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A NOTE ON EXISTENCE OF Ψ−BOUNDED SOLUTIONS FOR A

NONHOMOGENEOUS MATRIX DIFFERENCE EQUATION ON N

(COMMUNICATED BY DOUGLAS R. ANDERSON)

AUREL DIAMANDESCU

Abstract. In this paper, we give a necessary and sufficient condition for the

existence of at least one Ψ−bounded solution on N for the non-homogeneous
matrix difference equation X(n + 1) = A(n)X(n)B(n) + F (n), where F is a

Ψ−summable matrix function on N. In addition, we give a result in connec-

tion with the asymptotic behavior on N of the Ψ−bounded solutions of this
equation.

1. Introduction

The difference equations play an important role in many scientific fields, such
as numerical analysis of ordinary and partial differential equations, scientific com-
puting, control theory and computer science (see outstanding monographs of S.
Elaydi [9] and R.P. Agarval [1] and references therein). On the other hand, the
boundedness of solutions of difference equations play an important role in stability
theory.

The aim of this paper is to give a necessary and sufficient condition so that the
non-homogeneous linear matrix difference equation

X(n + 1) = A(n)X(n)B(n) + F (n) (1)

has at least one Ψ−bounded solution on N for every Ψ−summable matrix function
F on N.

Here, Ψ is a matrix function. The introduction of the matrix function Ψ in the
study of solutions allows to obtain a mixed asymptotic behavior of the components
of the solutions.

The problem of boundedness of the solutions for the systems of ordinary differ-
ential equations x′ = A(t)x + f(t) was studied by Coppel in [3]. In [5], the author
proposes a novel concept, Ψ−boundedness of solutions (Ψ being a matrix function),
which is interesting and useful in some practical cases and presents the existence
condition for such solutions. Also, in [4], the author associates this problem with
the concept of Ψ−dichotomy on R of the system x′ = A(t)x.
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In [10], the authors extend the concept of Ψ−boundedness to the solutions of dif-
ference equation (via Ψ−bounded sequence) and establish a necessary and sufficient
condition for existence of Ψ−bounded solutions for non-homogeneous linear differ-
ence equation

x(n + 1) = A(n)x(n) + f(n) (2)

in case f is a Ψ−summable sequence on N. Similarly, in [6], the author solves the
same problem in case f is a Ψ−bounded sequence on N.

In the last years, in [11], [12], the authors extend the concept of Ψ−boundedness
to the solutions of linear matrix difference equation (1) and establish a necessary
and sufficient condition for existence of Ψ−bounded solutions for the equation (1)
in case F is Ψ−summable on Z or Ψ−bounded on N respectively. Similarly, in [8],
the author solves the same problem in case F is Ψ−bounded Z.

The approach used in our paper is essentially based on the technique of Kronecker
product of matrices (which has been successfully applied in similar problems - see,
e.g. [11], [12]) and on a decomposition of the underlying space at the initial moment
( see, e.g. [6], [7], [10], [11], [12] for finite-dimensional spaces and [13], [14] in general
case of Banach spaces).

Thus, we obtain results which contain and extend the recent results regarding
the boundedness of solutions of the equation (1) (see [10], [12]).

2. Preliminaries

Let Rd be the Euclidean d-space. For x = (x1, x2, ..., xd)T ∈ Rd, let ‖ x ‖ be the
norm of x defined by ‖ x ‖ = max{| x1 |, | x2 |, ... | xd |}. ( T denotes transpose).

Let Mm×n be the linear space of all m× n real valued matrices.
For a matrix A = (aij) ∈Md×d, we define the norm | A | by | A |= sup

‖x‖≤1

‖ Ax ‖ .

It is well-known that | A | = max
1≤i≤d

{
d∑

j=1

| aij |}.

Let Ψi : N −→ (0,∞), i = 1, 2, ...d and let the matrix function

Ψ = diag [Ψ1,Ψ2,...Ψd].

