ are C^{∞} -function on I, and s^* is the arclenght parameter of β . Differentiating (8) with respect to s, and using the Frenet equations, we obtain

$$\varphi'(s) T^{*}(\varphi(s)) = (1 - \lambda(s) K(s)) T(s) + \lambda'(s) N(s) + (\lambda(s) k(s) - \mu(s) (r - K)(s))) B_{1}(s) + \mu'(s) B_{2}(s)$$

for all $s \in I$.

Since the plane spanned by N(s) and $B_{2}(s)$ coincides with the plane spanned by $N^{*}(\varphi(s))$ and $B_{2}^{*}(\varphi(s))$, we can put

$$N^*(\varphi(s)) = (\cos\theta(s)) N(s) + (\sin\theta(s)) B_2(s)$$
(9)

$$B_2^*\left(\varphi\left(s\right)\right) = \left(-\sin\theta\left(s\right)\right)N\left(s\right) + \left(\cos\theta\left(s\right)\right)B_2\left(s\right) \tag{10}$$

and we notice that $\sin \theta (s) \neq 0$ for all $s \in I$. By the following facts

$$0 = \langle \varphi'(s) T^*(\varphi(s)), N^*(\varphi(s)) \rangle = \lambda'(s) \cos \theta(s) + \mu'(s) \sin \theta(s)$$
$$0 = \langle \varphi'(s) T^*(\varphi(s)), B_2^*(\varphi(s)) \rangle = -\lambda'(s) \sin \theta(s) + \mu'(s) \cos \theta(s)$$

we obtain

$$\lambda'\left(s\right) = 0, \mu'\left(s\right) = 0$$

that is, λ and μ are constant function on I with values λ and μ , respectively. Therefore, for all $s \in I$, (8) is rewritten as

$$\beta(s^*) = \beta(\varphi(s)) = \alpha(s) + \lambda N(s) + \mu B_2(s)$$
(11)

and we obtain

$$\varphi'(s) T^*(\varphi(s)) = (1 - \lambda K(s)) T(s) + (\lambda k(s) - \mu (r - K)(s)) B_1(s).$$
 (12)

Here we notice that

$$(\varphi'(s))^{2} = (1 - \lambda K(s))^{2} + (\lambda k(s) - \mu (r - K)(s))^{2} \neq 0$$
(13)

for all $s \in I$. Thus we can set

$$T^{*}(\varphi(s)) = (\cos\tau(s)) T(s) + (\sin\tau(s)) B_{1}(s)$$
(14)

and

$$\cos\tau\left(s\right) = \frac{1 - \lambda K\left(s\right)}{\varphi'\left(s\right)} \tag{15}$$

$$\sin\tau(s) = \frac{\lambda k(s) - \mu(r - K)(s)}{\varphi'(s)}$$
(16)

where τ is a C^{∞} -function on *I*. Differentiating (14) with respect to *s* and using the Frenet equations, we obtain

$$\bar{K}(\varphi(s))\varphi'(s)N^{*}(\varphi(s)) = \frac{d\cos\tau(s)}{ds}T(s) + (K(s)\cos\tau(s) - k(s)\sin\tau(s))N(s) + \frac{d\sin\tau(s)}{ds}B_{1}(s) + (r - K)(s)\sin\tau(s)B_{2}(s).$$

Since $N^{*}(\varphi(s))$ is expressed by linear combination of N(s) and $B_{2}(s)$, it holds that

$$\frac{d\cos\tau\left(s\right)}{ds} = 0, \frac{d\sin\tau\left(s\right)}{ds} = 0,$$

that is, τ is a constant function on I with value τ_0 . Thus we obtain

$$^{*}(\varphi(s)) = (\cos\tau_{0}) T(s) + (\sin\tau_{0}) B_{1}(s)$$
(17)

$$\varphi'(s)\cos\tau_0 = 1 - \lambda K(s) \tag{18}$$

$$\varphi'(s)\sin\tau_0 = \lambda k(s) - \mu(r - K)(s)$$
(19)

for all $s \in I$. There fore we obtain

T

$$(1 - \lambda K(s)) \sin \tau_0 = (\lambda k(s) - \mu(r - K)(s)) \cos \tau_0$$
(20)

for all $s \in I$.

