QUATERNIONIC BERTRAND CURVES IN EUCLIDEAN 4-SPACE

(COMMUNICATED BY UDAY CHAND DE)

OSMAN KEÇİLİOĞLU AND KAZIM İLARSLAN

Abstract

In this paper, by using the similar idea of Matsuda and Yorozu 12], we prove that if bitorsion of a quatenionic curve α is no vanish, then there is no quaternionic curve in E^{4} is a Bertrand curve. Then we define $(1,3)$ type Bertrand curves for quatenionic curve in Euclidean 4-space. We give some characterizations for a $(1,3)$ type quaternionic Bertrand curves in Euclidean 4 -space by means of the curvature functions of the curve.

1. Introduction

Characterization of a regular curve is one of the important and interesting problems in the theory of curves in Euclidean space. There are two ways widely used to solve these problems: to figure out the relationship between the Frenet vectors of the curves (see [11]), and to determine the shape and size of a regular curve by using its curvatures. k_{1} (or \varkappa) and k_{2} (or τ), the curvature functions of a regular curve, have an effective role. For example: if $k_{1}=$ constant $\neq 0$ and $k_{2}=0$, the curve is a circle with radius $\left(1 / k_{1}\right)$, etc.

In 1845, Saint Venant (see [14]) proposed the question whether the principal normal of a curve is the principal normal of another's on the surface generated by the principal normal of the given one. Bertrand answered this question in ([3]) published in 1850. He proved that a necessary and sufficient condition for the existence of such a second curve is required in fact a linear relationship calculated with constant coefficients should exist between the first and second curvatures of the given original curve. In other words, if we denote first and second curvatures of a given curve by k_{1} and k_{2} respectively, we have $\lambda k_{1}+\mu k_{2}=1, \lambda, \mu \in \mathbb{R}$. Since 1850, after the paper of Bertrand, the pairs of curves like this have been called Conjugate Bertrand Curves, or more commonly Bertrand Curves (see 11]).

There are many important papers on Bertrand curves in Euclidean space (see: [4], [5], (13]).

When we investigate the properties of Bertrand curves in Euclidean n-space, it is easy to see that either k_{2} or k_{3} is zero which means that Bertrand curves in

[^0]$\mathbb{E}^{n}(n>3)$ are degenerate curves (see [13]). This result is restated by Matsuda and Yorozu [12]. They proved that there was not any special Bertrand curves in $\mathbb{E}^{n}(n>3)$ and defined a new kind, which is called (1,3)-type Bertrand curves in 4-dimensional Euclidean space. Bertrand curves and their characterizations were studied by many researchers in Minkowski 3- space and Minkowski space-time (see [1, 7, 10]) as well as in Euclidean space.
K. Bharathi and M. Nagaraj (in [2]) studied a quaternionic curve in Euclidean 3 -space \mathbb{E}^{3} and Euclidean 4 -space \mathbb{E}^{4} and gave the Frenet formula for quaternionic curve. For the newest results for quaternioonic curves, we refer the papers [8, 9 , 16].

In this paper, by using the similar idea of Matsuda and Yorozu [12], we prove that if bitorsion of a quatenionic curve α is no vanish, then there is no quaternionic curves in \mathbb{E}^{4} is a Bertrand curve. Then we define $(1,3)$ - type Bertrand curves for quatenionic curves in Euclidean 4-space. We give some characterizations for a $(1,3)$ - type quaternionic Bertrand curves in Euclidean 4 -space by means of the curvature functions of the curve

2. Preliminaries

Let Q_{H} denote a four dimensional vector space over a field H whose characteristic grater than 2 . Let $e_{i}(1 \leq i \leq 4)$ denote a basis for the vector space. Let the rule of multiplication on Q_{H} be defined on $e_{i}(1 \leq i \leq 4)$ and extended to the whole of the vector space by distributivity as follows:

A real quaternion is defined by $q=a e_{1}+b e_{2}+c e_{3}+d e_{4}$ where a, b, c, d are ordinary numbers. Such that

$$
\begin{array}{lr}
e_{4}=1 & e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=-1 \\
e_{1} e_{2}=-e_{2} e_{1}=e_{3}, & e_{2} e_{3}=-e_{3} e_{2}=e_{1} \\
e_{3} e_{1}=-e_{1} e_{3}=e_{2}
\end{array}
$$

If we denote $S_{q}=d$ and $V_{q}=a e_{1}+b e_{2}+c e_{3}$, we can rewrite a real quaternion whose basic algebric form is $q=S_{q}+V_{q}$ where S_{q} is scalar part and V_{q} is vectorial part of q. Using these basic products we can now expand the product of two quatenions as

$$
p \times q=S_{p} S_{q}-\left\langle V_{p}, V_{q}\right\rangle+S_{p} V_{q}+S_{q} V_{p}+V_{p} \wedge V_{q} \text { for every } p, q \in Q_{H}
$$

where we have used the inner and cross products in Euclidean space E^{3}. There is a uniqe involutory antiautomorphism of the quaternion algebra, denoted by the symbol γ and defined as follows:

$$
\gamma q=-a e_{1}-b e_{2}-c e_{3}+d e_{4} \text { for every } a e_{1}+b e_{2}+c e_{3}+d e_{4} \in Q_{H}
$$

which is called the "Hamilton conjugation". This defines the symmetric, real valued, non-degenerate, bilinear form h as follows:

$$
h(p, q)=\frac{1}{2}[p \times \gamma q+q \times \gamma p] \text { for every } p, q \in Q_{H}
$$

