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BEST APPROXIMATION OF FUNCTIONS OF GENERALIZED
ZYGMUND CLASS BY MATRIX-EULER SUMMABILITY
MEANS OF FOURIER SERIES

(COMMUNICATED BY HUSEIN BOR)

SHYAM LAL AND SHIREEN

ABSTRACT. In this paper, new best approximations of the function f € Zﬁw),

(r > 1) class by Matrix-Euler means (A.E) of its Fourier Series have been
determined.

1. INTRODUCTION

The degree of approximation of a function f belonging to Lipschitz class by the
Cesaro mean and f € H, by the Fejér means has been studied by Alexits [4] and
Prossdorf [7] respectively. But till now no work seems to have been done to obtain

best approximation of functions belonging to generalized Zygmund class, Zﬁw), (r>

1) by product summability means of the form (A.E}). Zﬁw) class is a generalization
of Zy, Zo v, ZW) classes. The Matrix-Euler (A.F;7) summability means includes
(N,pn).E1, (N,pn,qs).E1 and (C,1).E; means as particular cases. In attempt to
make an advance study in this direction, in this paper, best approximations of the

function belonging to generalized Zygmund class Zr(w , (r > 1) have been obtained.

2. DEFINITION AND NOTATIONS

o0 n
Let Y u, be an infinite series having n‘" partial sum s, = 3 u,.
n=0 v=0
Let f be a 2w periodic function, integrable in the Lebesgue sense over [0, 27].

Let the Fourier series of f be given by

fz) = %ao + i(an cosnx + by, sinna) (1)

n=1

with n'" partial sum s, (f; ).
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2 SHYAM LAL AND SHIREEN

Let T = (an,) be an infinite triangular matrix satisfying the (Silverman-Téeplitz
[8]) conditions of regularity, i.e.,

n

(1). anr=1lasn— oo,
k=0

(ii). anr=0for k>n,

n
(iii). Y lank| < M , a finite constant.
k=0
The sequence-to-sequence transformation

n n

A E — E

tn = Qn kSk = An,n—kSn—k
k=0 k=0

defines the sequence ¢4 of triangular matrix means of the sequence {s, }, generated
by the sequence of coefficients (an, ).

If t2 — s as n — 0o, then the series > w,, is summable to s by triangular
n=0
matrix A- method (Zygmund [1], p.74).

n

1 o]
Let BV = —Z (n) sp. If BESY — s as n — oo, then > up is said to be
2n =0 k n=0
summable to s by the Euler’s method, Fy (Hardy [5]).

The triangular matrix A-transform of E; transform defines the (A.E;) transform

o0

t2E of the partial sums s,, of the series Y wu, by
n=0

n n 1 k k
27 il = a3 ()
k=0 k=0 v=0

o0
If t2% — s as n — oo, then the series Y. u,, is said to be summable (A.E;) to s.
n=0

1
sp—s = B =

T

n
n .
( )sl, — s as n — oo, E7 method is regular,
v
v=0

= t2(EWM)=t2F = s as n — 0o, A method is regular,
= (A.E7) method is regular.

Some important particular cases of triangular Matrix-Euler means (A.E;) are

(1) (H, %H)(El) means, when Gn,k = m.
(ii). (N,pn).Er means, when a, , = p};;’“, where P, = kzopk #0.

n
(iii). (N, pn,qn).-E1 means, when a,, ;. = %, where R, = > prqn—k # 0.
k=0

Let Ca, denote the Banach space of all 2w-periodic and continuous functions
defined on [0, 27] under the supremum norm.
E,(f) = itnf |If = tn]| is the best n-order approximation of a function f € Cay

1 n
(Bernstein [6]), where t,(x) = 50 + Z(a,, cosvz + b, sinvx).

v=1
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Zygmund modulus of continuity of f is defined by
w(foh):= _sup [fz+1)+ flz—1) = 2f((2)].

o<t<h,xe
For 0 < a < 1, the function space
Ziay = {1 € Con s [f(w )+ Sl — t) — 24 (@)] = O(t1")}
is a Banach space under the norm ||.|[ ) defined by

1@y = sup F(@)] + sup LEFD @ = 1) = 2f(@)]

