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GENERALIZED ¢-HERMITE POLYNOMIALS AND THE
¢-DUNKL HEAT EQUATION

(COMMUNICATED BY FRANCISCO MARCELLAN )

M. SALEH JAZMATI & KAMEL MEZLINI & NEJI BETTAIBI

ABSTRACT. Two classes of generalized discrete g-Hermite polynomials are con-
structed. Several properties of these polynomials, and an explicit relations con-
necting them with little ¢g-Laguerre and g-Laguerre polynomials are obtained.
A relationship with the g-Dunkl heat polynomials and the g-Dunkl associated
functions are established.

1. INTRODUCTION

The classical sequence of Hermite polynomials form one of the best known sys-
tems of orthogonal polynomials in literature. Their applications cover many do-
mains in applied and pure mathematics. For instance, the Hermite polynomials
play central role in the study of the polynomial solutions of the classical heat equa-
tion, which is a partial differential equation involving classical derivatives. It is
therefore natural that generalizations of the heat equation for generalized oper-
ators lead to generalizations of the Hermite polynomials. For instance, Fitouhi
introduced and studied in [6] the generalized Hermite polynomials associated with
a Sturm-Liouville operator by studying the corresponding heat equation. In [16],
Rosler studied the generalized Hermite polynomials and the heat equation for the
Dunkl operator in several variables. In [15], Rosenblum associated Chihara’s gener-
alized Hermite polynomials with the Dunkl operator in one variable and used them
to study the Bose-like oscillator.

During the mid 1970’s, G. E. Andrews started a period of very fruitful collaboration
with R. Askey (see [1},[2]). Thanks to these two mathematicians, basic hypergeomet-
ric series is an active field of research today. Since Askey’s primary area of interest
is orthogonal polynomials, g-series suddenly provided him and his co-workers, who
include W. A. Al-Salam, M. E. H. Ismail, T. H. Koornwinder, W. G. Morris, D.
Stanton, and J. A. Wilson, with a very rich environment for deriving g-extensions
of the classical orthogonal polynomials of Jacobi, Gegenbauer, Legendre, Laguerre
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and Hermite. It is in this context that this paper is built around the construction
of a new generalization of the Hermite polynomials, using new g-operators.

In this paper, we introduce some generalized g-derivative operators with param-
eter v, which, with the ¢-Dunkl intertwining operator (see [3]) allow us to introduce
and study two families of g-discrete orthogonal polynomials that generalize the two
classes of discrete g-Hermite polynomials given in [T1].

Next, we consider a generalized ¢-Dunkl heat equation and we show that it is re-
lated to the generalized discrete g-Hermite polynomials in the same way as the
classical ones in [I5] and in [I6].

This paper is organized as follows: in Section 2, we recall some notations and
useful results. In Section 3, we introduce generalized g¢-shifted factorials and we
use them to construct some generalized g-exponential functions. In Section 4, we
introduce a new class of g-derivative operators. By these operators and the ¢g-Dunkl
intertwining operator two classes of discrete g-Hermite polynomials are introduced
and analyzed in Section 5. In Section 6, we introduce a g-Dunkl heat equation,
and we construct two basic sets of solutions of the g-Dunkl heat equation: the set
of generalized g-heat polynomials and the set of generalized g-associated functions.
In particular, we show that these classes of solutions are closely related to the
generalized discrete g-Hermite I polynomials and the generalized discrete g-Hermite
IT polynomials, respectively.

2. NOTATIONS AND PRELIMINARIES

2.1. Basic symbols. We refer to the general reference [9] for the definitions,
notations and properties of the g¢-shifted factorials and the basic hypergeometric
series.

Throughout this paper, we fix ¢ € (0,1) an we write R, = {£¢",n € Z}. For a
complex number a, the g-shifted factorials are defined by:

n—1 o]
(@qo=1 (6:0)n= [0 -ag")n=1,2.; (a0 =[]0~ ag".
k=0 k=0
(a; @)oo
gy = — oo 2.1
(@10), = e (21)
If we change ¢ by ¢~!, we obtain

(a:q ) = (@ s )al(—a)"g ", 0 £0, (2.2)

We also denote

(¢ Dn
(1—q)

= , 2€C and nl;=
q
The basic hypergeometric series is defined by

_ 1+s—r
o _— ) < (a1;q)k---(ar; @k ((—U’“qk(g*l)) i
r@Ps (A1, .0y Qp; y e 0574,2) = VAN
' ' - (515 @) (bss @) D)
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The two Euler’s g-analogues of the exponential function are given by ( see [9])

00 k(k—1)
2

By(z) =Y T = (20, (2.3)
= (G )k !
eq(2) = kZ:O G = Eae 2| < 1. (2.4)

Note that the function E,(z) is entire on C. But for the convergence of the sec-
ond series, we need |z| < 1; however, because of its product representation, e, is
continuable to a meromorphic function on C with simple poles at z = ¢~ ", n
non-negative integer.