And then, the norm of any q real quaternion denoted

$$
\|q\|^{2}=h(q, q)=q \times \gamma q
$$

q is called a spatial quaternion whenever $q+\gamma q=0([6])$.
The Serret-Frenet formulae for quaternionic curves in E^{3} and E^{4} are as follows ([2]):

Theorem 2.1. The three-dimensional Euclidean space E^{3} is identified with the space of spatial quaternions $\left\{p \in Q_{H} \mid p+\gamma p=0\right\}$ in an obvious manner. Let $I=$ $[0,1]$ denote the unit interval in the real line \mathbb{R}. Let

$$
\begin{aligned}
\alpha: I \subset \mathbb{R} & \longrightarrow Q_{H} \\
s & \longrightarrow \alpha(s)=\sum_{i=1}^{3} \alpha_{i}(s) e_{i} \quad(1 \leq i \leq 3)
\end{aligned}
$$

be an arc-lenghted curve with nonzero curvatures $\{k, r\}$ and $\{t(s), n(s), b(s)\}$ denote the Frenet frame of the curve α. Then Frenet formulas are given by

$$
\left[\begin{array}{c}
t^{\prime} \\
n^{\prime} \\
b^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k & 0 \\
-k & 0 & r \\
0 & -r & 0
\end{array}\right]\left[\begin{array}{c}
t \\
n \\
b
\end{array}\right]
$$

where k is principal curvature, r is torsion of α.

Theorem 2.2. The four-dimensional Euclidean space E^{4} are identified with the space of unique quaternions. Let $I=[0,1]$ denote the unit interval in the real line \mathbb{R} and

$$
\begin{aligned}
\alpha: I \subset \mathbb{R} & \longrightarrow Q_{H} \\
s & \longrightarrow \alpha(s)=\sum_{i=1}^{4} \alpha_{i}(s) e_{i}
\end{aligned}
$$

be a smooth curve in E^{4} with nonzero curvatures $\{K, k, r-K\}$ and $\{T(s), N(s)$, $\left.B_{1}(s), B_{2}(s)\right\}$ denotes the Frenet frame of the curve α. Then the frenet formulas are given by

$$
\left[\begin{array}{c}
T^{\prime} \\
N^{\prime} \\
B_{1}^{\prime} \\
B_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & K & 0 & 0 \\
-K & 0 & k & 0 \\
0 & -k & 0 & (r-K) \\
0 & 0 & -(r-K) & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right]
$$

where K is the principal curvature, k is torsion of β and $(r-K)$ is bitorsion of α.
Definition 2.3. Let $\alpha(s)$ and $\beta\left(s^{*}\right)$ be two quaternionic curves in E^{4}. $\{T(s)$, $\left.T(s), N(s), B_{1}(s), B_{2}(s)\right\}$ and $\left\{T^{*}\left(s^{*}\right), N^{*}\left(s^{*}\right), B_{1}^{*}\left(s^{*}\right), B_{2}^{*}\left(s^{*}\right)\right\}$ are Frenet frames, respectively, on these curves. α and β are called Bertrand curves if there exist a bijection

$$
\begin{aligned}
\varphi: & I \\
s & \longrightarrow I^{*} \\
& \longrightarrow(s)=s^{*}, \frac{d s^{*}}{d s} \neq 0
\end{aligned}
$$

and the principal normal lines of α and β at corresponding points coincide.

3. Main Results

Theorem 3.1. Let α be a quaternionic curve in E^{4}. If bitorsion of α is no vanish, then there is no quaternionic curve in E^{4} is a Bertrand curve.

Proof. Let α be a Bertrand curve in E^{4} and β a Bertrand mate of β. β distinct from β. Let the pair of $\alpha(s)$ and $\beta\left(s^{*}\right)=\beta(\varphi(s))$ be of corresponding points of α and β. Then the curve β is given by

$$
\begin{equation*}
\beta\left(s^{*}\right)=\beta(\varphi(s))=\alpha(s)+\lambda(s) N(s) \tag{1}
\end{equation*}
$$

where λ is a C^{∞} function on I. Differentiating (11) with respect to s, we obtain

$$
\varphi^{\prime}(s) \frac{d \beta\left(s^{*}\right)}{d s^{*}}=\alpha^{\prime}(s)+\lambda^{\prime}(s) N(s)+\lambda(s) N^{\prime}(s)
$$

Here and hereafter, the prime denotes the derivative with respect to s. By the Frenet equations, it holds that

$$
\varphi^{\prime}(s) T^{*}(\varphi(s))=(1-\lambda(s) K(s)) T(s)+\lambda^{\prime}(s) N(s)+\lambda(s) k(s) B_{1}(s)
$$

Since $\left\langle T^{*}(\varphi(s)), N^{*}(\varphi(s))\right\rangle=0$ and $N^{*}(\varphi(s))=\mp N(s)$, we obtain, for all $s \in I$,

$$
\lambda^{\prime}(s)=0
$$

that is, λ is a constant function on I. Thus (11) are rewritten as

$$
\begin{equation*}
\beta\left(s^{*}\right)=\beta(\varphi(s))=\alpha(s)+\lambda N(s) \tag{2}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
\varphi^{\prime}(s) T^{*}(\varphi(s))=(1-\lambda K(s)) T(s)+\lambda k(s) B_{1}(s) \tag{3}
\end{equation*}
$$

for all $s \in I$. By (3), we can set

$$
\begin{equation*}
T^{*}(\varphi(s))=(\cos \theta(s)) T(s)+(\sin \theta(s)) B_{1}(s) \tag{4}
\end{equation*}
$$

where θ is a C^{∞}-function on I and

$$
\begin{gather*}
\cos \theta(s)=\frac{1-\lambda K(s)}{\varphi^{\prime}(s)} \tag{5}\\
\sin \theta(s)=\frac{\lambda k(s)}{\varphi^{\prime}(s)} \tag{6}
\end{gather*}
$$