0<z<2n @t ¢
t£0

Let )
L"0,27] := {f:[0,27r]—>R:/ |f(x)|rdx<oo},r21,
0
be the space of all 2m-periodic, integrable functions.
We define the norm ||.[|,. by
1
{% 0% |f(2)]" da:}T for 1 <r < oo

ess sup |f(z)| for r = oco.
0<z<2m

£l =

For f € L"[0,2x],r > 1, the integral Zygmund modulus of continuity is defined by

1

=y

2
wy(f,h) := sup i/|f(9c—i—t)—I—f(gc—t)—2f(:1c)|rdac , forf € L"[0,2x] where 1 < r < oo,
o<t<h | 2m )

w(f,h) = we(f,h) := sup m3x|f(x+t)—|—f(x—t) —2f((z)|, forf € Cor wherer = oco.

o<t<h
It is known (Zygmund |1}, p.45) that w,(f,h) — 0 as h — 0.
Define
27 ™
Zwe =S ferr02n)s | [Ie+0+ fa -0 - 2@ dz ) =O0(H")
0

The space Z(q) , 7> 1,0 <a <1 is a Banach space under the norm ||, .:

1 o= ]+ sup WL ED+FC =8 =270,
a,r * T ££0 |t|a .

1fllo,r = ILF1l -

The class of function Z®) is defined as
ZW) = {f € Cor : |f(w+1) + f(z — 1) = 2f(x)] = O(w (1))}

where w is a Zygmund modulus of continuity, that is, w is a positive, non-decreasing
continuous function with the property: w(0) =0, w(t; +t2) < w(ty) + w(te).

Let w : [0,27] — R be an arbitrary function with w(¢) > 0 for 0 < ¢ < 27 and
lim w(t) = w(0) = 0.

t—0t

We define

ZT(“’) =1 feL"0,2r]: 1 <r < o0, sup G +8) + F(—1) = 2f0ll, < 00
10 w (t)
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and
IfC+)+fC=t) =2f0),
w (t) ’

1F1E = (I £1l, + sup P>,
t#£0

Clearly ||| is a norm on zt".

The completeness of the space Zﬁw) can be discussed considering the complete-
ness of L™ (r > 1).
Define

[fC+D+FC =) =2f0l,
v (t) ’

A1) = 1 £1l, + sup P>
t#£0

Let (%) be positive, non decreasing. Then

v w(2m) w
1719 < e (12250 ) 7 < .
Thus,
zWcz®cr, r>1
Remarks.

(i). If we take w(t) = t* then Z(*) reduces to Z, class.
(if). By taking w(t) = t* in Z{", it reduces to Za.,.
(iil). If we take r — oo then Zr(w) class reduces to Z(")

We write,

oz, t) = flx+t)+ flx—t) —2f(x), Aank = ank — an+1, 0<k<n-—1

FAE _ 1 ian ksin (n—Fk+ 1)(%)cos"_k(%) .
" P sin (%)

3. THEOREMS

In this paper, we prove the following theorems:

Theorem 3.1. Let the lower triangular matriz A = (ank) satisfying the following
conditions:

n

ni > 0(n=0,1,2,.:k=0,1,2,.n) , Y anr=1, (2)
k=0
n—1 1
Z|Aan,k| =0 (—) and (n+1)an, =0/(1). (3)
= n+1
If f :]0,27] — R be a 2m-periodic, Lebesgue integrable and belonging to the gener-

alized Zygmund class Zﬁw), r>1; w, v be Zygmund modulus of continuity and 1;’((;))

be positive, non-decreasing then best approrimation of f by triangular matriz-Euler

n k
means t5F = 3 Unkar O (llj) s, of its Fourier series () is given by
k=0 v=0

_inf IHAE _ ) 1 [ w(t)
En(f)—tﬁlgHtHE flI =0 (n+1)/t2v(t)dt . (4)

n+1
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Theorem 3.2. Let A = (an,k) be the lower triangular matriz satisfying the con-
ditions (@) and (@) and in addition to Theorem [31], % is mon-increasing. For
fe Zﬁw), r > 1, its best approximation by triangular matriz-Euler means tﬁE
satisfies

E.(f)=0 ﬁlog(n—i-l)w . (5)
()

4. LEMMAS

Following Lemmas are required to prove the theorems:

Lemma 4.1. Under our conditions on (an, k),
K2E#)=0Mm+1),for 0<t < (n+1)"%

Proof. For 0 <t < (n+1)71, sin% > %, sinnt < nt, [cost| < 1, we have
1 — sin(n —k +1)(£)cos™ (%)
ERP@| = |52 ank — .
| | 2#% sin (%)
1 — (n—k—l—l)(%)’cos”*k(%)’
< o n
- QWZQ ik (L)
k=0 w
1 n
< Z(n—l—l)Zamk
k=0
< Y
- 4
= On+1)

Lemma 4.2. K2F(t) =0 (W), for (n+1)"t<t<m.
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Proof. For (n+1)"! <t <, sint > L, using Abel’s lemma, we get
1 sin (n — k + 1)(£)cos™ (%)
t)’ = a_ Qn,k 2
2 kZ:o sin (£)
1 n—1 k + +
< % Z(an,k—an7k+1)2sin(n—V+1)<§)cos"_”<§>
k=0 v=0
+a isin (n—k+ 1)(£> cos™F (E>|
o 2 2
k=0
n—1 . t t t
1 sin 7 n+1)(+ sin (n + 2 sin(n+1)(5
o L[§ gy [EE D s DD fsin+ s ()
iz sin (1) sin (§)
T &= t t
< —= — — ) —
S B ;|Aank|+ann Jnax. sin (2n k+2)(2)sm(n+1)(2>‘
= t_2 l;) |Aan7k| + an7n
m [ 1 1
= - |0(——= O—— )| b
t2 | <n—|—1)+ <n+1)] v @
1
= 0| — ).
<(n+1)t2>

5. PROOF OF THE THEOREMB.1]

Following Titchmarsh [3], si(f;x) of Fourier series () is given by

Then

1

271

n

k=0

sk(f2)

k:+
/¢ sin ( )ﬁ,k:QLZM

(3)

(7)o - @) = 5 /Owe;(x,t);i(?;)%dt

or

El

n

k=0

1/ 1
() = f(z) = %/dﬂ?,ﬂm 2
) -
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Now

B~ @) = > s {Bhy(@) — F(@)
" k=0

Let
ln(z) = 2P () = f2) = /ﬂsb(x,t)KﬁE(t)dt
0
Then
n(z +y) + (v —y) = 20(z) = ]((ﬁ(l’ +y.t) + ol —y, 1) — 20(x, 1) K F(t)dt.
0

By generalized Minkowski’s inequality (Chui[2], p.37), we get

(- +9) + 1 = y) =20a()ll, < [ 100 +y.t) + o —y,1) = 20, )|, [K3F ()] dt

. T~y

(I +y,t) + ¢ — y,t) — 26(., )|, [KAE(t)]) dt

Il
o\;‘

+ / (18G4 9.8) + B — 1) — 26 1), [KAE(2)]) dt

_1_
n+1

I + I, say (6)
Clearly

lp(x +y,t) + ¢(x —y,t) = 28(z,t)] < |flz+y+t)+ flz+y—1t)—2f(x+y)
+f@—y+t)+ flz—y—1t)—2f(z —y)|
2f(x+t)+ flx —t) —2f(x)|.

Applying Minkowski’s inequality, we have

o +y,t) +o( —y,t) =20(, ), < [f(+y+t)+f(+y—1)=2f(+y)l,
+HfC—y+t)+f—y—1) =2f( -y,
20+ + =) =2f0),

= O(w(t)). (7)
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Also
(- +y,t) + o —w, 1) =260, ), < IfC+t+y)+f(+t—y)=2f(+D)l,
FIFC—t+y) = f(—t—y) = 2f( -1,
20fC+y)+ fC—y) =270l
= O(uw(y)). (8)
For v is positive, non decreasing, ¢t < y, we obtained

H(b( +v, t) + (b( - yvt) - 2¢('7t)||r =

= 0

Since % is positive, non-decreasing, if ¢ > y, then ()

> <
= (y
[o(-+4,8) + (. =y, 1) = 20(, D)l = O(wly))
oo (2
- o(w(5F)). @
Using lemma (1)) and (@) we obtain
Bo= [Tl 4t + ol - 0~ 2000, [K2E )]t
0

</OWlF 7:}((; n—|—1 )
= O<(n—|—1 /n+1ﬂ )
v () )
(n+ ()
( ' v(ﬁﬂ)/o
0 <v<y>w ("“;) | (10)
n+l

