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POSITIVE SOLUTION OF SYSTEM OF THIRD-ORDER

BOUNDARY VALUE PROBLEM WITH THREE-POINT AND

INTEGRAL BOUNDARY CONDITIONS

(COMMUNICATED BY DOUGLAS R. ANDERSON)

ROCHDI JEBARI

Abstract. This paper is concerned with the nonlinear third-order boundary
value problem

u′′′i (t) + fi(t, u1(t), ..., un(t), u′1(t), ..., u′n(t)) = 0, 0 < t < 1

with three-point and integral conditions
ui(0) =

∫ 1

0
h1,i(s, u1(s), ..., un(s))ds

u′i(0) = 0

αiu
′
i(1) = βiui(ηi) +

∫ 1

0
h2,i(s, u1(s), ..., un(s))ds

where for i ∈ {1, ..., n}, αi > 0, βi > 0, 1 > ηi ≥ 0, 2αi > βiη
2
i , fi :

[0, 1]× Rn × Rn → R, for all k ∈ {1, 2}, hk,i : [0, 1]× Rn → R are continuous
functions. By using Guo-Krasnosel’skii fixed point theorem in cone, we discuss

the existence of positive solution of this problem. We also prove nonexistence

of positive solution and we give some examples to illustrate our results.

1. Introduction

Third-order ordinary differential equations arise in a variety of different areas
of applied mathematics and physics, in the deflection of a curved beam having
a constant or varying cross section, a three-layer beam, electromagnetic waves or
gravity driven flows and so on [1]. The main propose of the present paper is to
investigate sufficient conditions for the existence of positive solution of following
problem:

u′′′i (t) + fi(t, u1(t), ..., un(t), u′1(t), ..., u′n(t)) = 0, 0 < t < 1 (1.1)
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with three-point and integral conditions
ui(0) =

∫ 1

0

h1,i(s, u1(s), ..., un(s))ds

u′i(0) = 0

αiu
′
i(1) = βiui(ηi) +

∫ 1

0

h2,i(s, u1(s), ..., un(s))ds

(1.2)

where for i ∈ {1, ..., n}, for k ∈ {1, 2}, αi > 0, βi > 0, 1 > ηi ≥ 0, 2αi > βiη
2
i ,

fi : [0, 1]×Rn×Rn → R, hk,i : [0, 1]×Rn → R are continuous functions. The integral
conditions has physical significance such as total mass, moment, etc. Sometimes it
is better to impose integral conditions to get a more accurate measure than a local
condition see [9].

Various types of boundary value problems were studied by many authors us-
ing fixed point theorems on cones, fixed point index theory, upper and lower
solutions method, differential inequality, topological transversality and Leggett-
Williams fixed point theorem [2-8,12]. In [2], Yao and Feng used the upper and
lower solutions method to prove some existence results for the following third-order
two-point boundary value problem:

u′′′(t) + f(t, u(t)) = 0, 0 < t < 1 (1.3)

u(0) = u′(0) = u′(1) = 0. (1.4)

In [3], Sanyang Liu and Yuqiang Feng used the upper and lower solutions method
and a new maximum principle to prove some existence results for the more general
third-order two-point boundary value problem:

u′′′(t) + f(t, u(t), u′(t)) = 0, 0 < t < 1 (1.5)

u(0) = u′(0) = u′(1) = 0. (1.6)

In [8] Guo, Sun and Zhao, considered the third-order three-point boundary value
problem

u′′′(t) + a(t)f(u(t)) = 0, 0 < t < 1 (1.7)

u(0) = u′(0) = 0, u′(1) = αu′(η) (1.8)

where 0 < η < 1 and 1 < α < 1
η , f : [0, 1]×R→ R is given function. The existence

of at least one positive solution for (1.7)-(1.8) was proved when f was superlinear or
sublinear. By the use of some fixed point theorem in cones, A. Guezane-Lakoud et
al. [12], investigated the existence of positive solutions for the following third-order
eigenvalue problem

u′′′(t) + f(t, u(t), u′(t)) = 0, 0 < t < 1 (1.9)

u(0) = u′(0) = 0, αu′(1) = βu(η) (1.10)

where α ∈ R∗+, β ∈ R∗+, 0 < η < 1, by Guo-Krasnosel’skii fixed point theorem in
cone the author studied the existence of least positive solution of (1.9)-(1.10) when
2α > βη2 and f(t, u(t), u′(t)) = a(t)g(u(t), u′(t)). In [7], Sun et al considered the
following third-order boundary value problem:

u′′′ + a(t)f(t, u(t)) = 0, 0 < t < 1 (1.11)

u(0) = u′(0) = 0, u′(1)− αu′(η) = λ (1.12)

by employing the Guo-Krasnosel’skii fixed point theorem and Schauder’s fixed point
theorem, the author studied the existence and nonexistence of positive solutions
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to the third-order three-point nonhomogeneous boundary condition (1.11)-(1.12).
For more knowledge about the boundary value problem, we refer the reader to
(see [13-21]). Our aim is to use the Guo-Krasnosel’skii fixed point theorem to
prove the existence of least one positive solutions of our problem. For this, we
formulate the boundary value problem as the fixed point problem. The particularity
of our equation (1.1)-(1.2) is that the boundary condition involving three-point
boundary condition and integral condition which leads to extra difficulties. To the
best of our knowledge, no one has studied the existence and nonexistence of positive
solution for nonlinear differential equation (1.1) jointly with conditions (1.2). Our
work is new and more general than [2, 3, 12], for example our problem reduces
to the problem (1.9)-(1.10) in the case n = 1, h1,1 ≡ h2,1 ≡ 0, α1 = α, β1 = β,
f1(t, u1(t), u′1(t)) = f(t, u(t), u′(t)).