Differentiating (4) and using the Frenet equations, we obtain

$$
\begin{aligned}
\bar{K}(\varphi(s)) \varphi^{\prime}(s) N^{*}(\varphi(s))= & \frac{d \cos \theta(s)}{d s} T(s) \\
& +(K(s) \cos \theta(s)-k(s) \sin \theta(s)) N(s) \\
& +\frac{d \sin \theta(s)}{d s} B_{1}(s) \\
& +(r-K)(s) \sin \theta(s) B_{2}(s)
\end{aligned}
$$

Since $N^{*}(\varphi(s))=\mp N(s)$ for all $s \in I$, we obtain

$$
\begin{equation*}
(r-K)(s) \sin \theta(s)=0 \tag{7}
\end{equation*}
$$

By $(r-K)(s) \neq 0$ and (7), we obtain that $\sin \theta(s)=0$. Thus, by $k(s) \neq 0$ and (6) , we obtain that $\lambda=0$. This completes the proof of theorem.

Definition 3.2. Let $\alpha(s)$ and $\beta\left(s^{*}\right)$ be two quaternionic curves in E^{4}. $\{T(s), N(s)$, $\left.B_{1}(s), B_{2}(s)\right\}$ and $\left\{T^{*}\left(s^{*}\right), N^{*}\left(s^{*}\right), B_{1}^{*}\left(s^{*}\right), B_{2}^{*}\left(s^{*}\right)\right\}$ are Frenet frames, respectively, on these curves. α and β are called quaternionic (1,3)-Bertrand curves if there exist a bijection

$$
\begin{aligned}
& \varphi: I \longrightarrow I^{*} \\
& s \longrightarrow \varphi(s)=s^{*}, \frac{d s^{*}}{d s} \neq 0
\end{aligned}
$$

and the plane spanned by $N(s), B_{2}(s)$ at the each point $\alpha(s)$ of α coincides with the plane spanned by $N^{*}\left(s^{*}\right), B_{2}^{*}\left(s^{*}\right)$ corresponding point $\beta\left(s^{*}\right)=\beta(\varphi(s))$ of β.

Theorem 3.3. Let α be a quaternionic curve in E^{4} with curvature functions $K, k, r-K$ and $r-K \neq 0$. Then α is a $(1,3)$-Bertrand curve if and only if there exist constant real numbers $\lambda, \mu, \gamma, \delta$ satisfying
(i) $\lambda k(s)-\mu(r-K)(s) \neq 0$
(ii) $\lambda K(s)+\gamma(\lambda k(s)-\mu(r-K)(s))=1$
(iii) $\gamma K(s)-k(s)=\delta(r-K)(s)$
(iv) $\left\{\left(\gamma^{2}-1\right) k(s) K(s)+\gamma\left[(K(s))^{2}-(k(s))^{2}-(r-K)^{2}(s)\right]\right\} \neq 0$
for all $s \in I$.
Proof. We assume that α is a $(1,3)$-Bertrand curve parametrized by arclenght s. The $(1,3)$-Bertrand mate β is given by

$$
\begin{equation*}
\beta\left(s^{*}\right)=\beta(\varphi(s))=\alpha(s)+\lambda(s) N(s)+\mu(s) B_{2}(s) \tag{8}
\end{equation*}
$$

for all $s \in I$. Here λ and μ are C^{∞}-function on I, and s^{*} is the arclenght parameter of β. Differentiating (8) with respect to s, and using the Frenet equations, we obtain

$$
\begin{aligned}
\varphi^{\prime}(s) T^{*}(\varphi(s))= & (1-\lambda(s) K(s)) T(s)+\lambda^{\prime}(s) N(s) \\
& +(\lambda(s) k(s)-\mu(s)(r-K)(s))) B_{1}(s)+\mu^{\prime}(s) B_{2}(s)
\end{aligned}
$$

for all $s \in I$.
Since the plane spanned by $N(s)$ and $B_{2}(s)$ coincides with the plane spanned by $N^{*}(\varphi(s))$ and $B_{2}^{*}(\varphi(s))$, we can put

$$
\begin{gather*}
N^{*}(\varphi(s))=(\cos \theta(s)) N(s)+(\sin \theta(s)) B_{2}(s) \tag{9}\\
B_{2}^{*}(\varphi(s))=(-\sin \theta(s)) N(s)+(\cos \theta(s)) B_{2}(s) \tag{10}
\end{gather*}
$$

and we notice that $\sin \theta(s) \neq 0$ for all $s \in I$. By the following facts

$$
\begin{gathered}
0=\left\langle\varphi^{\prime}(s) T^{*}(\varphi(s)), N^{*}(\varphi(s))\right\rangle=\lambda^{\prime}(s) \cos \theta(s)+\mu^{\prime}(s) \sin \theta(s) \\
0=\left\langle\varphi^{\prime}(s) T^{*}(\varphi(s)), B_{2}^{*}(\varphi(s))\right\rangle=-\lambda^{\prime}(s) \sin \theta(s)+\mu^{\prime}(s) \cos \theta(s)
\end{gathered}
$$

we obtain

$$
\lambda^{\prime}(s)=0, \mu^{\prime}(s)=0
$$

that is, λ and μ are constant function on I with values λ and μ, respectively. Therefore, for all $s \in I$, (8) is rewritten as

$$
\begin{equation*}
\beta\left(s^{*}\right)=\beta(\varphi(s))=\alpha(s)+\lambda N(s)+\mu B_{2}(s) \tag{11}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
\varphi^{\prime}(s) T^{*}(\varphi(s))=(1-\lambda K(s)) T(s)+(\lambda k(s)-\mu(r-K)(s)) B_{1}(s) . \tag{12}
\end{equation*}
$$