Then, Ψ(n) is invertible for each n ∈ N.

Definition 2.1. ([7]). A matrix function M : N −→ Md×d is said to be Ψ−
bounded on N if the function ΨM is bounded on N.

In equation (1), we consider that A,B, F are d× d real matrix-valued functions
on N. Suppose that A(n) and B(n) are invertible for each n ∈ N.

By a solution of (1) we mean a matrix function X(n) satisfying (1) :

X(n + 1) = A(n)X(n)B(n) + F (n), ∀n ∈ N.

Definition 2.2. ([10]). A function f : N −→ Rd is said to be Ψ− summable on

N if
∞∑

n=1
‖ Ψ(n)f(n) ‖ is convergent.

Extend this Definition for matrix-functions.

Definition 2.3. A matrix function F : N −→ Md×d is said to be Ψ− summable

on N if
∞∑

n=1
| Ψ(n)F (n) | is convergent.
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Consider the nonautonomous matrix difference linear equations

Y (n + 1) = A(n)Y (n), (3)

Z(n + 1) = Z(n)B(n). (4)

Let U be the fundamental matrix of (3) with U(0) = Id (identity d× d matrix).
It is well-known that

i). U(n + 1) = A(n)U(n), for all n ∈ N;

ii). the solution of (3) with the initial condition Y (0) = Y0 is

Y (n) = U(n)Y0, n ∈ N;

iii). U(n) =

{
A(n− 1)A(n− 2) · · ·A(1)A(0), n ≥ 1
Id, n = 0

;

iv). U(n) is invertible for each n ∈ N and

U−1(n) =

{
A−1(0)A−1(1) · · ·A−1(n− 1), n ≥ 1
Id, n = 0

.

Similarly, let V be a fundamental matrix of (4) with V (0) = Id (i.e. V T is a
fundamental matrix for the equation (3) with A = BT ).

Definition 2.4. ([2]). Let A = (aij) ∈ Mm×n and B = (bij) ∈ Mp×q. The
Kronecker product of A and B, written A ⊗ B, is defined to be the partitioned
matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
...

am1B am2B · · · amnB

 .

Obviously, A⊗B ∈Mmp×nq.

Lemma 2.5. The Kronecker product has the following properties and rules, pro-
vided that the dimension of the matrices are such that the various expressions are
defined:

1). A⊗ (B ⊗ C) = (A⊗B)⊗ C;
2). (A⊗B)T = AT ⊗BT ;
3). (A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D);
4). (A⊗B)−1 = A−1 ⊗B−1;
5). A⊗ (B + C) = A⊗B + A⊗ C;
6). (A + B)⊗ C = A⊗ C + B ⊗ C;

7). Ip ⊗A =


A O · · · O
O A · · · O
...

...
...

...
O O · · · A

 ;

Proof. See in [2]. �

Definition 2.6. The application Vec : Mm×n −→ Rmn, defined by

Vec(A) = (a11, a21, · · · , am1, a12, a22, · · · , am2, · · · , a1n, a2n, · · · , amn)T ,

where A = (aij) ∈Mm×n, is called the vectorization operator.
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Lemma 2.7. ([7]). The vectorization operator Vec : Mn×n −→ Rn2

, is a linear
and one-to-one operator. In addition, V ec and V ec−1 are continuous operators.

Proof. See Lemma 2, ([7]). �

Remark 2.8. Obviously, if F is a matrix function on N, then f = Vec(F ) is a
vector function on N and vice-versa.

We recall that the vectorization operator Vec has the following properties as
concerns the calculations:

Lemma 2.9. ([7]). If A,B,M ∈Mn×n, then:

1). Vec(AMB) = (BT ⊗A) · Vec(M);
2). Vec(MB) = (BT ⊗ In) · Vec(M);
3). Vec(AM) = (In ⊗A) · Vec(M);
4). Vec(AM) = (MT ⊗A) · Vec(In).