If $\sin \tau_0 = 0$, then it holds $\cos \tau_0 = \mp 1$. Thus (17) implies that $T^*(\varphi(s)) = \mp T(s)$. Differentiating this equality, we obtain

$$\bar{K}(\varphi(s))\varphi'(s)N^{*}(\varphi(s)) = \mp K(s)N(s),$$

that is,

$$N^{*}\left(\varphi\left(s\right)\right)=\mp N\left(s\right),$$

for all $s \in I$. By Theorem 3.1, this fact is a contradiction. Thus we must consider only the case of $\sin \tau_0 \neq 0$. Then (19) imlies

$$\lambda k\left(s\right) - \mu\left(r - K\right)\left(s\right) \neq 0$$

that is, we obtain the relation (i).

The fact $\sin \tau_0 \neq 0$ and (20) imply

$$\lambda K(s) + \sin^{-1} \tau_0 \cos \tau_0 \left(\lambda k(s) - \mu(r - K)(s)\right) = 1.$$

From this, we obtain

$$\lambda K(s) + \gamma \left(\lambda k(s) - \mu \left(r - K\right)(s)\right) = 1$$

for all $s \in I$, where $\gamma = \sin^{-1} \tau_0 \cos \tau_0$ is a constant number. Thus we obtain the relation (*ii*).

Differentiating (17) with respect to s and using the Frenet equations, we obtain

$$\bar{K}(\varphi(s))\varphi'(s)N^{*}(\varphi(s)) = (K(s)\cos\tau_{0} - k(s)\sin\tau_{0})N(s) + (r - K)(s)\sin\tau_{0}B_{2}(s)$$

for all $s \in I$. From the above equality, (18), (19) and (b), we obtain

$$\begin{bmatrix} \bar{K}(\varphi(s)) \varphi'(s) \end{bmatrix}^2 = \begin{bmatrix} K(s) \cos \tau_0 - k(s) \sin \tau_0 \end{bmatrix}^2 + \begin{bmatrix} (r-K)(s) \sin \tau_0 \end{bmatrix}^2 \\ = (\lambda k(s) - \mu (r-K)(s))^2 \\ \times \left[(\gamma K(s) - k(s))^2 + ((r-K)(s))^2 \right] (\varphi'(s))^{-2} \end{bmatrix}$$

for all $s \in I$. From (13) and (*ii*), it holds

$$(\varphi'(s))^{2} = (\gamma^{2} + 1) (\lambda k(s) - \mu (r - K)(s))^{2}.$$

Thus we obtain

$$\left[\bar{K}(\varphi(s))\,\varphi'(s)\right]^2 = \frac{1}{\gamma^2 + 1} \left[\left(\gamma K(s) - k(s)\right)^2 + \left((r - K)(s)\right)^2 \right].$$
(21)

By (18), (19) and (ii), we can set

$$N^{*}(\varphi(s)) = (\cos \eta(s)) N(s) + (\sin \eta(s)) B_{2}(s), \qquad (22)$$

where

$$\cos \eta \left(s \right) = \frac{\left(\lambda k \left(s \right) - \mu \left(r - K \right) \left(s \right) \right) \left(\gamma K \left(s \right) - k \left(s \right) \right)}{\bar{K} \left(\varphi \left(s \right) \right) \left(\varphi' \left(s \right) \right)^2}$$
(23)

$$\sin \eta \left(s \right) = \frac{\left(r - K \right) \left(s \right) \left(\lambda k \left(s \right) - \mu \left(r - K \right) \left(s \right) \right)}{\bar{K} \left(\varphi \left(s \right) \right) \left(\varphi' \left(s \right) \right)^2}$$
(24)

for all $s \in I$. Here, η is a C^{∞} -function on I.