We denote by

apy(z) = eg(1—9)2) = 30 2 (2.5)
n=0 94
n(n—1) n
Expy(z) = E. (1 —q)z Z 4 : 2 (2.6)

We have lim exp,(z) = lim Ezp,(z) = €7, Where e® is the classical exponential
q—1- q—1-

function.
The Rubin’s ¢g-exponential function is defined by (see [13])

= an(z;QZ)a (27)
n=0

[(z1(z]+D)
q 2 2 n
bn(z;4%) = o ? (2.8)
‘q

where

and [z] is the integer part of z € R.
e(z; %) is entire on C and we have lim e(z;q?) = €.

q—1—
The ¢-Gamma function is given by (see [5, [0] )
CHES -
T, (z) = LW (1 yl=z 5 L0 —1,-9,... 2.9

and tends to I'(z) when ¢ tends to 17.
We shall need the Jackson ¢-integrals defined by (see [9} [10])

/Oaf(mdqx:(l—q)a;f(aq /f dx—/ fa dw—/ I

/ fx)dgz = (1—q) Z f(q (2.10)

n=—oo

o0 oo

[ T @ =(-a) 3 @ f@ -0 S ).

n=—oo n=—oo

We denote by L(ll,q the space of complex-valued functions f on R, such that

/ (@)l 2]20+ Lz < oo,
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The ¢-Gamma function has the g-integral representation (see [5 [8])

(1-g~*
Ly(z) = /o v* ' Bxp,(—qx)d,z, (2.11)

and satisfies the relation

/1 Rxﬂmd t = Lg2(z+ 1) (y)
0 (¢%1%¢%) 0 1+qlpx+y+1)

2.2. The g-derivatives.
The Jackson’s g-derivative D, (see [9, [10]) is defined by :

,x>—1,y>0.(2.12)

f(z) = flaz)
D =2 7 2.1
We also need a variant D;, called forward g-derivative, given by
fla™'2) = f(2)
Df =7 - 2.14
1) =T (214)

Note that qlir?i D,f(z) = qlﬁi}l{lﬁ D f(z) = f'(z) whenever f is differentiable at z.
Recently, R. L. Rubin introduced in [I3], I4] a g-derivative operator d, as follows
9qf = Dy fe + Dy fo, (2.15)
where f. and f, are respectively the even and the odd parts of f.
We note that if f is differentiable at  then 9, f(z) tends as ¢ — 17 to f'(x).
3. THE GENERALIZED g-EXPONENTIAL FUNCTIONS

3.1. The generalized ¢-shifted factorials.
For a > —1, we define the generalized g-shifted factorials for non-negative integers
n by

(2n)! o (1 +q)2”Fq2(a—|—n+ D p2(n+1) _ (% ) n (247,
g, . Fq2 (a + 1) (1 7 q)2n )
2n4 1)y = 1+ @) " Te(a+n+2)Tem+1)  _ (¢%¢)a(@®* 6% nn
o G Fq2 (a n 1) (1 — q)2n+1 .
We denote
(@ D2na = (656 )n (@5 6%)n and (g3 @Q)ont1,0 = (655670 (%56 )nt1-
Remarks.
1
1) fa= —3 then we get
(@01 = (¢:q)n and nl, 1 =nlg. (3.1)

(2) We have the recursion relations
(n+ Do =Mn+140,(2a+1)] nlya
and (32)
(G Dn+1,0 =1 =q) [n+1+0,2a +1)], (¢ Dn,a;
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where
1 if niseven
0, = (3.3)
0 if nisodd.

t 1s easy to prove the following limits
(3) Tt i y he following limi
22"\ (a +n+ 1)

lim (2n)! = = 2
q 1 17( n) q,x I‘(a 1) 7a+é( TL), (3 4)
lim (2n + 1)! = 2 il (a +n +2) = (2n+1) .
g—1- e MNa+1) Tats ’

where v, is the Rosenblum’s generalized factorial (see [15]).

3.2. The generalized ¢-exponential functions.

By means of the generalized ¢-shifted factorials, we construct three generalized
g-exponential functions as follows:

Definition 3.1. For z € C, the generalized q-exponential functions are defined by

00 h(k 1) k

(3.5)
= (q Dk
eq,a(2 Z , 2l < 1. (3.6)
—0 q q k,a
Y(z) = Z bna(irz; %), N €C, (3.7)
n=0
where
(31([3]+1) ,n
bn’a(z;qQ) I iy (3.8)

nlga

Note that 1{"%(z) is exactly the g-Dunkl kernel introduced in [3].
1
For a = —3 it follows from 1' that E; _1(z) = Ey(2), eq_1(2) = eq(2),

b, _1(x;¢%) = by(z; ¢*) and we have w;%’q(l’) = e(i\z; ¢%) the Rubin’s g-exponential

n,—3
function || By l} the g-Dunkl kernel ¢3"?(z) tends to ea+%(i)\x) asqg— 17,
where e, is the Rosenblum’s generalized exponential function (see [I5}, [16]).
The generalized g-exponential function ¥ () gives rise to a g-integral transform,
called the g-Dunkl transform on the real line, which was introduced and studied in
[3]:
+oo
Fp =K, / I(x)|z|** e, feLl

q7
where
(1 =)™ (> %)

K, =
2(4%:¢%)
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4. THE GENERALIZED ¢-DERIVATIVES

In this section we introduce a new class of g-derivatives operators which play an
important role in the construction of a generalized g-Hermite polynomials.