Proof. It is a simple exercise. �

The following lemmas play a vital role in the proofs of the main results.

Lemma 2.10. The matrix valued function X(n) is a solution of (1) on N iff the
vector valued function x(n) = V ec(X(n)) is a solution on N of the difference equa-
tion

x(n + 1) = (BT (n)⊗A(n))x(n) + Vec(F (n)) (5)

Proof. If the matrix valued function X(n) is a solution of (1) on N, then

X(n + 1) = A(n)X(n)B(n) + F (n), ∀n ∈ N.
Now, by applying the Vec operator to this equality, we have

Vec(X(n + 1)) = (BT (n)⊗A(n))Vec(X(n)) + Vec(F (n)), ∀n ∈ N.
Thus, the vector valued function x(n) = Vec(X(n)) is a solution on N of the
difference equation (5).

Conversely, if the vector valued function x(n) is a solution on N of the difference
equation (5), then

x(n + 1) = (BT (n)⊗A(n))x(n) + Vec(F (n)), ∀n ∈ N.
Now, by applying the Vec−1 operator to this equality, we have

X(n + 1) = A(n)X(n)B(n) + F (n), ∀n ∈ N,
where X(n) = Vec−1 (x(n)) , n ∈ N.

Thus, the matrix valued function X(n) is a solution on N of the equation (1). �

Definition 2.11. The equation (5) is called the Kronecker product difference equa-
tion associated with (1).

Lemma 2.12. The matrix function M(n) is Ψ−bounded on N iff the vector func-
tion V ec(M(n)) is Id ⊗Ψ−bounded on N.

Proof. From the proof of Lemma 2.7, it results that

1

d
|M |≤‖ Vec(M) ‖Rd2≤|M |,∀M ∈Md×d.

Setting M = Ψ(n)M(n), n ∈ N, and using Lemma 2.9, we have the inequality
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1

d
| Ψ(n)M(n) |≤‖ (Id ⊗Ψ(n))Vec(M(n)) ‖Rd2≤| Ψ(n)M(n) |, (6)

for all matrix function M and for all n ∈ N.
Now, the Lemma follows immediately. �

Lemma 2.13. The matrix function M(n) is Ψ−summable on N iff the vector
function V ec(M(n)) is Id ⊗Ψ−summable on N. Then, the matrix

Proof. It results from the Definitions 2.2 and 2.3 and inequality (6). �

Lemma 2.14. Let U(n) and V (n) be the fundamental matrices for the matrix
equations (3) and (4) respectively.

Then, the matrix

W (n) = V T (n)⊗ U(n), n ∈ N,
is a fundamental matrix of the equation

x(n + 1) = (BT (n)⊗A(n))x(n). (7)

If, in addition, U(0) = Id, V (0) = Id, then W (0) = Id2 .

Proof. For n ∈ N, we have
W (n + 1) = V T (n + 1)⊗ U(n + 1)
=
(
BT (n)V T (n)

)
⊗ (A(n)U(n))

=
(
BT (n)⊗A(n)

)
·
(
V T (n)⊗ U(n)

)
=
(
BT (n)⊗A(n)

)
W (n).

On the other hand, the matrix W (n) is an invertible matrix for all n ∈ N, because
U(n) and V (n) are invertible matrices for all n ∈ N.

Thus, the matrix W is a fundamental matrix of (7).
Obviously, W (0) = Id ⊗ Id = Id2 . �

Let X0 denote the subspace of Md×d consisting of all matrices which are values
for n = 0 of Ψ−bounded solutions of the homogeneous matrix difference equation
associated with (1),

X(n + 1) = A(n)X(n)B(n) (8)

and let X1 be an arbitrary fixed subspace of Md×d supplementary to X0. Let P0, P1

denote the corresponding projections of Md×d onto X0, X1 respectively.