Differentiating (22) with respect to s and using Frenet equations, we get

$$-\varphi'(s) \bar{K}(\varphi(s)) T^*(\varphi(s)) + \varphi'(s) \bar{k}(\varphi(s)) B_1^*(\varphi(s))$$

$$= -K(s) \cos \eta(s) T(s) + \frac{d \cos \eta(s)}{ds} N(s)$$

$$+ \{k(s) \cos \eta(s) - (r - K)(s) \sin \eta(s)\} B_1(s)$$

$$+ \frac{d \sin \eta(s)}{ds} B_2(s)$$

for all $s \in I$. From the above fact, it holds

$$\frac{d\cos\eta(s)}{ds} = 0, \ \frac{d\sin\eta(s)}{ds} = 0$$

that is, η is a constant function on I with value η_0 . Let $\delta = (\cos \eta_0) (\sin \eta_0)^{-1}$ be constant number. Then (23) and (24) imply

$$\gamma K(s) - k(s) = \delta (r - K)(s)$$

that is we obtain the relation (iii).

Moreover, we obtain

$$-\varphi'(s) \bar{K}(\varphi(s)) T^*(\varphi(s)) + \varphi'(s) \bar{k}(\varphi(s)) B_1^*(\varphi(s))$$

= $-K(s) \cos \eta(s) T(s)$
+ $\{k(s) \cos \eta(s) - (r - K)(s) \sin \eta(s)\} B_1(s).$

By the above equality and (12), we obtain

$$\varphi'(s) \bar{k}(\varphi(s)) B_{1}^{*}(\varphi(s)) = \varphi'(s) \bar{K}(\varphi(s)) T^{*}(\varphi(s))
-K(s) \cos \eta_{0} T(s)
+ \{k(s) \cos \eta_{0} - (r - K)(s) \sin \eta_{0}\} B_{1}(s)
= \{(\varphi'(s))^{2} \bar{K}(\varphi(s))\}^{-1}
\times \{A(s) T(s) + B(s) B_{1}(s)\},$$

where

$$A(s) = \left\{ \varphi'(s) \,\bar{K}(\varphi(s)) \right\}^2 (1 - \lambda K(s)) -K(s) \left(\lambda k(s) - \mu(r - K)(s)\right) \left(\gamma K(s) - k(s)\right) B(s) = \left\{ \varphi'(s) \,\bar{K}(\varphi(s)) \right\}^2 \left(\lambda k(s) - \mu(r - K)(s)\right)$$

$$+ \begin{cases} k(s) (\lambda k(s) - \mu (r - K) (s)) (\gamma K(s) - k(s)) \\ - (r - K)^{2}(s) (\lambda k(s) - \mu (r - K) (s)) \end{cases}$$

From (ii) and (21), A(s) and B(s) are rewritten as:

$$A(s) = (\lambda k(s) - \mu (r - K)(s)) (\gamma^{2} + 1)^{-1} \\ \times \left\{ (1 - \gamma^{2}) K(s) k(s) - \gamma \left[(K(s))^{2} - (k(s))^{2} - ((r - K)(s))^{2} \right] \right\}$$

$$B(s) = \gamma (\gamma^{2} + 1)^{-1} (\lambda k(s) - \mu (r - K)(s)) \\ \times \left\{ (\gamma^{2} - 1) k(s) K(s) + \gamma \left[(K(s))^{2} - (k(s))^{2} - (r - K)^{2}(s) \right] \right\}$$

Since $\overline{K}(\varphi(s))\varphi'(s)N^{*}(\varphi(s))\neq 0$ for all $s\in I$, it holds

$$\left\{ \left(\gamma^{2} - 1\right) k(s) K(s) + \gamma \left[\left(K(s)\right)^{2} - \left(k(s)\right)^{2} - \left(r - K\right)^{2}(s) \right] \right\} \neq 0$$

for all $s \in I$. Thus we obtain the relation (iv).