This paper is organized as follows. In Section 2, we present some preliminaries
that will be used to prove our results. In Section 3, the study the positivity of
solution is based on a Guo-Krasnosel’skii fixed point theorem. In Section 4, the
nonexistence of positive solution is studied. Finally, we shall give two examples to
illustrate our main results.

2. Preliminaries and lemmas

The cartesian power of C1([0, 1];R) can be defined as:

E = C1([0, 1];R)n

= C1([0, 1];R)× ...× C1([0, 1];R)︸ ︷︷ ︸
n times

equipped with the norm ‖u‖E =

n∑
i=1

‖ui‖ where ‖ui‖ = max(‖ui‖∞, ‖u′i‖∞), ‖ui‖∞ =

max
t∈[0,1]

|ui(t)| and u = (u1, .., un) ∈ E. The space E is a Banach space. We denote

by for x ∈ Rn, ‖x‖1 =

n∑
i=1

|xi|.

Definition 1. We give the following definitions:

(1) The function u = (u1, .., un) is called nonnegative solution of the system
(1.1)-(1.2) if and only if, u satisfies (1.1)-(1.2) and for all i ∈ {1, ..., n},
ui(t) ≥ 0 for t ∈ [0, 1].

(2) The function u = (u1, .., un) is called positive solution of the system (1.1)-
(1.2) if and only if, u satisfies (1.1)-(1.2) and for all i ∈ {1, ..., n}, ui(t) > 0
for t ∈]0, 1[.

Lemma 2.1. Let i ∈ {1, ..., n}, k ∈ {1, 2}, gk,i ∈ C([0, 1];R),hi ∈ C([0, 1];R), then
the problem 

u′′′i (t) + hi(t) = 0, 0 < t < 1, i ∈ {1, ..., n}

ui(0) =

∫ 1

0

g1,i(s)ds

u′i(0) = 0

αiu
′
i(1) = βiui(ηi) +

∫ 1

0

g2,i(s)ds

(2.1)



SYSTEM OF THIRD-ORDER BOUNDARY VALUE PROBLEM 63

has an unique solution

u(t) =

∫ 1

0

H(t, s)h(s)ds+ ϕ(t)

where u(t) = (u1(t), ..., un(t)), ϕ(t) = (ϕ1(t), ..., ϕn(t)),

∫ 1

0

H(t, s)h(s)ds = (

∫ 1

0

H1(t, s)h1(s)ds, ...,

∫ 1

0

Hn(t, s)hn(s)ds)

with

Hi(t, s) = G(t, s) + t2KiG(ηi, s) (2.2)

G(t, s) =
1

2

{
(1− s)t2 if 0 ≤ t ≤ s
(−s+ 2t− t2)s if s ≤ t ≤ 1

(2.3)

ϕi(t) = [Ki

∫ 1

0

g1,i(s)ds+ Ci

∫ 1

0

g2,i(s)ds]t
2 +

∫ 1

0

g1,i(s)ds (2.4)

Ki =
βi

2αi − βiη2i
(2.5)

Ci =
1

2αi − βiη2i
. (2.6)

Proof. Let i ∈ {1, ..., n}, integrating the equation (2.1), it yields

ui(t) = −1

2

∫ t

0

(t− s)2hi(s)ds+
1

2
C1,it

2 + C2,it+ C3,i.

From the boundary condition ui(0) =

∫ 1

0

g1,i(s)ds, u
′
i(0) = 0 we deduce that C3,i =∫ 1

0

g1,i(s)ds and C2,i = 0. From the condition αiu
′
i(1) = βiui(ηi) +

∫ 1

0

g2,i(s)ds,

we have

C1,i =
−βi

2αi − βiη2i

∫ ηi

0

(ηi − s)2hi(s)ds+
2αi

2αi − βiη2i

∫ 1

0

(1− s)hi(s)ds

+
2βi

2αi − βiη2i

∫ 1

0

g1,i(s)ds+
2

2αi − βiη2i

∫ 1

0

g2,i(s)ds.
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Therefore

ui(t) = −1

2

∫ t

0

(t− s)2hi(s)ds+
t2

2
[
−βi

2αi − βiη2i

∫ ηi

0

(ηi − s)2hi(s)ds

+
2αi

2αi − βiη2i

∫ 1

0

(1− s)hi(s)ds+
2βi

2αi − βiη2i

∫ 1

0

g1,i(s)ds

+
2

2αi − βiη2i

∫ 1

0

g2,i(s)ds] +

∫ 1

0

g1,i(s)ds

= −1

2

∫ t

0

(t− s)2hi(s)ds+
t2

2

∫ 1

0

(1− s)hi(s)ds+
βit

2

2αi − βiη2i

× [
η2i
2

∫ 1

0

(1− s)h(s)ds− 1

2

∫ ηi

0

(ηi − s)2hi(s)ds]

+ [
2βi

2αi − βiη2i

∫ 1

0

g1,i(s)ds+
2

2αi − βiη2i

∫ 1

0

g2,i(s)ds]
t2

2
+

∫ 1

0

g1,i(s)ds

=

∫ 1

0

G(t, s)hi(s)ds+
t2βi

2αi − βiη2i

∫ 1

0

G(ηi, s)hi(s)ds+ Pi(t)