4.1. The generalized ¢-derivative operators.

Definition 4.1. The generalized backward and forward q-derivative operators Dg o

and D;a are defined as

f(2) = > f(qz)

D, o = , 4.1
af() = FE ()
f(qflz) _ q2a+1f(z)
DF = . 4.2
fal(2) T (42)
The operators given by
Aa;qf:qu€+Dq,afov (43)
Al f =D fe+ Dot
are called the generalized q-derivatives operators.
1
Remark that for « = ——=, we have:
D, 1 =Dqg D+1_D A71_D andA l:D;’.
The followmg elementary result is useful in the sequel
Lemma 4.1.
AL 2" =q "N+ 0h1(2a+ 1)]ga" " n=1,2,3,.... (4.5)
t
A;'q 2+€q.a(qrt) = Eeq)a(tx), (4.6)
t—x
Azq z [ (_q2x2)eq7a(q$t)} = EEq2(_q2x2)eq7a(tI)v (4'7)

where the operator A} . . acts with respect to x and 0 is given by .

4T

Proof. By elementary calculus, we get (4.5]).
On the one hand, using the definition of the operator A;;q and 1' we have

Z (g)" AL ™ i "0 A4 Opr (200 + 1)] 2"
"0 (Q9Q)n’a ((I§Q)n,a

On the other hand, using the second recursion relation in (3.2) and changing the
index in the second sum in the previous equation, we obtain

Ag,q,xeqya(qxt)

n=1

oo

AL eqalqrt) = ! Z ta? 1 eq,a(t)
s 1—¢ = (G @na 1—g "7

Finally, using the infinite product representation 1) of qu(—q2952)7 we get
T
AL o [Bp(—d*a®)eqalgrt)] = Ep(—q°?) [Ai,qeq,a(qxt) — T gCaa(®)

and ([4.7)) follows from (4.6)). [ ]
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4.2. The ¢g-Dunkl operator.
We can rewrite the ¢g-Dunkl operator introduced in [3] by means of the generalized
g-derivative operators introduced in Definition as

Aagf = AF fe + Ao gfo (4.8)
Indeed.
We have
aqf - Dife + quo,
and
Rea(£)(2) = B, [Hag ()] () + (20 + 1, 7D TED)
where

Ha,q : f = fe + fo — fe +q2a+1fo~
We can write, then,

0t 1— q2a+1
Aa,qf(w) = 8qf€($) +4q ¢ aqfo(w) + Wfo(x)
1— q2a+1

= D Je@) + ¢ Dyfol@) + <5 fola)
= D+f6(x) + Dg,a fo(z)

= fe(x) + Aqqfolz).

1
It is noteworthy that in the case a = 5 Ay q Teduces to the Rubin’s g-derivative

operator 9, defined in [I3] and that for a differentiable function f, the ¢-Dunkl
operator A, qf tends to the classical Dunkl operator A, f as ¢ tends to 1.
By induction, we prove the following results :
Proposition 4.1.
(1) A repeated application of the q-Dunkl operator to the monomial by, o(z;q*)

grves
A’;ﬁqbnya(x;qQ) = by pa(r;¢%), k=0,1,..n. (4.9)
(2) If f is an even function, then
A2 f(x) =g "TDAT (g "), n=0,1,2, ..., (4.10)
A2 f(z) = g~ (Y AQ”“f( ) n=0,1,2, ... (4.11)

4.3. The ¢g-Dunkl intertwining operator.

For our further development, we need to extend the notion of the ¢g-Dunkl inter-
twining operator introduced in [3] to the space C(R) of continuous functions on
R.

Definition 4.2. The g-Dunkl intertwining operator Vo 4 is defined on C(R) by

Voul(a) = 252 | 11 Walti®)(1+ O f(at)dgt, v €R,  (412)
where
. . (1 + Q)qu (a + 1)
Claiq) = T2 (1/2)T (o + 1/2) (4.13)
and
Wa(t; ¢%) = (4" ¢*)e (4.14)

(¢ ¢%) oo
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Since the integrand is continuous, the g-integral is well-defined.

In the following proposition we shall show that V, 4 is the intertwining operator
between the generalized ¢-derivatives and the usual g-derivatives which generalize
the transmutation relation (53) in [3].