We assume that α $(\alpha : I \to Q_H)$ is a C^{∞} special Frenet curve in Q_H with curvature functions K, k and (r - K) satisfying the relation (i), (ii), (iii) and (iv) for constant numbers λ, μ, γ and δ . Then we define a C^{∞} -curve β by

$$\beta(s) = \alpha(s) + \lambda N(s) + \mu B_2(s)$$
(25)

for all $s \in I$, where s is arclenght parameter of α . Differentiating (25) with recpect to s and using the Frenet equations, we obtain

$$\frac{d\beta(s)}{ds} = (1 - \lambda K(s)) T(s) + (\lambda k(s) - \mu(r - K)) B_1(s)$$

for all $s \in I$. Thus, by the relation (*ii*), we obtain

$$\frac{d\beta(s)}{ds} = (\lambda k(s) - \mu(r - K)(s)) [\gamma T(s) + B_1(s)]$$

for all $s \in I$. Since the relation (i) holds, the curve β is a regular curve. Then there exists a regular map $\varphi : I \to \overline{I}$ defined by

$$s^* = \varphi(s) = \int_0^s \left\| \frac{d\beta(t)}{dt} \right\| dt$$

where s^* denotes the arclenght parameter of β , and we obtain

$$\varphi'(s) = \varepsilon \sqrt{\gamma^2 + 1} \left(\lambda k\left(s\right) - \mu\left(r - K\right)(s)\right) > 0, \tag{26}$$

where $\varepsilon = 1$ if $\lambda k(s) - \mu (r - K)(s) > 0$, and $\varepsilon = -1$ if $\lambda k(s) - \mu (r - K)(s) < 0$. Thus the curve β is rewritten as

$$\beta(s^*) = \beta(\varphi(s))$$
$$= \alpha(s) + \lambda N(s) + \mu B_2(s)$$

34

for all $s \in I$. Differentiating the above equality with respect to s, we obtain

$$\varphi'(s)\frac{d\beta(s^*)}{ds^*} = \left(\lambda k\left(s\right) - \mu\left(r - K\right)(s)\right)\left[\gamma T\left(s\right) + B_1\left(s\right)\right].$$
(27)

We can define the unit vector field T^* along β by $T^*(s^*) = \frac{d\beta(s^*)}{ds^*}$ for all $s^* \in \overline{I}$. By (26) and (27), we obtain

$$T^*\left(\varphi\left(s\right)\right) = \varepsilon \left(\gamma^2 + 1\right)^{-\frac{1}{2}} \left[\gamma T\left(s\right) + B_1\left(s\right)\right]$$
(28)

for all $s \in I$. Differentiating (28) with respect to s and using the Frenet equations, we obtain

$$\varphi'(s) \frac{dT^*(s^*)}{ds^*}_{s^*=\varphi(s)} = \varepsilon \left(\gamma^2 + 1\right)^{-\frac{1}{2}} \left\{ \left[\gamma K(s) - k(s)\right] N(s) + (r - K)(s) B_2(s) \right\}$$

and

$$\left\|\frac{dT^*\left(s^*\right)}{ds^*}_{s^*=\varphi(s)}\right\| = \frac{\sqrt{\left[\gamma K\left(s\right) - k\left(s\right)\right]^2 + \left(\left(r - K\right)\left(s\right)\right)^2}}{\varphi'\left(s\right)\sqrt{\left(\gamma^2 + 1\right)}}.$$