Then, the vector space Rd2

is represented as a direct sum of two subspaces S0, S1

defined as follows: a solution x(n) of (7) is Id ⊗Ψ−bounded on N iff t(0) ∈ S0; S1

is an arbitrary fixed subspace of Rd2

supplementary to S0. Let Q0, Q1 denote the

corresponding projections of Rd2

onto S0, S1 respectively.

The following theorems are useful in the proofs of our main results.

Theorem 2.15. ([10]). Let A(n) ∈ Md×d, invertible for all n ∈ N. Then, the
difference equation

x(n + 1) = A(n)x(n) + f(n) (9)

has at least one Ψ−bounded solution on N for every Ψ−summable function f on N
if and only if for a fundamental matrix Y (n) of equation

x(n + 1) = A(n)x(n), (10)
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there is a positive constant K such that

| Ψ(n)Y (n)P0Y
−1(k + 1)Ψ−1(k) |≤ K, for 0 ≤ k + 1 ≤ n

| Ψ(n)Y (n)P1Y
−1(k + 1)Ψ−1(k) |≤ K, for 0 ≤ n < k + 1

. (11)

Theorem 2.16. ([10]). Suppose that:

1. the fundamental matrix Y (n) for the equation (10) satisfies:
a). the condition (11), for some K > 0;
b). the condition lim

n→∞
| Ψ(n)Y (n)P0 | = 0;

2. the function f : N −→ Rd is Ψ−summable on N.
Then, every Ψ−bounded solution x(n) of (9) satisfies the condition

lim
n→∞

‖ Ψ(n)x(n) ‖ = 0.

Remark 2.17. In these Theorems, the projections P0, P1 refer to the equation (10)
in Rd.

3. Main results

The main results of this paper are presented in this section.

Theorem 3.1. Let A(n) and B(n) be invertible d×d matrices for n ∈ N. Then, the
linear non-homogeneous matrix difference equation (1) has at least one Ψ−bounded
solution on N for every Ψ−summable matrix function F on N if and only if for
the fundamental matrices U(n) and V (n) for the equations (3) and (4) respectively,
there is a positive constant K such that

| [V T (n)⊗ (Ψ(n)U(n))]Q0[(V T )−1(k + 1)⊗ (U−1(k + 1)Ψ−1(k))] |≤ K,
for 0 ≤ k + 1 ≤ n

| [V T (n)⊗ (Ψ(n)U(n))]Q1[(V T )−1(k + 1)⊗ (U−1(k + 1)Ψ−1(k))] |≤ K,
for 0 ≤ n < k + 1

(12)

Proof. Proof. First, we prove the “only if” part.
Suppose that the equation (1) has at least one Ψ−bounded solution on N for

every Ψ−bounded function F : N −→Md×d on N.
Let f : N −→ Rd2

be a Id ⊗Ψ−summable function on N. From Lemma 2.13, it
follows that the matrix function F (n) = Vec−1(f(n)) is Ψ−summable on N. From
the hypothesis, the equation (1) has at least one Ψ−bounded solution T (n) on
N. From Lemma 2.10 and Lemma 2.12, it follows that the vector valued function
t(n) = Vec (T (n)) is a Id ⊗ Ψ−bounded solution of the difference equation (5) on
N. Thus, the difference equation

x(n + 1) = (BT (n)⊗A(n))x(n) + f(n)

has at least one Id ⊗Ψ−bounded solution t(n) on N.
Now, from Theorem 2.15, for a fundamental matrix W (n) of (7), there is a

positive constant K such that (11) holds, with Id ⊗Ψ instead of Ψ and W instead
of Y :

| [(Id ⊗Ψ(n))W (n)]Q0[W−1(k + 1)(Id ⊗Ψ)−1(k))] |≤ K, for 0 ≤ k + 1 ≤ n

| [(Id ⊗Ψ(n))W (n)]Q1[W−1(k + 1)(Id ⊗Ψ)−1(k))] |≤ K, for 0 ≤ n < k + 1
.
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Putting W (n) = V T (n) ⊗ U(n) (Lemma 2.14) and using Kronecker product
properties (Lemma 2.5), (12) holds.