Proposition 4.2. Suppose that the function f and its q-derivatives Dy f, D;’f and
0, are in C(R), then

Aq V (f) = Va,q(qu)Q (4-15)
AY Vao(f) = Vau(DF f); (4.16)
Ao V (f) = qu(aqf)- (4-17)

Proof. By splitting f into its even and odd parts f = f. + f,, and using the fact
that D, changes the parity of the function and the g-integral of an odd function on
[—1,1] is equal zero, we obtain

Cla;q) [*

Vea D)) = S5 [ W 2un, e,
02(05. T (4.18)

+ G [ Wt ) Dfo(at)dyt

—1
On the other hand, from the definition of A, 4, (4.3) we have
Cla; !
BaaVaaD)@) = S [ WD,

-1 (4.19)

. 1
+@/ Wo(t; ¢*)t* Dy.o fo(at)dgt
—1

Then, using the fact that (1 — ¢** T 2) W, (t;¢%) = (1 — ¢*t*)Wa(qt; ¢*), we get

Va,d(Dgf)(z) — AagVa,q(f)(z) = /_W (t:q%) [D fo(at) = t? Dy o fo(wt)] dyt
_ t2) fo(wt)
_ / s (1_%1 Cift< )
) q=*t%) folqat
L nofuly
o OJZt
. 1 2t2 qat
‘/_1W“<qt’“ g

Since the integrand in the last Jackson g-integral vanishes at the points —1 and 1,
the change of variable u = ¢t in this g-integral leads to the relation (4.15)).

In a similar way, one can obtain 1_'
Now by using (| . and (4.16]), we obtain
Aa,qva,q(f) = A;L,q oz.,qfe + Aoz,qVOé,qfo = Va,q (D;fe + quo) = Voz,q (8qf) .
[ |

The following result shows the effect of the g-Dunkl intertwining operator on mono-
mial functions and on the g-exponential functions.
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Proposition 4.3. The following relations hold:

Vag2" = mz”, n=20,1,2,..; (4.20)
Vigbn(2;6%) = bna(z;¢%), n=0,1,2, .. (4.21)
Vag€q(2) = €qa(z), |2] <1; (4.22)
Va,gEq(2) = Eqa(2); (4.23)
Vage(A25¢%) = 4 (2), X eC. (4.24)

1 1
Proof. If we take x = n — 3 and y = o+ — in (2.12)), we get by using (4.13

2
1 2 2. 2 1 1
24°q% ) oo Pp(n+ 3)lg(a+3)
Va Z2n _ C a; Z2n/ ( thd t = C a; q 2 q 2 z2n
.q (a;q) o (22T ¢?) oo q (a;q) 1+¢lpn+a+1)
_ Lp2(a+ 1) (n+ %)Z% _ (4;0%)n o
De(lentatl)” (@),

Similarly, we prove that
1422, 2 2
2n+1 _ L) L2n+ (t*¢*;¢%) o 2(n+1) _ (¢4 )n+1 2n+1
Va2 = Clasa)z / CEtiRn T @
Then (4.20]) follows from the two following facts
) 2 : 2
(@2 (4¢°)n (@ D2nt1 _ (@ C)n41 (4.25)

(¢ D2na (560" (G D2mt10  (@2FTE 60t
For |z| < 1, we have by using (4.20))

o0

Vo o2" > 2k
Vaq€q(2) = Z A = Z ( = €q,a(2)-

(k= (G Dk
The same techniques produce the relations (4.23)) and (4.24). [ |

5. THE GENERALIZED DISCRETE ¢-HERMITE POLYNOMIALS
We begin this section by the following useful lemma.
Lemma 5.1.

(1) For s >0, we have

Fy(s) ::/O 5 B2 (—qt2)dyt = (1 —q)m. (5.1)

(2) For A > 0 and n non-negative integer, we have

oo —nZ—(20¢+1)n
Gon(\) :=/0 eq (=M )y gy = cq,a(A)qT (@ ¢%),
(5.2)
where
1— _2a+2)\_72a)\ 2.2Oo
CW(A):( 9 (=4 4 NG ) (5.3)

(=\ =2/, ¢** "% %)
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Proof. (1) Let s > 0. From ([2.11)), we have by doing the two changes of variables
u=(1-¢*)tand u=1

1 1 s— 1+q 1 o
m/o T B (=gt d ot = m/o w1 B (—g*u®)dgu.

s+1

qu (S) =

The relation 1' follows then by replacing s by in the previous equation.

(2) Let A > 0 and n non negative integer. Then, from the definition of the Jackson
g-integral and the Ramanujan identity (see [9], p. 125), we have

o0 eSO

/0 (NP )dyy = (1—a) Y CAF @)

k=—oc0 o
(1—q) (A", —q T\, g% ¢%)
(=A@ =2 /X 0%
In particular for s = 2n + 2a + 1, we have

2a42n4+2 _ —2a-2 2. 2
/ooe D (= ARy Re gy — (1—q) (A2, =g 720720\, 4% ¢°)
o " ! (=X, 2242, =2 X ) o

We conclude (5.2) by using the following equalities:

(_)\q2a+2n+2_q2) _ (*q2a+2)\;q2)oc (q2a+2n+2_q2) _ (q2a+2; 2)00
oo T (T patN ) oo T (et 2y

and

(*(]720&72’”/)\; q2)oo _ qfn(n+1)(q2o¢)\)fn (7q2a+2/\; q2)n (7(q204)\)71; qZ)OO

|
5.1. The generalized discrete g-Hermite I polynomials.
The discrete g-Hermite I polynomials {h,(z; ¢)}re, are defined in [I1] by
ha(;q) = 2" 2go(q™ ", ¢ " =% ¢ e 7?)
(3] 1) n—
B I i ex
(02021 (d5 n—2n