=

∫ 1

0

G(t, s)hi(s)ds+Kit
2

∫ 1

0

G(ηi, s)hi(s)ds+ ϕi(t)

=

∫ 1

0

Hi(t, s)hi(s)ds+ ϕi(t)

where G(t, s), Hi(t, s), Pi(t), Ki and Ci are given by (2.2), (2.3), (2.4), (2.5) and
(2.6) which achieve the proof of Lemma 1. �

Lemma 2.2. Let i ∈ {1, ..., n}, k ∈ {1, 2}, hk,i ∈ C([0, 1]× Rn;R), fi ∈ C([0, 1]×
Rn×Rn,R). Then u is a solution of (1.1)-(1.2) if and only if for all, T (u)(t) = u(t).
Where T (u) = (T1(u), ..., Tn(u)) and for all t ∈ [0, 1], for all i ∈ {1, ..., n}

Ti(u)(t) = Pi(t) +

∫ 1

0

Hi(t, s)fi(s, u(s), u′(s))ds

with Hi(t, s) is given by (2.2)-(2.4) and

Pi(t) = [Ki

∫ 1

0

h1,i(s, u(s))ds+ Ci

∫ 1

0

h2,i(s, u(s))ds]t2 +

∫ 1

0

h1,i(s, u(s))ds.

3. Existence of positive solution

In this section, we will give some preliminary considerations and some lemmas
which are essential to establish sufficient conditions for the existence of least one
positive solution for our problem. We make the following additional assumption.

(H1) For all i ∈ {1, ..., n}, k ∈ {1, 2}, fi ∈ C([0, 1] × Rn × Rn,R+), hk,i ∈
C([0, 1]× Rn,R+).

Lemma 3.1. For all t ∈ [0, 1], s ∈ [0, 1], we have

(1) 0 ≤ G(t, s) ≤ ϕ(s)

(2) 0 ≤ ∂G(t,s)
∂t ≤ 2ϕ(s)

where ϕ(s) = (1−s)s
2 .
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Proof. It is easy to see that, if t ≤ s, G(t, s) = 1
2 (1− s)t2 ≥ 0

and G(t, s) = 1
2 (1− s)t2 ≤ (1−s)s

2 .

If s ≤ t, G(t, s) = 1
2 (2t− t2 − s)s = 1

2 [(1− s)− (1− t)2]s ≥ 0

and G(t, s) ≤ 1
2 (1− s)(1− 1 + s) = 1

2 (1− s)s
then the proof of (1) is complete.

∂G(t, s)

∂t
=

{
(1− s)t if 0 ≤ t ≤ s
(1− t)s if s ≤ t ≤ 1

(3.1)

If t ≤ s, ∂G(t,s)
∂t = (1− s)t ≤ (1− s)s.

If s ≤ t, then −t ≤ −s this implies that ∂G(t,s)
∂t = (1− t)s ≤ (1− s)s.

We deduce that proof of (2) is complete. �

Lemma 3.2. Let a ∈]0, 1[ and b ∈]0, 1[, then for all (t, s) ∈ [a, b]× [a, b]

(1) G(t, s) ≥ ω1(s)
where ω1(s) = 1

2 (1− s)a2

(2) ∂G(t,s)
∂t ≥ ω2(s)

where ω2(s) = 1
2 (1− b)a.

Proof. Let a ∈]0, 1[ and b ∈]0, 1[, then for all (t, s) ∈ [a, b]× [a, b].
If t ≤ s,

G(t, s) =
1

2
(−s+ 2t− t2)s

=
1

2
((1− s)− (1− t)2)s

=
1

2
((1− s)− (1− s)2)s

≥ 1

2
(1− s)s2

≥ 1

2
(1− s)a2.

If t ≥ s,

G(t, s) =
1

2
(1− s)t2

≥ 1

2
(1− s)a2.

Then proof of (1) is complete.
If t ≤ s,

∂G(t, s)

∂t
= (1− s)t

≥ (1− s)a
≥ (1− b)a.
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If t ≥ s,

∂G(t, s)

∂t
= (1− t)s

≥ (1− b)s
≥ (1− b)a.

Then proof of (2) is complete, and the proof of Lemma 3.2 is complete. �

Lemma 3.3. Suppose that (H 1) holds and let a ∈]0, 1[, b ∈]0, 1[, then the solution
u = (u1, ..., un) of the problem (1.1)-(1.2) is nonnegative and satisfies

min
t∈[a,b]

n∑
i=1

(ui(t) + u′i(t)) ≥ γ(a, b)‖u‖

where

γ(a, b) =

max
i∈{1,...,n}

γi(a, b)

n

γi(a, b) =

∫ b

a

(ω1(s) + ω2(s))fi(s, u(s), u′(s))ds

max(A,B)

A = (1 + max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ max
i∈{1,...,n}

Pi(1) + 1

and

B = 2(1 + max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ max
i∈{1,...,n}

P ′i (1) + 1.

Proof. Suppose that u = (u1, ..., un) is a solution of (1.1)-(1.2), then from lemma
2.2, (H1) and G(t, s) ≥ 0 for all (s, t) ∈ [0, 1] × [0, 1], it is obvious that for all
i ∈ {1, ..., n}, for all t ∈ [0, 1], ui(t) ≥ 0. For all i ∈ {1, ..., n}, for all t ∈ [0, 1], we
have

|ui(t)| ≤
∫ 1

0

Hi(t, s)fi(s, u(s), u′(s))ds+ Pi(t)

≤ (1 +Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ Pi(1)

≤ (1 + max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ max
i∈{1,...,n}

Pi(1).