By the fact that $(r - K)(s) \neq 0$ for all $s \in I$, we obtain

$$\bar{K}\left(\varphi\left(s\right)\right) = \left\|\frac{dT^{*}\left(s^{*}\right)}{ds^{*}}\right\|_{s^{*}=\varphi\left(s\right)} \right\| > 0$$

$$(29)$$

for all $s \in I$. Then we can define a unit vector field N^* along β by

$$N^{*}(s^{*}) = N^{*}(\varphi(s))$$

$$= \frac{1}{\bar{K}(\varphi(s))} \frac{dT^{*}(s^{*})}{ds^{*}}_{s^{*}=\varphi(s)}$$

$$= \frac{1}{\sqrt{[\gamma K(s) - k(s)]^{2} + ((r - K)(s))^{2}}}_{\times \{[\gamma K(s) - k(s)] N(s) + (r - K)(s) B_{2}(s)\}}$$

for all $s \in I$. Thus we can put

$$N^{*}(\varphi(s)) = \cos\xi(s)N(s) + \sin\xi(s)B_{2}(s)$$
(30)

where

$$\cos \xi (s) = \frac{\gamma K(s) - k(s)}{\sqrt{[\gamma K(s) - k(s)]^2 + ((r - K)(s))^2}}$$
(31)

$$\sin\xi(s) = \frac{(r-K)(s)}{\sqrt{[\gamma K(s) - k(s)]^2 + ((r-K)(s))^2}}$$
(32)

for all $s \in I$. Here ξ is a C^{∞} function on I. Differentiating (30) with respect to s and using the Frenet equations, we obtain

$$\varphi'(s) \frac{dN^*(s^*)}{ds^*} = -\cos\xi(s) K(s) T(s) + \frac{d\cos\xi(s)}{ds} N(s) + (k(s)\cos\xi(s) - (r-K)(s)\sin\xi(s)) B_1(s) + \frac{d\sin\xi(s)}{ds} B_2(s).$$

Differentiatin (iii) with respect to s, we obtain

$$(\gamma K'(s) - k'(s))(r - K)(s) - (\gamma K(s) - k(s))(r - K)'(s) = 0.$$
(33)

Differentiating (31) and (32) with respect to s and using (33), we obtain

$$\frac{d\cos\xi\left(s\right)}{ds} = 0, \ \frac{d\sin\xi\left(s\right)}{ds} = 0$$

that is, ξ is a constant function on I with value ξ_0 . Thus we obtain

$$\cos \xi_0 = \frac{\gamma K(s) - k(s)}{\varepsilon \sqrt{\left[\gamma K(s) - k(s)\right]^2 + \left(\left(r - K\right)(s)\right)^2}}$$
(34)

$$\sin \xi_0 = \frac{(r-K)(s)}{\varepsilon \sqrt{[\gamma K(s) - k(s)]^2 + ((r-K)(s))^2}} \neq 0.$$
 (35)

From (30), it holds

$$N^{*}\left(\varphi\left(s\right)\right) = \cos\xi_{0}N\left(s\right) + \sin\xi_{0}B_{2}\left(s\right).$$
(36)

Thus we obtain, by (28) and (29),

$$\bar{K}(\varphi(s)) T^{*}(\varphi(s)) = \frac{\left[\gamma K(s) - k(s)\right]^{2} + \left(\left(r - K\right)(s)\right)^{2}}{\varepsilon \varphi'(s) \left(\gamma^{2} + 1\right) \sqrt{\left[\gamma K(s) - k(s)\right]^{2} + \left(\left(r - K\right)(s)\right)^{2}}} \times \left[\gamma T(s) + B_{1}(s)\right]$$

and by (34),(35) and (36)

$$\frac{dN^{*}(s^{*})}{ds^{*}}_{s^{*}=\varphi(s)} = -\frac{K(s)(\gamma K(s) - k(s))}{\varepsilon\varphi'(s)\sqrt{[\gamma K(s) - k(s)]^{2} + ((r - K)(s))^{2}}}T(s) + \left(\frac{k(s)(\gamma K(s) - k(s)) - ((r - K)(s))^{2}}{\varepsilon\varphi'(s)\sqrt{[\gamma K(s) - k(s)]^{2} + ((r - K)(s))^{2}}}\right)B_{1}(s)$$