Definition 5.1. The generalized discrete q-Hermite I polynomials {hn o (z;q)}oep
are defined by:

[

nl3

] (—1)kghtk=1) gn—2k

o (@3q) 2= (4 On (5.5)

= (% k(G Dn—2k0

Remarks.
1
(1) For a = —g e get hy, _1(z;q) = hn(z;9).
(2) Observe that

[
B (V1 = @225 q) nly

|3

_ (DA (1 + @)

(1—-¢2)% (1+q)» = Kl (n —2k)! o
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So by (3.4), we obtain
att
i Tme(VI—d’riq)  Hu *(2)

qg—1— (1 — qQ)% 2n

)

1
where Hy @ 2 (x) is the Rosenblum’s generalized Hermite polynomial (see

15 ).

(3) Each polynomial Ay, o(.;¢) has the same parity of its degree n.

Lemma 5.2. The generalized discrete q-Hermite I polynomials can be written in

terms of basic hypergeometric functions as:

4;q)2 o
hono(x;q) = (((]'q)lan 2o(q~2n, g 220 g2 gAnt2a, =2y
’ n,o

_ (_l)nqn(n—l)(q;QQ)n 2¢1( —2n O q2a+2’q q T )

(q; q)2n+1 2n+1 2¢0(q—2n, q—2n—2a—2

honti,a(z5q) = —10%.q

(¢ Q)2n+1a (@ )
= (-)"TV I qQaiéx 201(q72",0;¢* 4 %, ¢%a?).
Proof. We have
)qu(k 1) 2n—2k
hon,a(x;q) .
2ol Z k(0% @)=k (@25 4% )k

Using the identity

(a;4%) “ivE p(k—1)—
(a;qz)n—k:—(a_lqg’_zﬁq?)k (—g%a™t)" gkt =2k,
we get
2. .2
2, 2 (¢ 9%)n kE k(k—1)—2nk
i -k =75 (1) ¢
(@54 (q—2n;q2)k( )
and
(q2a+2'q2)n—k _ (q2a+2,q2)n (_q72a)qu(k71)72nk'

It follows, then, that

4n+2a+2x—2)

(5.6)

(5.8)

(5.9)

2)k

q;49)2
h27l,0¢(x;Q) = Wx2n
) n,o
y i _1)kq71€(k71) (q72n; q2)k(q72nf2a; q2)k (q4n+2ax7
s (%5 4%
_ (45 9)2n 22 & (q—2n —2n—2a qz q4n+2a —2)
(@5 @)2n,a ’ T

Now, we have

)qu(k 1) 2n+1-2k

hont1,0(259) = (¢; @)2n+1 Z

k(0% @) -2 ¢ nr1—k
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Then, using (5.8) and replacing n by n+ 1 in ([5.9), we obtain

(q2a+2, q2) k= (q2a+2; q2)n+1 (_q*20¢)k} qk(k71)72nk72k
> n+l—k =
(

q72n72a72; q2)k

and

q; Q)2n+1 220+l

hont1 a(xJ Q) =
’ (¢ @)2n+1,
. n «

y Z (_1)kq—k(k—1)(q—2"; q2)k(q_2"_2“_2; q2)k (q4n+2a+2x—2)

2. 42
k=0 (q ' q )k
) 9)2n+1  2n+1 —2n  —2n—2a—2. . 2 _dn+2a+2, ,—2
(QQ) x 2¢0(q ,q 4,4 x )
(¢ @)2n+1,0

On the other hand, taking b = ¢ 2" 2% and z = ¢*" 222 in the following trans-
formation formula (see [11], p.19)

2
— — — _ q
200(q ™" b =16, ¢7"2) = (b;¢%)n2" 201 (g~ %", 0567 ¢ 2";(12,@)7 (5.10)
we obtain
—_ — — — — — 2 —_
2¢0(q 2n’q 2n 20¢;_;q2,q4n+2ax 2) — (q 2n 2a;q2)nq2n +20m1, 2n

x 201(q72", 0;4% %2 4%, ¢%2”).
By the identity (see [I1], p.9)

(@;6%) = (a7 ¢*)n(—a) "™, a #0, (5.11)
we get

2¢0(q—2n’ q—2n—2a, 2 4n+2ax—2)

:—:1q%,q 2a+2,q2)n(_1)n n(n—1),.—2n

= (¢ q T
X 901(47%",0;4° "2 4%, ¢*a?).
So, it follows from (4.25) that
han,o(®39) = (=1)"¢" " (q:6%)n 201 (¢7", 0;6% % ¢%, ¢%2”).
Now, take b = ¢ 2" 7272 and z = ¢*""22"22=2 in (5.10)), to obtain

—2n—2a—2, 2n2+2an+2nx72n

(q 2 7q2)72lq 4, 2 2 2
X 201(q 7", 0;¢°* % 67, ¢°2”)

—2 —2n—2a—2 2 4 2 2 —2
2ho(q 2" g P TR P g TR =

k)