This implies that, for all i ∈ {1, ..., n}

‖ui‖∞ ≤ (1 + max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ max
i∈{1,...,n}

Pi(1).
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For all i ∈ {1, ..., n}, for all t ∈ [0, 1], we have

|u′i(t)| ≤
∫ 1

0

∂Hi(t, s)

∂t
fi(s, u(s), u′(s))ds+ P ′i (1)

≤ 2(1 +Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ P ′i (1)

≤ 2(1 + max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ max
i∈{1,...,n}

P ′i (1).

This implies that, for all i ∈ {1, ..., n}

‖u′i‖∞ ≤ 2(1 + max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ max
i∈{1,...,n}

P ′i (1).

We denote by

A = (1 + max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ max
i∈{1,...,n}

Pi(1) + 1

and

B = 2(1 + max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ max
i∈{1,...,n}

P ′i (1) + 1.

Then for all i ∈ {1, ..., n},

‖ui‖ = max(‖ui‖∞, ‖u′i‖∞) ≤ max(A,B).

Using lemma 3.2-(1) we have, for all i ∈ {1, ..., n}, for all t ∈ [a, b]

ui(t) ≥
∫ b

a

ω1(s)fi(s, u(s), u′(s))ds+ Pi(t)

≥
∫ b

a

ω1(s)fi(s, u(s), u′(s))ds

≥

∫ b

a

ω1(s)fi(s, u(s), u′(s))ds

max(A,B)
×max(A,B)

≥

∫ b

a

ω1(s)fi(s, u(s), u′(s))ds

max(A,B)
‖ui‖.

Then for all i ∈ {1, ..., n}

min
t∈[a,b]

ui(t) ≥

∫ b

a

ω1(s)fi(s, u(s), u′(s))ds

max(A,B)
‖ui‖.
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Similarly, using lemma 3.2-(2) for all i ∈ {1, ..., n}, for all t ∈ [a, b]

u′i(t) ≥
∫ b

a

ω2(s)fi(s, u(s), u′(s))ds+ P ′(t)

≥
∫ b

a

ω2(s)fi(s, u(s), u′(s))ds

≥

∫ b

a

ω2(s)fi(s, u(s), u′(s))ds

max(A,B)
×max(A,B)

≥

∫ b

a

ω2(s)fi(s, u(s), u′(s))ds

max(A,B)
‖ui‖.

Then for all i ∈ {1, ..., n},

min
t∈[a,b]

u′i(t) ≥

∫ b

a

ω2(s)fi(s, u(s), u′(s))ds

max(A,B)
‖ui‖.

Then for all i ∈ {1, ..., n},

min
t∈[a,b]

(ui(t) + u′i(t)) ≥

∫ b

a

(ω1(s) + ω2(s))fi(s, u(s), u′(s))ds

max(A,B)
‖ui‖

= γi(a, b)‖ui‖.
We deduce that

min
t∈[a,b]

n∑
i=1

(ui(t) + u′i(t)) ≥
n∑
i=1

γi(a, b)‖ui‖

≥ max
j∈{1,...,n}

[γj(a, b)× ‖uj‖]

≥ max
j∈{1,...,n}

γj(a, b)× max
j∈{1,...,n}

‖uj‖. (3.2)

We deduce that for all j ∈ {1, ..., n},

min
t∈[a,b]

n∑
i=1

(ui(t) + u′i(t)) ≥ max
i∈{1,...,n}

γi(a, b)× ‖uj‖.

Then

min
t∈[a,b]

n∑
i=1

(ui(t) + u′i(t)) ≥
max

i∈{1,...,n}
γi(a, b)

n

n∑
j=1

‖uj‖

= γ(a, b)‖u‖E .
The proof is complete. �

Definition 2. We denote by E+ the following set

E+ = {u = (u1, ..., un) ∈ E, ui(t) ≥ 0, t ∈ [0, 1], i ∈ {1, ..., n}}.

Definition 3. Let E be a Banach space, Con nonempty closed convex subset Con ⊂
E, is called a cone if it satisfies the following two conditions:
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(1) x ∈ Con, λ ≥ 0 implies λx ∈ Con
(2) x ∈ Con, −x ∈ Con implies x = 0.

Remark. For all a, b ∈]0, 1[, the set defined by

Con(a, b) = {u ∈ E+, min
t∈[a,b]

n∑
i=1

(ui(t) + u′i(t)) ≥ γ(a, b)‖u‖E}

is a cone subset of E.

Theorem 3.4. (Guo-Krasnosel’skii fixed point theorem) [10]
Let E be a Banach space, and let Con ⊂ E be a cone. Assume Ω1 and Ω2 be two

bounded open subsets in E, with 0 ∈ Ω1, Ω1 ⊂ Ω2 and let A : Con∩(Ω2\Ω1)→ Con
by a completely continuous operator such that:

(1) ‖A(u)‖ ≤ ‖u‖, u ∈ Con ∩ ∂Ω1 and ‖A(u)‖ ≥ ‖u‖, u ∈ Con ∩ ∂Ω2 or
(2) ‖A(u)‖ ≥ ‖u‖, u ∈ Con ∩ ∂Ω1 and ‖A(u)‖ ≤ ‖u‖, u ∈ Con ∩ ∂Ω2.

Then A has a fixed point in Con ∩ (Ω2\Ω1).