Conversely, we prove the “if” part.
Suppose that (12) holds for some K > 0.
Let F : N −→Md×d be a Ψ−summable matrix function on N. From Lemma 2.13,

it follows that the vector valued function f(n) = Vec(F (n)) is a Id⊗Ψ−summable
function on N. From hypothesis and from Theorem 2.15, it follows that the differ-
ence equation (5) has at least one Id⊗Ψ−bounded solution t(n) on N (because con-
dition (12) is the condition (11), Theorem 2.15, for the difference equation (5), with
Id⊗Ψ(n) in role of Ψ(n) and W (n) = V T (n)⊗U(n) in role of Y (n)). From Lemma
2.10 and Lemma 2.12, it follows that the matrix function T (n) = Vec−1(t(n)) is a
Ψ−bounded solution of the equation (1) on N (because F (n) = Vec−1(f(n))).

Thus, the matrix difference equation (1) has at least one Ψ−bounded solution
on N for every Ψ−bounded matrix function F on N. �

Remark 3.2. Theorem 3.1 extends Theorem 3.1, [12].

Indeed, in Theorem 3.1, [12], the authors provide necessary and sufficient con-
dition for the existence of at least one Ψ−bounded solution on N for the equation
(1) in case F (n) is a Ψ−bounded matrix valued function on N.

Remark 3.3. Theorem 3.1 generalizes Theorem 1, [10].

Indeed, in particular case

B(n) = Id and F (n) =


f1(n) f1(n) · · · f1(n)
f2(n) f2(n) · · · f2(n)

...
...

...
...

fd(n) fd(n) · · · fd(n)

 ,

it is easy to see that a solution of the equation (1) is

X(n) =


x1(n) x1(n) · · · x1(n)
x2(n) x2(n) · · · x2(n)

...
...

...
...

xd(n) xd(n) · · · xd(n)

 ,

where x(n) = (x1(n), x2(n), · · · , xd(n))
T

is a solution of (9) ((1) from [10])

x(n + 1) = A(n)x(n) + f(n)

with f(n) = (f1(n), f2(n), · · · , fd(n))
T

and vice-versa.
In this case, the condition (12) becomes the condition (11), because the solution

X(n) is Ψ−bounded on N iff the solution x(n) is Ψ−bounded on N.
Thus, the affirmation from above is correct.

Finally, we give a result in which we will see that the asymptotic behavior of
Ψ−bounded solutions of (1) is completely determined by the asymptotic behavior
of fundamental matrices U and V.

Theorem 3.4. Suppose that:

1. the fundamental matrices U(n) and V (n) for the equations (3) and (4) re-
spectively, satisfies

i. the condition (12), for some K > 0;
ii. the condition
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lim
n−→∞

|
[
V T (n)⊗ (Ψ(n)U(n))

]
Q0 | = 0;

2. the matrix function F : N −→Md×d is Ψ−summable.
Then, every Ψ−bounded solution X(n) of (1) satisfies the condition

lim
n−→∞

| Ψ(n)X(n) | = 0.

Proof. Let X(n) a Ψ−bounded solution on N of (1). From Lemma 2.10 and Lemma
2.12, it follows that the vector function x(n) = Vec(X(n)) is a Id ⊗ Ψ−bounded
solution on N of the difference equation (5). From Lemma 2.13, we have that the
function Vec(F (n)) is Id ⊗Ψ−summable on N.

From Theorem 2.16, it follows that
lim
n→∞

‖ (Id ⊗Ψ(n))x(n) ‖ = 0.

From inequality (6), we have that
lim
n→∞

| Ψ(n)X(n) | = 0. �

Remark 3.5. Theorem 3.4 generalizes Theorem 2, [10] and extends Theorem 3.2,
[12].