By identity (5.11)), we have
2(,250((]72“ q72n72a72, . q2 q4n+2a+2x72) _ (q2a+4, q2)n(71)nqn(nfl)x72n
) ) Y b b)
X 201(q 7", 0:4° 5 4%, ¢%a?),

and by (4.25), we get

2
-1 \4;q 1 _
hon+t1,a(25q) = (_1)nqn(n Y i _ qusz 201(q 2“»0§q2a+4;q2,q2$2)-

The little g-Laguerre polynomials {p,(z;alq)}o2, are defined in [II] by
pa(w;alg) = 201(q7", 0; ag; g, g). (5.12)
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Using ((5.39)) and (5.12)), the generalized discrete g-Hermite I polynomials h,, o (; q)
can be expressed in terms of the little g-Laguerre polynomials p,, (z; alq) as follows:

hona(z;q) = (—1)”61"(”_1)(%qz)npn(w2;q2"|q2),
(q7 )n 1
R G e S e U Cat [0

Proposition 5.1. The following relations hold:
(1) q-Integral representation of Mehler type

hna(7;9) = Va,ghn(z; ). (5.13)
(2) Generating function
o0 Zn
Ep(—2)eqa(xz) = hpalz; q)ﬁ, (Jzz] < 1). (5.14)
= @ Q)n
(3) Inversion formula
(3]
hn—2k 0 (2;
= (¢ Dn.ar 2k (23.0) (5.15)

= (0% 0°)k(@ On—2k
(4) Three terms recursion formula
1 — gntit+(2a+1)6,
Chi,o(5.q) — ¢TI — gy 0 (w59) = ql — 1.0 (25.q).
(5.16)

Proof. (1) The relation (5.13)) follows by application of (4.20]) to each term in (5.4)).
(2) The generating function for the discrete g-Hermite I polynomials is given by

(see [IT])

Ep(—2%)eq(22) Zh (z; q (5.17)

)

So by applying the operator Vg Wlth respect to x, to both sides of equation

and using and (| -, we obtain

(3 ) follows by apphcatlon of the operator Va,q to both sides of the well-known
relation (see [12]):

S
3

(3]

|

hn Qk(x;q)
« (0% 0*)k (¢ Dn—2n”

n

z" = (g; q)n

HM

[EZ0) and (B.13).
(4) To prove (.16, we consider, separately, the even and the odd cases in the

expression
Thin,o(5.q) — ¢TI — gy 0 (w5 9).
We have
Thana(riq) — ¢"7(1 = ¢*")han-1.a(259)
( 1)k k(k—l)xQn—Qk-&-l

= (¢ q) (q;q)zn 2% .o
n— ) g1 g2n=2(k+1) 41

_ 2n+20/ § :

(@2 ¢®)e(G Q2n—20k+1)+1,0
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Change k to k — 1 in the second sum, then combine with the first to get
(¢; Q)anQ"H n (— 1)qu(k71)l,2n72k+1

S ML )P

(q q)2n a kz

(q q ) (¢ q>2n72k+1,a
X [(1 q2n 2k+2a+2) + q2n+2aq—2k+2(1 _ qQk)]

Simplify to obtain

(¢; @)ana2" 1 T (—1)kghth—1) gp2n—2k+1
.) n + (1 _ q2n+2a+2 2n Z 2 2
(q7 Q)Qn,a k=1 5 q (L Q)Qn—2k+1,a
The last expression can be written as
1— q2n+2a+2

Wh2n+1,a($§(ﬁ~

In the odd case, the proof follows the same steps as the even case.
[ |

The following result states the affect of the operators A, , and A;q on the
generalized ¢-Hermite I polynomials.

Proposition 5.2.
(1) The forward shift operator:

1—q"
Agghna(ziq) =

hn—l,a(x;q)a n= 1727"' (518)

or equivalently
hna(2;q) = g2 Ry, (g3 q) = (1= ¢")zhn-1a(z30).  (5.19)
(2) The backward shift operator:

¢"0n(20+ 1) + n+ 1],
1— qn+1

Ag,q [Eq2(*q2x2)hn,a(x; Q)] = - qu(quxz)hn—i-l,a(I; Q)v

(5.20)
or equivalently

¢ 0,20+ 1) +n+1],

g1 Gt Dy, o (239) — (1= &) hn ol 250) = 1) whnt1,a(23 ).
q
Proof. (1) It is well known (see [I1]) that
1—q"
Dyhn(w:q) = 5— p hn—1(x; q).