Here we notice that

$$
\begin{equation*}
\left(\varphi^{\prime}(s)\right)^{2}=(1-\lambda K(s))^{2}+(\lambda k(s)-\mu(r-K)(s))^{2} \neq 0 \tag{13}
\end{equation*}
$$

for all $s \in I$. Thus we can set

$$
\begin{equation*}
T^{*}(\varphi(s))=(\cos \tau(s)) T(s)+(\sin \tau(s)) B_{1}(s) \tag{14}
\end{equation*}
$$

and

$$
\begin{gather*}
\cos \tau(s)=\frac{1-\lambda K(s)}{\varphi^{\prime}(s)} \tag{15}\\
\sin \tau(s)=\frac{\lambda k(s)-\mu(r-K)(s)}{\varphi^{\prime}(s)} \tag{16}
\end{gather*}
$$

where τ is a C^{∞}-function on I. Differentiating (14) with respect to s and using the Frenet equations, we obtain

$$
\begin{aligned}
\bar{K}(\varphi(s)) \varphi^{\prime}(s) N^{*}(\varphi(s))= & \frac{d \cos \tau(s)}{d s} T(s) \\
& +(K(s) \cos \tau(s)-k(s) \sin \tau(s)) N(s) \\
& +\frac{d \sin \tau(s)}{d s} B_{1}(s)+(r-K)(s) \sin \tau(s) B_{2}(s) .
\end{aligned}
$$

Since $N^{*}(\varphi(s))$ is expressed by linear combination of $N(s)$ and $B_{2}(s)$, it holds that

$$
\frac{d \cos \tau(s)}{d s}=0, \frac{d \sin \tau(s)}{d s}=0
$$

that is, τ is a constant function on I with value τ_{0}. Thus we obtain

$$
\begin{gather*}
T^{*}(\varphi(s))=\left(\cos \tau_{0}\right) T(s)+\left(\sin \tau_{0}\right) B_{1}(s) \tag{17}\\
\varphi^{\prime}(s) \cos \tau_{0}=1-\lambda K(s) \tag{18}\\
\varphi^{\prime}(s) \sin \tau_{0}=\lambda k(s)-\mu(r-K)(s) \tag{19}
\end{gather*}
$$

for all $s \in I$. There fore we obtain

$$
\begin{equation*}
(1-\lambda K(s)) \sin \tau_{0}=(\lambda k(s)-\mu(r-K)(s)) \cos \tau_{0} \tag{20}
\end{equation*}
$$

for all $s \in I$.
If $\sin \tau_{0}=0$, then it holds $\cos \tau_{0}=\mp 1$. Thus (17) implies that $T^{*}(\varphi(s))=$ $\mp T(s)$. Differentiating this equality, we obtain

$$
\bar{K}(\varphi(s)) \varphi^{\prime}(s) N^{*}(\varphi(s))=\mp K(s) N(s),
$$

that is,

$$
N^{*}(\varphi(s))=\mp N(s),
$$

for all $s \in I$. By Theorem 3.1 this fact is a contradiction. Thus we must consider only the case of $\sin \tau_{0} \neq 0$. Then (19) imlies

$$
\lambda k(s)-\mu(r-K)(s) \neq 0
$$

that is, we obtain the relation (i).
The fact $\sin \tau_{0} \neq 0$ and (20) imply

$$
\lambda K(s)+\sin ^{-1} \tau_{0} \cos \tau_{0}(\lambda k(s)-\mu(r-K)(s))=1
$$

From this, we obtain

$$
\lambda K(s)+\gamma(\lambda k(s)-\mu(r-K)(s))=1
$$

for all $s \in I$, where $\gamma=\sin ^{-1} \tau_{0} \cos \tau_{0}$ is a constant number. Thus we obtain the relation (ii).

Differentiating (17) with respect to s and using the Frenet equations, we obtain

$$
\begin{aligned}
\bar{K}(\varphi(s)) \varphi^{\prime}(s) N^{*}(\varphi(s))= & \left(K(s) \cos \tau_{0}-k(s) \sin \tau_{0}\right) N(s) \\
& +(r-K)(s) \sin \tau_{0} B_{2}(s)
\end{aligned}
$$

for all $s \in I$. From the above equality, (18), (19) and (b), we obtain

$$
\begin{aligned}
{\left[\bar{K}(\varphi(s)) \varphi^{\prime}(s)\right]^{2}=} & {\left[K(s) \cos \tau_{0}-k(s) \sin \tau_{0}\right]^{2}+\left[(r-K)(s) \sin \tau_{0}\right]^{2} } \\
= & (\lambda k(s)-\mu(r-K)(s))^{2} \\
& \times\left[(\gamma K(s)-k(s))^{2}+((r-K)(s))^{2}\right]\left(\varphi^{\prime}(s)\right)^{-2}
\end{aligned}
$$

for all $s \in I$. From (13) and (ii), it holds

$$
\left(\varphi^{\prime}(s)\right)^{2}=\left(\gamma^{2}+1\right)(\lambda k(s)-\mu(r-K)(s))^{2}
$$