Also,using Lemma ([@2]) and (@) we get

<
=

|
e

<
/N
=

I, = /||¢<.+y,t>+¢<.—y,t>—2¢<.,t>||T\K$E<t>!dt

_1
n+1

B w1
= O(/v(y)v(t)(n—l—l)ﬁdt)

+1
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By (@), (I0) and (II), we have

v (e
lln(+y) + 1l —y) = 2Ol = 0<v(y) (n+)

Thus,
N O R R T Y G4 €53
40 o) -\
LT w)
+O<”+1/ni1 t%()dt> (12)
Clearly

0@z, t)] = [fl@+t)+ flz—1)—2f(z)|
Applying Minkowski’s inequality, we have

oGOl < f(@+t)+ flz—1t) =2f(2)],
= O(w(t). (13)

Using([I3]), Lemma ([@1]),Lemma {.2]) we obtain

_ |I4AE _ i " AE
(NS — f||ré</0 +/> 16(. )l | KEP(0)] de

/on“ o, DI, |(KAE()] dt + /_ oG, )l [ 1)) dt

n+1

_ o((n+1)/0”_“w(t)dt> +O((n—1|—1) /i %dt)

n

- O(w (ﬁ)) +O<(n—1|—1) /; wt(;)dt>. (14)
Now, By ([2) and () N

LI = ()], + sup
y#0

[0 (-+y) +1n(. —y) = 20.()]l,

I

@)
RS

g
RS
+

[S—
——
N—

_|_

@)
—
£

+ =
=
\
N‘S
Sy
N~
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Using the fact that w(t) = 28 v(t) < ’U(ﬂ')%, 0<t<m, weget

w (== ”
LI = o v((:;)) +0 (nil)l/ (t()zzdt : (15)

n+1

Since w and v are zygmund modulus of continuity such that % is positive, non

decreasing, therefore

n—ll-l/ﬂ vt(ut(;t)zdt;:((z ("+1>/ ;))

M|&‘

Then
w ﬁ 7 w
— ((n;l)) - 0 (nil)l U(g)dt . (16)

By (@A) and (d€), we have

W 1 T w(t)
[t2f = fIl," = O((n+1) /L t“‘v(t)dt)'

AR e 1 T w(t)
En(f)_tlggﬂtnE FIIS _O<(n—|—1) /; tgv(t)dt>.

n+1

This completes the proof of theorem [3.]

6. PROOF OF THE THEOREM

Following the proof of the theorem [3.1]
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w(t)
to(t)
integral calculus,

Since is positive, non increasing, therefore by second mean value theorem of

5 - of ok ]
(n+ Dw ﬁ ™
=0 (n—li-l) U(nlg );%
= 0 w(%ﬂ)log(n—l—l)w

This completes the proof of theorem

7. APPLICATIONS

Following corollaries can be obtained from the Theorem 311

Corollary 7.1. Let f € Zo), , 7> 1,0<a <1 then

W)a 0<B<ax<l,

— AE _
E"(f) - tlélg th - fH(B)T - 1o} log(n+1)7r) 7 ﬁ _ 0,0é -1

n+1

Proof. Taking w(t) = t*, v(t) =t in Theorem B} proof of this corollary can be
obtained. 0

Corollary 7.2. The best approzimation of a function f € Zr(w) by (H, %H)El
means

n

k

1 1 1 k
(HE ,
n log(n+1)zn—k+12k;<u)s

k=0

of the Fourier series () is given by

HE
tn

B (f) = inf 175 — | = of /w(t) dt

n

Corollary 7.3. If we take anx = 2%, where P, = Y pr # 0 in Theorem [,
" k=0

then best approrimation of a function f € Zr(w) by (N,pn).E1 means

1 & 1 < [k
AT = g ()
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of the fourier series () is given by

1

w(t)
(n+1) dt

20(t)

Ea(f) = inf 175 - £ =

NE
tn

3
t|“\=|

n
Corollary 7.4. If we take ap ;= p"}%—"%, where Ry = > pran—k # 0 in Theorem
n k:O

[31, then best approzimation of a function f € ASY by (N, p,q).E1 means

1 & 1 n [k
NE _
th ™ = R, ankak2_k Z (u) Sy
k=0 v=0
of the fourier series () is given by

1

w(t)
(n+1) dt

20(t)

Ea(f) = inf (N — ¢ =

NE
tn

3
t|“\=|
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