Now, we give the following assumptions

(H2) For all i ∈ {1, ..., n}, k ∈ {1, 2}, fi ∈ C([0, 1] × Rn+ × Rn,R+), hk,i ∈
C([0, 1]× Rn+,R+).

(H3) There exists i0 ∈ {1, ..., n} and there exists t0 ∈]0, 1[ such that fi0(t0, x, y) >
0, for all (x, y) ∈ Rn+ × Rn.

Theorem 3.5. Suppose that (H2) and (H3) hold. Then the problem (1.1)-(1.2)
has at least one nonnegative solution in the case:

For all i ∈ {1, ..., n},

lim
‖u‖1+‖v‖1→0

min
t∈[0,1]

fi(t, u, v)

‖u‖1 + ‖v‖1
= +∞

and

lim
‖u‖1 + ‖v‖1 → +∞

max
t∈[0,1]

fi(t, u, v)

‖u‖1 + ‖v‖1
= 0

where u = (u1, ..., un) ∈ Rn and v = (v1, ..., vn) ∈ Rn.

Proof. Step 1: From (H2) and (H3), there exists [α, β] ⊂]0, 1[, such that t0 ∈ [α, β]
and for all t ∈ [α, β], (x, y) ∈ Rn+×Rn we have fi0(t, x, y) > 0. Then for all u ∈ E+,∫ β

α

ω1(s)fi0(s, u(s), u′(s))ds > 0 and

∫ β

α

ω2(s)fi0(s, u(s), u′(s))ds > 0.

This implies that

γi0(α, β) > 0 and γ(α, β) =

max
i∈{1,...,n}

γi(α, β)

n
≥ γi0(α, β)

n
> 0.

From Remark, Con(α, β) = {u ∈ E+, min
t∈[α,β]

n∑
i=1

(ui(t) + u′i(t)) ≥ γ(α, β)‖u‖E} is

a cone subset of E. By using Arzela-Ascoli theorem [11], T : Con(α, β) → E is a
completely continuous mapping.
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We will show that T (Con(α, β)) ⊂ Con(α, β). In fact, from (H2) and G(t, s) ≥ 0
for all [0, 1]× [0, 1], it is obvious that for all i ∈ {1, ..., n}, for all t ∈ [0, 1], Ti(u)(t) ≥
0. Using lemma 3.1-(1), for all i ∈ {1, ..., n}, for all t ∈ [0, 1], we have

|Ti(u)(t)| ≤
∫ 1

0

Hi(t, s)fi(s, u(s), u′(s))ds+ Pi(t)

≤ (1 +Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ Pi(1)

≤ (1 + max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ max
i∈{1,...,n}

Pi(1).

This implies that for all i ∈ {1, ..., n}

‖Ti(u)‖∞ ≤ (1 + max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ max
i∈{1,...,n}

Pi(1).

Using lemma 3.1-(2), for all i ∈ {1, ..., n}, for all t ∈ [0, 1], we have

|Ti(u)′(t)| ≤
∫ 1

0

∂Hi(t, s)

∂t
fi(s, ui(s), u

′
i(s))ds+ P ′i (1)

≤ 2(1 +Ki)

∫ 1

0

ϕ(s)fi(s, ui(s), u
′
i(s))ds+ P ′i (1)

≤ 2(1 + max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ max
i∈{1,...,n}

P ′i (1).

This implies that for all i ∈ {1, ..., n}

‖Ti(u)′‖∞ ≤ 2(1 + max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ max
i∈{1,...,n}

P ′i (1).

We denote by

A = (1 + max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ max
i∈{1,...,n}

Pi(1) + 1

and

B = 2(1 + max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds+ max
i∈{1,...,n}

P ′i (1) + 1.

Then for all i ∈ {1, ..., n},

‖Ti(u)‖ = max(‖Ti(u)‖∞, ‖Ti(u)′‖∞) ≤ max(A,B).
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Using lemma 3.2-(1), we have for all i ∈ {1, ..., n}, for all t ∈ [α, β]

Ti(u)(t) ≥
∫ β

α

ω1(s)fi(s, u(s), u′(s))ds+ Pi(t)

≥
∫ β

α

ω1(s)fi(s, u(s), u′(s))ds

≥

∫ β

α

ω1(s)fi(s, u(s), u′(s))ds

max(A,B)
×max(A,B)

≥

∫ β

α

ω1(s)fi(s, u(s), u′(s))ds

max(A,B)
‖Ti(u)‖.

Then for all i ∈ {1, ..., n},

min
t∈[α,β]

Ti(u)(t) ≥

∫ β

α

ω1(s)fi(s, u(s), u′(s))ds

max(A,B)
‖Ti(u)‖.

Similarly by use lemma 3.2-(2), we have for all i ∈ {1, ..., n}, for all t ∈ [α, β]

Ti(u)′(t) ≥
∫ β

α

ω2(s)fi(s, u(s), u′(s))ds+ P ′(t)

≥
∫ β

α

ω2(s)fi(s, u(s), u′(s))ds

≥

∫ β

α

ω2(s)fi(s, u(s), u′(s))ds

max(A,B)
×max(A,B)

≥

∫ β

α

ω2(s)fi(s, u(s), u′(s))ds

max(A,B)
‖Ti(u)‖.

Then for all i ∈ {1, ..., n},

min
t∈[α,β]

Ti(u)′(t) ≥

∫ β

α

ω2(s)fi(s, u(s), u′(s))ds

max(A,B)
‖Ti(u)‖.