Thus we obtain

$$
\begin{equation*}
\left[\bar{K}(\varphi(s)) \varphi^{\prime}(s)\right]^{2}=\frac{1}{\gamma^{2}+1}\left[(\gamma K(s)-k(s))^{2}+((r-K)(s))^{2}\right] \tag{21}
\end{equation*}
$$

By (18), (19) and (ii), we can set

$$
\begin{equation*}
N^{*}(\varphi(s))=(\cos \eta(s)) N(s)+(\sin \eta(s)) B_{2}(s), \tag{22}
\end{equation*}
$$

where

$$
\begin{align*}
\cos \eta(s) & =\frac{(\lambda k(s)-\mu(r-K)(s))(\gamma K(s)-k(s))}{\bar{K}(\varphi(s))\left(\varphi^{\prime}(s)\right)^{2}} \tag{23}\\
\sin \eta(s) & =\frac{(r-K)(s)(\lambda k(s)-\mu(r-K)(s))}{\bar{K}(\varphi(s))\left(\varphi^{\prime}(s)\right)^{2}} \tag{24}
\end{align*}
$$

for all $s \in I$. Here, η is a C^{∞}-function on I.
Differentiating (22) with respect to s and using Frenet equations, we get

$$
\begin{aligned}
& -\varphi^{\prime}(s) \bar{K}(\varphi(s)) T^{*}(\varphi(s))+\varphi^{\prime}(s) \bar{k}(\varphi(s)) B_{1}^{*}(\varphi(s)) \\
= & -K(s) \cos \eta(s) T(s)+\frac{d \cos \eta(s)}{d s} N(s) \\
& +\{k(s) \cos \eta(s)-(r-K)(s) \sin \eta(s)\} B_{1}(s) \\
& +\frac{d \sin \eta(s)}{d s} B_{2}(s)
\end{aligned}
$$

for all $s \in I$.From the above fact, it holds

$$
\frac{d \cos \eta(s)}{d s}=0, \frac{d \sin \eta(s)}{d s}=0
$$

that is, η is a constant function on I with value η_{0}. Let $\delta=\left(\cos \eta_{0}\right)\left(\sin \eta_{0}\right)^{-1}$ be constant number. Then (23) and (24) imply

$$
\gamma K(s)-k(s)=\delta(r-K)(s)
$$

that is we obtain the relation (iii).
Moreover, we obtain

$$
\begin{aligned}
& -\varphi^{\prime}(s) \bar{K}(\varphi(s)) T^{*}(\varphi(s))+\varphi^{\prime}(s) \bar{k}(\varphi(s)) B_{1}^{*}(\varphi(s)) \\
= & -K(s) \cos \eta(s) T(s) \\
& +\{k(s) \cos \eta(s)-(r-K)(s) \sin \eta(s)\} B_{1}(s)
\end{aligned}
$$

By the above equality and (12), we obtain

$$
\begin{aligned}
\varphi^{\prime}(s) \bar{k}(\varphi(s)) B_{1}^{*}(\varphi(s))= & \varphi^{\prime}(s) \bar{K}(\varphi(s)) T^{*}(\varphi(s)) \\
& -K(s) \cos \eta_{0} T(s) \\
& +\left\{k(s) \cos \eta_{0}-(r-K)(s) \sin \eta_{0}\right\} B_{1}(s) \\
= & \left\{\left(\varphi^{\prime}(s)\right)^{2} \bar{K}(\varphi(s))\right\}^{-1} \\
& \times\left\{A(s) T(s)+B(s) B_{1}(s)\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
A(s)= & \left\{\varphi^{\prime}(s) \bar{K}(\varphi(s))\right\}^{2}(1-\lambda K(s)) \\
& -K(s)(\lambda k(s)-\mu(r-K)(s))(\gamma K(s)-k(s)) \\
B(s)= & \left\{\varphi^{\prime}(s) \bar{K}(\varphi(s))\right\}^{2}(\lambda k(s)-\mu(r-K)(s)) \\
+ & \left\{\begin{array}{c}
k(s)(\lambda k(s)-\mu(r-K)(s))(\gamma K(s)-k(s)) \\
-(r-K)^{2}(s)(\lambda k(s)-\mu(r-K)(s))
\end{array}\right\}
\end{aligned}
$$

From (ii) and (21), $A(s)$ and $B(s)$ are rewritten as:

$$
\begin{aligned}
A(s)= & (\lambda k(s)-\mu(r-K)(s))\left(\gamma^{2}+1\right)^{-1} \\
& \times\left\{\left(1-\gamma^{2}\right) K(s) k(s)-\gamma\left[(K(s))^{2}-(k(s))^{2}-((r-K)(s))^{2}\right]\right\} \\
B(s)= & \gamma\left(\gamma^{2}+1\right)^{-1}(\lambda k(s)-\mu(r-K)(s)) \\
& \times\left\{\left(\gamma^{2}-1\right) k(s) K(s)+\gamma\left[(K(s))^{2}-(k(s))^{2}-(r-K)^{2}(s)\right]\right\}
\end{aligned}
$$