So, by application of the ¢-Dunkl intertwining operator to both sides of this result,
we obtain (5.18)), by the use of (4.15) and (5.13).
(2) Put
g(x,t) = qu(—quQ)qu(—q2t2)eq,a(qxt).
From (4.7), we have
t—=x
A;r q,gcg(xa t) = Eg (_q2t2)TqEq2 (_q2$2)€q,a (zt)
—t
- _E 2( 2 2)1 _qEqQ(_QQtQ)eq,a(l‘t) (521)

_Aa,q,tg(x7 )
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But, using the generating function ([5.17)), we obtain

Aa a L9z Z Aa . —¢z )hma(a:; q)] o (5.22)
and
q" n
Aaqmg ZE 2 (—q2x? Vhn,o(2;q) (q;q)nAiqt

It follows from (4.5) and (5.21] - that

E 2 (—q°x®)hy o(T; e
Az,q@g(m,t):—E: l "(q.;) T (ot 1) faln . (5.23)
n=1 ’ n

Therefore, by comparing the coefficients of ¢" in the two series (5.22)) and (5.23]),
we obtain ((5.20)). [ |

The following formula can now be proved by induction.
Proposition 5.3. The Rodrigues-formula for {hn q(x;q)}or is given by
(¢—1)"q
(% Dnsa

Proof. Since hg o(x;q) = 1, the formula is clearly true for n = 0. Assume that it is
true for an integer n. Then, using ([5.20) and (3.2)), the application of the operator
A;q to the both sides of |D completes the induction proof. ]

n(n—1)

By () o) = GDn A+ " [Ba(—a?)].  (5.24)

Proposition 5.4. The polynomials {h, o(z;q) }or satisfy the following q-difference
equations:

M honalqz; q) = (+ T = ¢ "2 hon o (5.9) + q(1 — %) hon,o (¢ 219) = 0.

(5.25)
@ hanir,a(a7; @) = (146> =720 hopt1,0(259)+e(1=2)haps1,0(q " a5 9) = 0.
(5 26)
Proof. By (5.18)), we have
1— 2n 1— 2n—1
Ai qhQn,a(m;q) = ( q )( 2q )h2n—2,a(x;q)a n= 1a2a37""
7 (1-q)
But, from the three recursion term formulas (5.16]), we obtain
han-1,0(2;0) = "2 (1 = ¢*" " han-2.a(2;9) = han,a(59) (5.27)

and from (5.19)), we get
h2n oz(l" Q) — hop, a(qx' q) = (1 - q2n)xh2n—1,a($; Q)' (528)

It follows, then, from (5.27)) and - that

1 —2n
A2 hono(z;q) = (=L [®hon,a(x:q) — ¢ hana(q; q)]

or equivalently,

(1-¢*2%)hon,a(2; @) — (1+¢** —¢* "2 han,a(q2; )+ ¢** han,a(¢°x; q) = 0. (5.29)
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Replace 2 by ¢ 'z in (5.29) and multiply the result by g, we obtain (5.25).
Following the same steps, we prove ([5.26]). [ ]

To prove the orthogonality property of h, (x;q), we need the following lemma:

Lemma 5.3. The polynomials {h, o(z;q)}rey satisfy

1
/ Py o () Ep (—g22?) |22+ d gz

-1
2(1 = 9)(¢% ¢*)

(5.30)
_ (@42 %) (4 9)ng

[2](212 +20)

if p=n,
if p=0,1,...,n—1.

Proof. Since the parity of the g-polynomials {h,, o(z;¢)} is the parity of thier de-
grees and the g-integral in of odd function is zero. It is, then, sufficient to
consider the cases where p and n are both even or odd.

From the definition , we can write

1
/ 52 hop o (23 Q) B (—q22?) o2 Ldya
—1

(5.31)

n

— g Y (—1)n—kgn=R—k=1 F (2k + 2p + 2a + 1)
Y L (4% ¢*)n—k(a% k(422 ¢ ’

where Fj, is the function defined by (5.1, then the above sum becomes

( )( ) 2) ( ) i (_1)n—kq(n—k,)(n—k—l)
2(1 = 9)(47907)oo (3 9)2n 2. 2 2. 2\ (2012 2 (2kt2pi2at2. 2
= (0% Pk (0% k(@ F?5 )i (2P $0%)oo

Using (2.1)), it is possible to rewrite the sum in (5.31)) in the form

2(1 = 9)(¢% 4% oo (45 @)2n zn: (=) hgn=R(n=k—1) (g2hH+20+2,
(**2:¢%) o0 (4% 4®)n—1 (4% 4%k ’

By using the transformation formulas (5.8) and the fact that

(@2 ¢%)p(@* 202 ¢?)

(q2+2; %)

q2>p‘
k=0

k

(q2k+2a+2, q2)p _

)

(5.32)

the sum in (5.31)) can be written as

(—1)"g" "= D2(1 = ¢)(¢% ¢*) oo (@ D20 (4** 2 6%,
(4%°72%,¢%) 00 (4% ¢%)n
y i (q—Zn; qQ)k(qu—‘rQa-ﬁ-Q; q2)k q2k
= (5P,
(—1)"q" " V2(1 — ¢)(¢% ¢2) oo (@ @) 20 (€** T2 6%,
(4%*72%¢%) 00 (4% ¢%)n

o1 (g2, PP P02 2 ).
By the summation formula (see [I1], p.15)
_ b~leiq”
2¢1(q 21’L7 b7 (6% q27 q2) = gbﬂ

(¢;4*)n



32 M. SALEH JAZMATI & KAMEL MEZLINI & NEJI BETTAIBI

the sum in (5.31) is equal to

(=1)"q" " 21 = ¢)(¢% ¢*) oo (@ D20 (%67 (@507 J2r2at D,

X
(4°°72:¢) oo (9% ¢%)n (¢%°7%6%)n
So, if p < n, the g-integral in ([5.31)) vanishes.
If p=mn,
(q—2n’ q ) (qQ; q2)n(_1)nq—2n—n(n—1), (533)

and the g-integral in ([5.31)) is equal to
2
2(1 = 9)(¢% ¢*) oo (4 Q)2 g™ T2
(42725 ¢%) o '
In the case where both p and n are odd integers the proof follows the same steps
as in the first case.