for all $s \in I$. By the above equalities, we obtain

$$\frac{dN^{*}\left(s^{*}\right)}{ds^{*}}_{s^{*}=\varphi\left(s\right)}+\bar{K}\left(\varphi\left(s\right)\right)T^{*}\left(\varphi\left(s\right)\right)=\frac{P\left(s\right)}{R\left(s\right)}T\left(s\right)+\frac{Q\left(s\right)}{R\left(s\right)}B_{1}\left(s\right),$$

where

$$\begin{split} P\left(s\right) &= -\left[\gamma\left\{\left(K\left(s\right)\right)^{2} - \left(k\left(s\right)\right)^{2} - \left(\left(r - K\right)\left(s\right)\right)^{2}\right\} + \left(\gamma^{2} - 1\right)K\left(s\right)k\left(s\right)\right] \\ Q\left(s\right) &= \gamma\left[\gamma\left\{\left(K\left(s\right)\right)^{2} - \left(k\left(s\right)\right)^{2} - \left(\left(r - K\right)\left(s\right)\right)^{2}\right\} + \left(\gamma^{2} - 1\right)K\left(s\right)k\left(s\right)\right] \\ R\left(s\right) &= \varepsilon\varphi'\left(s\right)\left(\gamma^{2} + 1\right)\sqrt{\left[\gamma K\left(s\right) - k\left(s\right)\right]^{2} + \left(\left(r - K\right)\left(s\right)\right)^{2}} \neq 0 \end{split}$$

for all $s \in I$. We notice that, by (iii), $P(s) \neq 0$ for all $s \in I$. Thus we obtain

$$\bar{k}(\varphi(s)) = \left\| \frac{dN^*(s^*)}{ds^*} + \bar{K}(\varphi(s))T^*(\varphi(s)) \right\|$$

=
$$\frac{\left| \gamma \left\{ (K(s))^2 - (k(s))^2 - ((r-K)(s))^2 \right\} + (\gamma^2 - 1)K(s)k(s) \right|}{\varphi'(s)\sqrt{\gamma^2 + 1}\sqrt{[\gamma K(s) - k(s)]^2 + ((r-K)(s))^2}}$$

for all $s \in I$. Thus we can define a unit vector field $B_1^*(s^*)$ along β by

$$B_{1}^{*}(s^{*}) = B_{1}^{*}(\varphi(s))$$

=
$$\frac{1}{\bar{k}(\varphi(s))} \left(\frac{dN^{*}(s^{*})}{ds^{*}}_{s^{*}=\varphi(s)} + \bar{K}(\varphi(s)) T^{*}(\varphi(s)) \right)$$

that is,

$$B_1^*\left(\varphi\left(s\right)\right) = \frac{1}{\varepsilon\sqrt{\gamma^2 + 1}} \left(-T\left(s\right) + \gamma B_2\left(s\right)\right) \tag{37}$$

for all $s \in I$. Next we can define a unit vector field B_2^* along β by

$$B_{2}^{*}(s^{*}) = B_{2}^{*}(\varphi(s))$$

=
$$\frac{1}{\varepsilon\sqrt{[\gamma K(s) - k(s)]^{2} + ((r - K)(s))^{2}}}{\{-(r - K)(s)N(s) + (\gamma K(s) - k(s))B_{2}(s)\}}$$

that is

 $B_{2}^{*}(\varphi(s)) = -\sin\xi_{0}N(s) + \cos\xi_{0}B_{2}(s)$ for all $s \in I$. Now we obtain, by (28), (36), (37) and (38),
(38)