Since $\bar{K}(\varphi(s)) \varphi^{\prime}(s) N^{*}(\varphi(s)) \neq 0$ for all $s \in I$, it holds

$$
\left\{\left(\gamma^{2}-1\right) k(s) K(s)+\gamma\left[(K(s))^{2}-(k(s))^{2}-(r-K)^{2}(s)\right]\right\} \neq 0
$$

for all $s \in I$. Thus we obtain the relation (iv).
We assume that $\alpha\left(\alpha: I \rightarrow Q_{H}\right)$ is a C^{∞} special Frenet curve in Q_{H} with curvature functions K, k and $(r-K)$ satisfying the relation $(i),(i i),(i i i)$ and (iv) for constant numvers λ, μ, γ and δ. Then we define a C^{∞}-curve β by

$$
\begin{equation*}
\beta(s)=\alpha(s)+\lambda N(s)+\mu B_{2}(s) \tag{25}
\end{equation*}
$$

for all $s \in I$, where s is arclenght parameter of α. Diffferentiating (25) with recpect to s and using the Frenet equations, we obtain

$$
\frac{d \beta(s)}{d s}=(1-\lambda K(s)) T(s)+(\lambda k(s)-\mu(r-K)) B_{1}(s)
$$

for all $s \in I$. Thus, by the relation (ii), we obtain

$$
\frac{d \beta(s)}{d s}=(\lambda k(s)-\mu(r-K)(s))\left[\gamma T(s)+B_{1}(s)\right]
$$

for all $s \in I$. Since the relation (i) holds, the curve β is a regular curve. Then there exists a regular map $\varphi: I \rightarrow \bar{I}$ defined by

$$
s^{*}=\varphi(s)=\int_{0}^{s}\left\|\frac{d \beta(t)}{d t}\right\| d t
$$

where s^{*} denotes the arclenght parameter of β, and we obtain

$$
\begin{equation*}
\varphi^{\prime}(s)=\varepsilon \sqrt{\gamma^{2}+1}(\lambda k(s)-\mu(r-K)(s))>0 \tag{26}
\end{equation*}
$$

where $\varepsilon=1$ if $\lambda k(s)-\mu(r-K)(s)>0$, and $\varepsilon=-1$ if $\lambda k(s)-\mu(r-K)(s)<$ 0 .Thus the curve β is rewritten as

$$
\begin{aligned}
\beta\left(s^{*}\right) & =\beta(\varphi(s)) \\
& =\alpha(s)+\lambda N(s)+\mu B_{2}(s)
\end{aligned}
$$

for all $s \in I$. Differentiating the above equality with respect to s, we obtain

$$
\begin{equation*}
\varphi^{\prime}(s) \frac{d \beta\left(s^{*}\right)}{d s^{*}}=(\lambda k(s)-\mu(r-K)(s))\left[\gamma T(s)+B_{1}(s)\right] \tag{27}
\end{equation*}
$$

We can define the unit vector field T^{*} along β by $T^{*}\left(s^{*}\right)=\frac{d \beta\left(s^{*}\right)}{d s^{*}}$ for all $s^{*} \in \bar{I}$. By (26) and (27), we obtain

$$
\begin{equation*}
T^{*}(\varphi(s))=\varepsilon\left(\gamma^{2}+1\right)^{-\frac{1}{2}}\left[\gamma T(s)+B_{1}(s)\right] \tag{28}
\end{equation*}
$$

for all $s \in I$. Differentiating (28) with respect to s and using the Frenet equations, we obtain

$$
\varphi^{\prime}(s){\frac{d T^{*}\left(s^{*}\right)}{d s^{*}}}_{s^{*}=\varphi(s)}=\varepsilon\left(\gamma^{2}+1\right)^{-\frac{1}{2}}\left\{[\gamma K(s)-k(s)] N(s)+(r-K)(s) B_{2}(s)\right\}
$$

and

$$
\left\|{\frac{d T^{*}\left(s^{*}\right)}{d s^{*}}}_{s^{*}=\varphi(s)}\right\|=\frac{\sqrt{[\gamma K(s)-k(s)]^{2}+((r-K)(s))^{2}}}{\varphi^{\prime}(s) \sqrt{\left(\gamma^{2}+1\right)}}
$$

By the fact that $(r-K)(s) \neq 0$ for all $s \in I$, we obtain

$$
\begin{equation*}
\bar{K}(\varphi(s))=\left\|{\frac{d T^{*}\left(s^{*}\right)}{d s^{*}}}_{s^{*}=\varphi(s)}\right\|>0 \tag{29}
\end{equation*}
$$

for all $s \in I$. Then we can define a unit vector field N^{*} along β by

$$
\begin{aligned}
N^{*}\left(s^{*}\right)= & N^{*}(\varphi(s)) \\
= & \frac{1}{\bar{K}(\varphi(s))} \frac{d T^{*}\left(s^{*}\right)}{d s^{*}}{ }_{s^{*}=\varphi(s)} \\
= & \frac{1}{\sqrt{[\gamma K(s)-k(s)]^{2}+((r-K)(s))^{2}}} \\
& \times\left\{[\gamma K(s)-k(s)] N(s)+(r-K)(s) B_{2}(s)\right\}
\end{aligned}
$$

for all $s \in I$. Thus we can put

$$
\begin{equation*}
N^{*}(\varphi(s))=\cos \xi(s) N(s)+\sin \xi(s) B_{2}(s) \tag{30}
\end{equation*}
$$

where

$$
\begin{align*}
& \cos \xi(s)=\frac{\gamma K(s)-k(s)}{\sqrt{[\gamma K(s)-k(s)]^{2}+((r-K)(s))^{2}}} \tag{31}\\
& \sin \xi(s)=\frac{(r-K)(s)}{\sqrt{[\gamma K(s)-k(s)]^{2}+((r-K)(s))^{2}}} \tag{32}
\end{align*}
$$

for all $s \in I$. Here ξ is a C^{∞} function on I. Differentiating (30) with respect to s and using the Frenet equations, we obtain

$$
\begin{aligned}
\varphi^{\prime}(s){\frac{d N^{*}\left(s^{*}\right)}{d s^{*}}}_{s^{*}=\varphi(s)}= & -\cos \xi(s) K(s) T(s) \\
& +\frac{d \cos \xi(s)}{d s} N(s) \\
& +(k(s) \cos \xi(s)-(r-K)(s) \sin \xi(s)) B_{1}(s) \\
& +\frac{d \sin \xi(s)}{d s} B_{2}(s)
\end{aligned}
$$