We deduce that

min
t∈[α,β]

(Ti(u)(t) + Ti(u)′(t)) ≥

∫ β

α

(ω1(s) + ω2(s))fi(s, u(s), u′(s))ds

max(A,B)
‖T (ui)‖

= γi(α, β)‖Ti(u)‖

where

γi(α, β) =

∫ β

α

(ω1(s) + ω2(s))fi(s, u(s), u′(s))ds

max(A,B)
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we deduce that

min
t∈[α,β]

n∑
i=1

(Ti(u)(t) + Ti(u)′(t)) ≥
n∑
i=1

γi(α, β)‖Ti(u)‖

≥ max
j∈{1,...,n}

[γj(α, β)‖Tj(u)‖]

≥ max
j∈{1,...,n}

γj(α, β)× max
j∈{1,...,n}

‖Tj(u)‖.

This implies that for all j ∈ {1, ..., n},

min
t∈[α,β]

n∑
i=1

(Ti(u)(t) + Ti(u)′(t)) ≥ max
i∈{1,...,n}

γi(a, b)‖Tj(u)‖.

Then

min
t∈[α,β]

n∑
i=1

(Ti(u)(t) + Ti(u)′(t)) ≥
max

i∈{1,...,n}
γi(α, β)

n

n∑
j=1

‖Tj(u)‖

= γ(α, β)‖T (u)‖E .

Step 2: Let i ∈ {1, ..., n} we have lim
‖u‖1+‖v‖1→0

min
t∈[0,1]

fi(t, u, v)

‖u‖1 + ‖v‖1
= +∞. Then for

all M > 0, ∃Ri,1 > 0 such that

min
t∈[0,1]

fi(t, u, v) ≥M(‖u‖1 + ‖v‖1), for ‖u‖1 + ‖v‖1 ≤ Ri,1.

This implies that, for all M > 0 ∃Ri,1 > 0 such that for all t ∈ [0, 1],

fi(t, u, v) ≥ min
t∈[0,1]

fi(t, u, v) ≥M(‖u‖1 + ‖v‖1) for ‖u‖1 + ‖v‖1 ≤ Ri,1,

we choose

M =
1

n γ(α, β) min(

∫ β

α

ω1(s)ds,

∫ β

α

ω2(s)ds)

.

Let Ω1 be the bounded open set in E defined by Ω1 = {u ∈ E, ‖u‖E < min
i∈{1,...,n}

Ri,1}.

Then for all u ∈ Con(α, β) ∩ ∂Ω1, it yields, for all s ∈ [α, β],
n∑
i=1

(ui(s) + u′i(s)) ≥ γ(α, β) min
i∈{1,...,n}

Ri,1.

Then for all i ∈ {1, ..., n}, s ∈ [α, β],

fi(s, u(s), u′(s)) ≥M(‖u(s)‖1 + ‖u′(s)‖1) ≥M γ(α, β) min
i∈{1,...,n}

Ri,1.

This implies that, for all i ∈ {1, ..., n}, t ∈ [0, 1]

|Ti(u)(t)| ≥M
∫ β

α

ω1(s)ds γ(α, β) min
i∈{1,...,n}

Ri,1

and for all i ∈ {1, ..., n}

‖Ti(u)‖ ≥ ‖Ti(u)‖∞ ≥
min

i∈{1,...,n}
Ri,1

n
.

We deduce that
‖T (u)‖ ≥ min

i∈{1,...,n}
Ri,1 = ‖u‖E .
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Step 3: Now, let i ∈ {1, ..., n} we have lim
‖u‖1+‖v‖1→+∞

max
t∈[0,1]

fi(t, u, v)

‖u‖1 + ‖v‖1
= 0. Then

for all ε > 0, ∃Rfi0 > 0 such that

max
t∈[0,1]

fi(t, u, v) ≤ ε(‖u‖1 + ‖v‖1) for ‖u‖1 + ‖v‖1 ≥ Rfi0 .

This implies that, for all ε > 0, ∃Rfi0 > 0 such that for all t ∈ [0, 1],

fi(t, u, v) ≤ max
t∈[0,1]

fi(t, u, v) ≤ ε(‖u‖1 + ‖v‖1) for ‖u‖1 + ‖v‖1 ≥ Rfi0 .

From (H2), there exist three constants M1,i,M2,i ≥ 0 such that, for k ∈ {1, 2},

|hk,i(t, u(t))| ≤Mk,i, for each t ∈ [0, 1].

We choose

ε =
1

4n(1 + max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)ds

.

Let

R2 = max{2 min
i∈{1,...,n}

Ri,1, max
i∈{1,...,n}

Rfi0 , 2n max
i∈{1,...,n}

[KiM1,i + CiM2,i +M1,i + 1]

, 2n max
i∈{1,...,n}

[2(KiM1,i + CiM2,i) + 1]}

and Ω2 be the bounded open set in E defined by Ω2 = {u ∈ E, ‖u‖E < R2}. Then
for all u ∈ Con(α, β) ∩ ∂Ω2, we have for all i ∈ {1, ..., n} for all s ∈ [0, 1]

fi(s, u(s), u′(s)) ≤ max
s∈[0,1]

fi(s, u(s), u′(s)) ≤ ε(‖u(s)‖1 + ‖u′(s)‖1) ≤ εR2.

Using lemma 3.1-(1) we have, for all t ∈ [0, 1]

|Ti(u)(t)| ≤
∫ 1

0

Hi(t, s)fi(s, u(s), u′(s))ds+ Pi(t) + 1

≤ ε R2 (1 + max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)ds

+ max
i∈{1,...,n}

[KiM1,i + CiM2,i +M1,i + 1]

≤ R2

4n
+
R2

2n

≤ R2

n
.