Note that the Theorem 3.4 is no longer true if we require that the function F
be Ψ−bounded on N, instead of the condition 2 of the Theorem. This is shown by
the next simple example.
Example 3.1. Consider the equation (1) with

A(n) = I2, B(n) = B =

(
1
2 0
0 2

)
, F (n) =

(
1 0
1 0

)
, n ∈ N.

A fundamental matrix for the equation (3) is U(n) = I2, n ∈ N.
Similarly, a fundamental matrix for the equation (4) is

V (n) = Bn =

(
2−n 0

0 2n

)
, n ∈ N.

Consider

Ψ(n) =

(
1 0
0 3−n

)
, n ∈ N.

The solution of (8) with the initial condition

X(0) = X0 =

(
c1 c3

c2 c4

)
∈M2×2

is unique:

X(n) =

(
c12−n c32n

c22−n c42n

)
, n ∈ N.

Because

Ψ(n)X(n) =

(
c12−n c32n

c26−n c4( 2
3 )n

)
, n ∈ N,

we have that a solution X(n) of (8) is Ψ−bounded on N iff X0 =

(
c1 0
c2 c4

)
.

Hence,
S0 = Q0R4, with Q0 =diag [1, 1, 0, 1] and
S1 = Q1R4, with Q1 =diag [0, 0, 1, 0].
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Now, the condition (12) becomes

| (Bn ⊗Ψ(n))Q0(B−k−1 ⊗Ψ−1(k)) |≤ K, 0 ≤ k + 1 ≤ n,

| (Bn ⊗Ψ(n))Q1(B−k−1 ⊗Ψ−1(k)) |≤ K, 0 ≤ n < k + 1.

We have

Bn ⊗Ψ(n) =


2−n 0 0 0

0 6−n 0 0
0 0 2n 0
0 0 0 ( 2

3 )n


and

B−k−1 ⊗Ψ−1(k) =


2k+1 0 0 0

0 2 · 6k 0 0
0 0 2−k−1 0
0 0 0 1

2 ( 3
2 )k

 .

Now, for 0 ≤ k + 1 ≤ n, we have

(Bn ⊗Ψ(n))Q0(B−k−1 ⊗Ψ−1(k)) =


2k+1−n 0 0 0

0 2 · 6k−n 0 0
0 0 0 0
0 0 0 1

2 ( 3
2 )k−n

 ,

and for 0 ≤ n < k + 1,

(Bn ⊗Ψ(n))Q1(B−k−1 ⊗Ψ−1(k)) =


0 0 0 0
0 0 0 0
0 0 2n−k−1 0
0 0 0 0

 .

From these, it is easy to see that the condition (12) is satisfied with K = 1.
In addition, the condition

lim
n→∞

| (Bn ⊗Ψ(n))Q0) | = 0

is satisfied.
Because

Ψ(n)F (n) =

(
1 0

3−n 0

)
,

the function F is Ψ−bounded on N, but is not Ψ−summable on N.
On the other hand, the solutions on N of the equation (1) are

X(n) =

(
2 + c12−n c22n

2 + c12−n c22n

)
,

for n ∈ N, c1, c2 being real constants.
We have

Ψ(n)X(n) =

(
2 + c12−n c22n

2 · 3−n + c16−n c2( 2
3 )n

)
, n ∈ N.

It is easy to see that the Ψ−bounded solutions of (1) on N are

X(n) =

(
2 + c12−n 0
2 + c12−n 0

)
, n ∈ N.

For these solutions, we have
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lim
n→∞

| Ψ(n)X(n) | = 2.

This shows that there is no Ψ−bounded solutions X(n) of (1) such that

lim
n→∞

| Ψ(n)X(n) | = 0.

Remark 3.6. We can observe that the asymptotic properties of the components
of the solutions are not the same. On the other hand, we see that the asymptotic
properties of the components of the solutions are the same, via matrix function Ψ.
This is obtained by using a matrix function Ψ rather than a scalar function.
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