Differentiatin (iii) with respect to s, we obtain

$$
\begin{equation*}
\left(\gamma K^{\prime}(s)-k^{\prime}(s)\right)(r-K)(s)-(\gamma K(s)-k(s))(r-K)^{\prime}(s)=0 \tag{33}
\end{equation*}
$$

Differentiating (31) and (32) with respect to s and using (33), we obtain

$$
\frac{d \cos \xi(s)}{d s}=0, \frac{d \sin \xi(s)}{d s}=0
$$

that is, ξ is a constant function on I with value ξ_{0}. Thus we obtain

$$
\begin{gather*}
\cos \xi_{0}=\frac{\gamma K(s)-k(s)}{\varepsilon \sqrt{[\gamma K(s)-k(s)]^{2}+((r-K)(s))^{2}}} \tag{34}\\
\sin \xi_{0}=\frac{(r-K)(s)}{\varepsilon \sqrt{[\gamma K(s)-k(s)]^{2}+((r-K)(s))^{2}}} \neq 0 \tag{35}
\end{gather*}
$$

From (30), it holds

$$
\begin{equation*}
N^{*}(\varphi(s))=\cos \xi_{0} N(s)+\sin \xi_{0} B_{2}(s) \tag{36}
\end{equation*}
$$

Thus we obtain, by (28) and (29),

$$
\begin{aligned}
\bar{K}(\varphi(s)) T^{*}(\varphi(s))= & \frac{[\gamma K(s)-k(s)]^{2}+((r-K)(s))^{2}}{\varepsilon \varphi^{\prime}(s)\left(\gamma^{2}+1\right) \sqrt{[\gamma K(s)-k(s)]^{2}+((r-K)(s))^{2}}} \\
& \times\left[\gamma T(s)+B_{1}(s)\right]
\end{aligned}
$$

and by (34),(35) and (36)

$$
\begin{aligned}
{\frac{d N^{*}\left(s^{*}\right)}{d s^{*}}}_{s^{*}=\varphi(s)}= & -\frac{K(s)(\gamma K(s)-k(s))}{\varepsilon \varphi^{\prime}(s) \sqrt{[\gamma K(s)-k(s)]^{2}+((r-K)(s))^{2}}} T(s) \\
& +\left(\frac{k(s)(\gamma K(s)-k(s))-((r-K)(s))^{2}}{\varepsilon \varphi^{\prime}(s) \sqrt{[\gamma K(s)-k(s)]^{2}+((r-K)(s))^{2}}}\right) B_{1}(s)
\end{aligned}
$$

for all $s \in I$. By the above equalities, we obtain

$$
{\frac{d N^{*}\left(s^{*}\right)}{d s^{*}}}_{s^{*}=\varphi(s)}+\bar{K}(\varphi(s)) T^{*}(\varphi(s))=\frac{P(s)}{R(s)} T(s)+\frac{Q(s)}{R(s)} B_{1}(s)
$$

where

$$
\begin{gathered}
P(s)=-\left[\gamma\left\{(K(s))^{2}-(k(s))^{2}-((r-K)(s))^{2}\right\}+\left(\gamma^{2}-1\right) K(s) k(s)\right] \\
Q(s)=\gamma\left[\gamma\left\{(K(s))^{2}-(k(s))^{2}-((r-K)(s))^{2}\right\}+\left(\gamma^{2}-1\right) K(s) k(s)\right] \\
R(s)=\varepsilon \varphi^{\prime}(s)\left(\gamma^{2}+1\right) \sqrt{[\gamma K(s)-k(s)]^{2}+((r-K)(s))^{2}} \neq 0
\end{gathered}
$$

for all $s \in I$. We notice that, by $($ iii $), P(s) \neq 0$ for all $s \in I$. Thus we obtain

$$
\begin{aligned}
\bar{k}(\varphi(s)) & =\left\|\frac{d N^{*}\left(s^{*}\right)}{d s^{*}}{ }_{s^{*}=\varphi(s)}+\bar{K}(\varphi(s)) T^{*}(\varphi(s))\right\| \\
& =\frac{\left|\gamma\left\{(K(s))^{2}-(k(s))^{2}-((r-K)(s))^{2}\right\}+\left(\gamma^{2}-1\right) K(s) k(s)\right|}{\varphi^{\prime}(s) \sqrt{\gamma^{2}+1} \sqrt{[\gamma K(s)-k(s)]^{2}+((r-K)(s))^{2}}}
\end{aligned}
$$

for all $s \in I$. Thus we can define a unit vector field $B_{1}^{*}\left(s^{*}\right)$ along β by

$$
\begin{aligned}
& B_{1}^{*}\left(s^{*}\right)=B_{1}^{*}(\varphi(s)) \\
& =\frac{1}{\bar{k}(\varphi(s))}\left({\frac{d N^{*}\left(s^{*}\right)}{d s^{*}}}_{s^{*}=\varphi(s)}+\bar{K}(\varphi(s)) T^{*}(\varphi(s))\right)
\end{aligned}
$$

that is,

$$
\begin{equation*}
B_{1}^{*}(\varphi(s))=\frac{1}{\varepsilon \sqrt{\gamma^{2}+1}}\left(-T(s)+\gamma B_{2}(s)\right) \tag{37}
\end{equation*}
$$