Then, for all i ∈ {1, ..., n},

‖Ti(u)‖∞ ≤
R2

n
.
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Using lemma 3.1-(2) we have, for all t ∈ [0, 1]

|Ti(u)′(t)| ≤
∫ 1

0

∂Hi(t, s)

∂t
fi(s, u(s), u′(s))ds+ P ′i (t) + 1

≤ ε R2 (1 + 2 max
i∈{1,...,n}

Ki)

∫ 1

0

ϕ(s)fi(s, u(s), u′(s))ds

+ max
i∈{1,...,n}

[2(KiM1,i + CiM2,i) + 1]

≤ R2

2n
+
R2

2n
=
R2

n
.

Then for all i ∈ {1, ..., n},

‖Ti(u)′‖∞ ≤
R2

n
.

Therefore

‖Ti(u)‖ ≤ R2

n
.

We deduce that

‖T (u)‖E ≤ R2 = ‖u‖E .
Step 4: Let u ∈ Ω1 then ‖u‖ ≤ min

i∈{1,...,n}
Ri,1 < 2 min

i∈{1,...,n}
Ri,1 ≤ R2. This implies

that ‖u‖ < R2, then u ∈ Ω2. We deduce that Ω1 ⊂ Ω2. By theorem 3.4, T has at
least one fixed point in K ∩ (Ω2\Ω1). Then (1.1)-(1.2) has a least one nonnegative
solution u. �

Theorem 3.6. Under assumptions of theorem 3.5 and adding the following condi-
tion:

For all i ∈ {1, . . . , n}, there exist t0,i ∈]0, 1[ such that fi(t0,i, x, y) > 0 (3.3)

for all x ∈ Rn+, for all y ∈ Rn.
Then the problem (1.1)-(1.2) has at least one positive solution.

Proof. Consider the nonnegative solution u for problem (1.1)-(1.2) whose existence
is guaranteed by theorem 3.5. Notice that ui satisfied for all i ∈ {1, ..., n} ui(t) =∫ 1

0

Hi(t, s)fi(s, u(s), u′(s))ds + Pi(t). From (H2) and condition (3.3), there exist

[αi, βi] ⊂]0, 1[, such that, for all t ∈ [αi, βi] and x ∈ Rn+, y ∈ Rn, fi(t, x, y) > 0.
Then for all i ∈ {1, . . . , n} and for all t ∈]0, 1[,

ui(t) =

∫ 1

0

Hi(t, s)fi(s, u(s), u′(s))ds+Pi(t) ≥
∫ βi

αi

Hi(t, s)fi(s, u(s), u′(s))ds >

0. The proof is complete. �

4. Nonexistence results

In this section, we give some sufficient conditions for the nonexistence of pos-

itive solutions. We define the constants Bi = (1 + Ki)

∫ 1

0

ϕ(s)ds and C(a, b) =∫ b

a

ω1(s)ds.

Theorem 4.1. Suppose that (H2) holds. There exists i0 ∈ {1, ..., n} such that for
all t ∈]0, 1[, for all xi0 ∈]0,+∞[, for all i ∈ {1, ..., n}\{i0}, xi ∈ R
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(1) (Ki0 + 1)h1,i0(t, x1, ..., xi0 , ..., xn) <
xi0

3

(2) Ci0h2,i0(t, x1, ..., xi0 , ..., xn) <
xi0

3

(3) Bi0fi0(t, x1, ..., xi0 , ..., xn, y1, ..., yn) <
xi0

3 .

Then the problem (1.1)-(1.2) has no positive solutions.

Proof. Assume, to the contrary, that u(t) is a positive solution of (1.1)-(1.2). We de-
note by u(s) = (u1(s), ..., ui0(s), ..., un(s)) and u′(s) = (u′1(s), ..., u′i0(s), ..., u′n(s)).

Then for all s ∈]0, 1[ we have

fi0(t, u(s), u′(s)) <
ui0(s)

3
B−1i0 .

Then for all t ∈ [0, 1] and for all s ∈]0, 1[ we have

Hi0(t, s)fi0(t, u(s), u′(s)) < Hi0(t, s)
ui0(s)B−1i0

3
.

Multiplying this by Hi0(t, s) and integrating on [0, 1] we deduce that

∫ 1

0

Hi0(t, s)fi0(t, u(s), u′(s))ds <

B−1i0

∫ 1

0

Hi0(t, s)ui0(s)ds

3

≤

∫ 1

0

ui0(s)ds

3
.

Since, for all t ∈ [0, 1]

Pi0(t) ≤ Ci0

∫ 1

0

h2,i0(s, u(s))ds+ (Ki0 + 1)

∫ 1

0

h1,i0(s, u(s))ds

≤

∫ 1

0

ui0(s)ds

3
+

∫ 1

0

ui0(s)ds

3
=

2

3

∫ 1

0

ui0(s)ds.

Then for all t ∈ [0, 1]

ui0(t) <
2

3

∫ 1

0

ui0(s)ds+

∫ 1

0

ui0(s)ds

3
=

∫ 1

0

ui0(s)ds.