 $\det [T^*(\varphi(s)), N^*(\varphi(s)), B_1^*(\varphi(s)), B_2^*(\varphi(s))] = 1$

and $\{T^*(\varphi(s)), N^*(\varphi(s)), B_1^*(\varphi(s)), B_2^*(\varphi(s))\}\$ is orthonormal for all $s \in I$. Thus the frame $\{T^*, N^*, B_1^*, B_2^*\}$ along β is of orthonormal and of positive. And we obtain

$$\overline{(r-K)}(s) = \left\langle \frac{dB_1^*(s^*)}{ds^*} B_2^*(\varphi(s)) \right\rangle$$
$$= \frac{\sqrt{\gamma^2 + 1}K(s)(r-K)(s)}{\varphi'(s)\sqrt{[\gamma K(s) - k(s)]^2 + ((r-K)(s))^2}} \neq 0$$

for all $s \in I$. Thus the curve β is a Frenet curve in Q_H . And it is trivial that he plane spanned by $N(s), B_2(s)$ at the each point $\alpha(s)$ of α coincides with the plane spanned by $N^*(s^*), B_2^*(s^*)$ corresponding point $\beta(s^*) = \beta(\varphi(s))$ of β . Therefore α is a (1,3)-Bertrand curve in Q_H .

References

- H. Balgetir, M. Bektaş and J. Inoguchi, Null Bertrand curves in Minkowski 3-space and their characterizations, Note Mat. 23(1)(2004/05), 7-13.
- [2] K. Bharathi, M. Nagaraj, Quaternion valued function of a real variable Serret-Frenet formula, Indian J. Pure Appl. Math. 18(6)(1987), 507-511.
- [3] J. M. Bertrand, Mémoire sur la théorie des courbes à double courbure, Comptes Rendus. 36(1850).
- [4] Ch. Bioche, Sur les courbes de M. Bertrand, Bull. Soc. Math. France. 17(1889), 109-112.
- [5] J. F. Burke, Bertrand Curves Associated with a Pair of Curves, Mathematics Magazine. 34(1)(1960), 60-62.
- [6] W. K. Clifford, Preliminary sketch of biquaternions, Proc. London Math. Soc. 4(1873), 361-395.
- [7] N. Ekmekci and K. ilarslan, On Bertrand curves and their characterization, Differ. Geom. Dyn. Syst. 3(2)(2001), 17-24.

- [8] I. Gok, Z. Okuyucu, F. Kahraman and H. H. Hacisalihoglu, On the quaternionic B₂-slant helices in the Euclidean space E⁴, Adv. Appl. Clifford Algebras. 21(2011), 707-719.
- [9] M. A. Gungor and M. Tosun, Some characterizations of quaternionic rectifying curves, Differential Geom.-Dynamical Systems. 13(2011), 89-100.
- [10] D. H. Jin, Null Bertrand curves in a Lorentz manifold, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 15(3)(2008), 209-215.
- [11] W. Kuhnel, Differential geometry: curves-surfaces-manifolds, Braunschweig, Wiesbaden, (1999).
- [12] H. Matsuda and S. Yorozu, Notes on Bertrand curves, Yokohama Math. J. 50(1-2)(2003), 41-58.
- [13] L. R. Pears, Bertrand curves in Riemannian space, J. London Math. Soc. 1-10(2)(1935), 180-183.
- [14] B. Saint Venant, Mémoire sur les lignes courbes non planes, Journal de l'Ecole Polytechnique. 18(1845), 1-76.
- [15] J. K. Whittemore, Bertrand curves and helices, Duke Math. J. 6(1940), 235-245.
- [16] D. W Yoon, On the quaternionic general helices in Euclidean 4-space, Honam Mathematical J. 34(3)(2012), 381-390.

Osman Keçilioğlu

Department of Statistics, Faculty of Science and Arts, Kirikkale University 71450, Kirikkale, Turkey.

E-mail address: okecilioglu@yahoo.com

KAZIM İLARSLAN

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ARTS, KIRIKKALE UNIVERSITY 71450, KIRIKKALE, TURKEY.

E-mail address: kilarslan@yahoo.com

38