for all $s \in I$. Next we can define a unit vector field B_{2}^{*} along β by

$$
\begin{aligned}
B_{2}^{*}\left(s^{*}\right)= & B_{2}^{*}(\varphi(s)) \\
= & \frac{1}{\varepsilon \sqrt{[\gamma K(s)-k(s)]^{2}+((r-K)(s))^{2}}} \\
& \left\{-(r-K)(s) N(s)+(\gamma K(s)-k(s)) B_{2}(s)\right\}
\end{aligned}
$$

that is

$$
\begin{equation*}
B_{2}^{*}(\varphi(s))=-\sin \xi_{0} N(s)+\cos \xi_{0} B_{2}(s) \tag{38}
\end{equation*}
$$

for all $s \in I$. Now we obtain, by (28), (36), (37) and (38),

$$
\operatorname{det}\left[T^{*}(\varphi(s)), N^{*}(\varphi(s)), B_{1}^{*}(\varphi(s)), B_{2}^{*}(\varphi(s))\right]=1
$$

and $\left\{T^{*}(\varphi(s)), N^{*}(\varphi(s)), B_{1}^{*}(\varphi(s)), B_{2}^{*}(\varphi(s))\right\}$ is orthonormal for all $s \in I$.Thus the frame $\left\{T^{*}, N^{*}, B_{1}^{*}, B_{2}^{*}\right\}$ along β is of orthonormal and of positive. And we obtain

$$
\begin{aligned}
\overline{(r-K)}(s) & =\left\langle{\frac{d B_{1}^{*}\left(s^{*}\right)}{d s^{*}}}_{s^{*}=\varphi(s)}, B_{2}^{*}(\varphi(s))\right\rangle \\
& =\frac{\sqrt{\gamma^{2}+1} K(s)(r-K)(s)}{\varphi^{\prime}(s) \sqrt{[\gamma K(s)-k(s)]^{2}+((r-K)(s))^{2}}} \neq 0
\end{aligned}
$$

for all $s \in I$. Thus the curve β is a Frenet curve in Q_{H}. And it is trivial that he plane spanned by $N(s), B_{2}(s)$ at the each point $\alpha(s)$ of α coincides with the plane spanned by $N^{*}\left(s^{*}\right), B_{2}^{*}\left(s^{*}\right)$ corresponding point $\beta\left(s^{*}\right)=\beta(\varphi(s))$ of β. Therefore α is a $(1,3)$-Bertrand curve in Q_{H}.

References

[1] H. Balgetir, M. Bektaş and J. Inoguchi, Null Bertrand curves in Minkowski 3-space and their characterizations, Note Mat. 23(1)(2004/05), 7-13.
[2] K. Bharathi, M. Nagaraj, Quaternion valued function of a real variable SerretFrenet formula, Indian J. Pure Appl. Math. 18(6)(1987), 507-511.
[3] J. M. Bertrand, Mémoire sur la théorie des courbes á double courbure, Comptes Rendus. 36(1850).
[4] Ch. Bioche, Sur les courbes de M. Bertrand, Bull. Soc. Math. France. 17(1889), 109-112.
[5] J. F. Burke, Bertrand Curves Associated with a Pair of Curves, Mathematics Magazine. 34(1)(1960), 60-62.
[6] W. K. Clifford, Preliminary sketch of biquaternions, Proc. London Math. Soc. 4(1873), 361-395.
[7] N. Ekmekci and K. ilarslan, On Bertrand curves and their characterization, Differ. Geom. Dyn. Syst. 3(2)(2001), 17-24.
[8] I. Gok, Z. Okuyucu, F. Kahraman and H. H. Hacisalihoglu, On the quaternionic B_{2}-slant helices in the Euclidean space \mathbb{E}^{4}, Adv. Appl. Clifford Algebras. 21(2011), 707-719.
[9] M. A. Gungor and M. Tosun, Some characterizations of quaternionic rectifying curves, Differential Geom.-Dynamical Systems. 13(2011), 89-100.
[10] D. H. Jin, Null Bertrand curves in a Lorentz manifold, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 15(3)(2008), 209-215.
[11] W. Kuhnel, Differential geometry: curves-surfaces-manifolds, Braunschweig, Wiesbaden, (1999).
[12] H. Matsuda and S. Yorozu, Notes on Bertrand curves, Yokohama Math. J. 50(1-2)(2003), 41-58.
[13] L. R. Pears, Bertrand curves in Riemannian space, J. London Math. Soc. 110(2)(1935), 180-183.
[14] B. Saint Venant, Mémoire sur les lignes courbes non planes, Journal de l'Ecole Polytechnique. 18(1845), 1-76.
[15] J. K. Whittemore, Bertrand curves and helices, Duke Math. J. 6(1940), 235245.
[16] D. W Yoon, On the quaternionic general helices in Euclidean 4-space, Honam Mathematical J. 34(3)(2012), 381-390.

Osman Keçilioğlu
Department of Statistics, Faculty of Science and Arts, Kirikkale University 71450, Kirikkale, Turkey.

E-mail address: okecilioglu@yahoo.com
Kazim İlarslan
Department of Mathematics, Faculty of Science and Arts, Kirikkale University 71450, Kirikkale, Turkey.

E-mail address: kilarslan@yahoo.com

[^0]: ${ }^{0} 2000$ Mathematics Subject Classification: 53A04.
 Keywords and phrases. Euclidean 4-space, Quaternionic Frenet frame, $(1,3)$ type Bertrand curve. (C) 2013 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted April 22, 2013. Published August 21, 2013.