By mean value theorem there exists s0 ∈]0, 1[ such that

∫ 1

0

ui0(s)ds = ui0(s0)

which is a contradiction. The proof is complete. �

Theorem 4.2. Suppose that (H2) holds. There exists i0 ∈ {1, ..., n}, there exists
a, b ∈]a, b[ such that for all t ∈ [0, 1], for all xi0 ∈]0,+∞[, for all i ∈ {1, ..., n}\{i0},
xi ∈ R

C(a, b)fi0(t, x1, ..., xi0 , ..., xn, y1, ..., yn) > xi0 . (4.1)

Then the problem (1.1)-(1.2) has no positive solutions.

Proof. Assume, to the contrary, that u(t) is a positive solution of (1.1)-(1.2). We de-
note by u(s) = (u1(s), ..., ui0(s), ..., un(s)) and u′(s) = (u′1(s), ..., u′i0(s), ..., u′n(s)).
Then for all s ∈]0, 1[ we have

fi0(s, u1(s), ..., ui0(s), ..., un(s), u′1(s), ..., u′n(s)) > ui0(s)C(a, b)−1.
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Then for all t ∈ [0, 1] for all s ∈]0, 1[ we have

Hi0(t, s)fi0(t, u(s), u′(s)) > Hi0(t, s)ui0(s)C(a, b)−1.

Multiplying this by Hi0(t, s) and integrating on [0, 1] we deduce that∫ 1

0

Hi0(t, s)fi0(t, u(s), u′(s))ds > C(a, b)−1
∫ 1

0

Hi0(t, s)ui0(s)ds

≥
∫ 1

0

ui0(s)ds.

Then for all t ∈ [0, 1]

ui0(t) =

∫ 1

0

Hi0(t, s)fi0(t, u(s), u′(s))ds+ Pi0(t)

≥
∫ 1

0

Hi0(t, s)fi0(t, u(s), u′(s))ds

>

∫ 1

0

ui0(s)ds.

By mean value theorem there exists s0 ∈]0, 1[ such that

∫ 1

0

ui0(s)ds = ui0(s0)

which is a contradiction. The proof is complete. �

Example 1. Consider the following system of boundary value problem.



u′′′1 (t) + t3+1√
(u′

1(t))
2+1

+ e−u2(t) = 0

u′′′2 (t) + e−t
√
|u1(t)|+ |u′2(t)|+ e−u

′
2(t) = 0

u1(0) = u2(0) = 1
u′1(0) = u′2(0) = 0
u′1(1) = 2u1( 1

6 ) + 3
u′2(1) = 2u2( 1

8 ) + 1.

(4.2)

We have f1(t, x1, x2, y1, y2) = t3+1√
y21+1

+ e−x2

min
t∈[0,1]

f1(t, x1, x2, x1, x2)

(|x1|+ |x2|+ |y2|+ |y2|)
= e−x2

then lim
(|x1|+|x2|+|y2|+|y2|)→0

min
t∈[0,1]

f1(t, x1, x2, y1, y2)

(|x1|+ |x2|+ |y2|+ |y2|)
= +∞

max
t∈[0,1]

f1(t, x1, x2, y1, y2)

(|x1|+ |x2|+ |y2|+ |y2|)
=

2√
y21 + 1

+ e−x2 then

lim
(|x1|+|x2|+|y2|+|y2|)→+∞

max
t∈[0,1]

f1(t, x1, x2, y1, y2)

(|x1|+ |x2|+ |y2|+ |y2|)
= 0.

f2(t, x1, x2, y1, y2) = e−t
√
|x1|+ |x2|+ e−y2

min
t∈[0,1]

f2(t, x1, x2, y1, y2)

(|x1|+ |x2|+ |y2|+ |y2|)
= e−1

√
|x1|+ |y2|+ e−y2

then lim
(|x1|+|x2|+|y2|+|y2|)→0

min
t∈[0,1]

f2(t, x1, x2, y1, y2)

(|x1|+ |x2|+ |y2|+ |y2|)
= +∞

max
t∈[0,1]

f2(t, x1, x2, y1, y2)

(|x1|+ |x2|+ |y2|+ |y2|)
=
√
|x1|+ |y2|+ e−y2



SYSTEM OF THIRD-ORDER BOUNDARY VALUE PROBLEM 77

then lim
(|x1|+|x2|+|y2|+|y2|)→+∞

max
t∈[0,1]

f2(t, x1, x2, y1, y2)

(|x1|+ |x2|+ |y2|+ |y2|)
= 0.

By using Theorem 3.6 the problem (4.2) has no positive solution.
Example 2. Consider the following system of boundary value problem.



u′′′1 (t) + (1 + 1024
5 eu1(t))2 + |u2(t))|+ (u′1(t))2 = 0

u′′′2 (t) + e2u1(t)) + |u′2(t)|3 = 0

u1(0) = u2(0) =

∫ 1

0

|u2(s)|ds
|u1(s)|+ 1

u′1(0) = u′2(0) = 0

u′1(1) = 2u1( 1
6 ) +

∫ 1

0

|u2(s)|ds

u′2(1) = 2u2( 1
9 ) +

∫ 1

0

(u1(s) + 1)2ds

(4.3)

we denote by f1(t, x1, x2, y1, y2) = (1 + 1024
5 ex1)2 + |x2| + y21 , a = 1

4 , b = 1
2 , B =∫ 1

0

ϕ(s)ds =
1

12
and C(a, b) =

∫ b

a

ω1(s)ds =
5

1024
.

C(a, b)[f1(t, x1, x2, y1, y2)] =
5((1+ 1024

5 ex1 )2+|x2|+y21
1024 > x1

By using Theorem 4.2 the problem (4.3) has no positive solution.
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