1
/ 5 gy 41 (5 q) Bge (—2a?) |22 dg
—1

_ qq2+1z )P kq(" R=k=DF (2k 4 2p + 2a + 3)
k(0% ¢3)r(@%* %54

= 2(1-¢q)(¢*q )oo(q; Q)2n+1

y i: (_1)n—kq(n—k)(n—k—l)

= (0% )k (0% )k (P25 ) (PFH2PH20H %) o0
(—1)"q" "= D2(1 — q)(¢% ¢) oo (@3 @)2n+1(a** T4 ¢2),
(q2a+2. q2) (q2 q2)
X o (q 2", PO 2ot 2 g?)

(=1)"g" ™ 2(1 = 9)(¢% ¢%) oo (4 D) 2041 (> 5 ¢7),
(@**"2:¢%) 0 (4% 6%
(q—2p; q2)’ﬂ (2p+2a+4)n
(@ 6%)n '
So, if p < n, the above g¢-integral vanishes.
If p=n, by (5.33)) the g-integral is equal to

2
2(1 — @)(¢% ¢%) oo (4; Q)2 1g*™ T2 20

(% )

Theorem 5.1. Forn,m =0,1,2,..., we have the orthogonality relation

1
/ hm,a(x;q)hn,a(x;q)qu(—q2x2)‘x|2a+ldqx
—1

(5.34)

On,m-

_ 21— q)(¢%5 ¢)oo(g: )2 F 21F 1 H20)
(€***2;6%) oo (¢ Dnr
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Proof. Without loss of generality, we assume that m < n. By (5.5), the g-integral
in (5.34) is equal to
(%]

(¢ Dm

Then, Lemma ((5.3) completes the proof of the theorem. |

NE

(—1)pgr®=1) ! m—2p 2. 2\[..[20+1
(@) (@ Dz 1x hna(;q) Eg2 (—q°27) | 2| dgx.
—0 ; p\4%H 4 )m—2p,a J—

5.2. The generalized discrete g-Hermite II polynomials.
Recall that the discrete g-Hermite IT polynomials {h,(x; ¢)}o2, are defined by (see

[111)

ho(ziq) = 2" o¢o(q " ¢ " =62, —qa™?)
(q' q) [22]: (—1)kq_2"qu(2k+1)x"_2k (5.35)
o (42 4®)1(a: Q)21

k=0

The generating function for the discrete g-Hermite IT polynomials is (see [I1])

n(n—1)

2

e (=23 Ey(z2) = Z g o (5q) 2" (5.36)
n=0

(4 9)n
The monomial function can be expressed in terms of the discrete g-Hermite II
polynomials as (see [I1])

.
L by o (a30)

— q
: 7(q’q)",€z:0 (@ k(@ Q2 (5:37)

In the following definition, we introduce a new generalization of the discrete g¢-
Hermite IT polynomials.

Definition 5.2. The generalized discrete q-Hermite IT polynomials {hn.o (2; )},
are defined by
(5] (—1)k g2k gh(k+1) gn—2k

hna(759) == (¢ 9)n

(5.38)

= (% )G Dn—2k0

Remarks.

1 -
(1) It is easy to see that for a = —3 b, — 1 (25q) = hn (23 q).
(2) Note that

- [
Pna(v/1 — @225 q) nly

3

] _on n—
(_1)kq 2 qu(2k+1)((1+q)x) 2k

k!qz (TL — 2k)!q,a ’

G-  (+qr2
and by (3.4), we get
~ o 1
hna(\/T=¢*wiq) _ Hi'*(x)

li n = )
qir{l‘ (1-¢?)= 2n

0

where H} is the Rosenblum’s generalized Hermite polynomial (see [I5]).
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Lemma 5.4. The generalized discrete q-Hermite II polynomials can be written in
terms of basic hypergeometric functions as:

hana(ziq) = 5’522” " 9p1(q", q TR0, 6%, —2 P
) n,o
= (=" " (g% )n 101 (¢ P~ )
7 q;9)2n+1 _ —on—2a— _
hant1,a(23q) = (;)i’: 2 g (g7, TR 0,47, P P ?)
7 n «
- 49 1 _
= (-1)"q ”(2”“)9075 ng; 161 (a7 7T % =7 Pa?).
(5.39)
Proof. We have
n
~ -1 k —4nk ,k(2k+1),.2n—2k
han,a(2;4) = (4:Q)2n Y 2(2 ) q2 5 g 2ai2 Ie—
= (050 )k (@ 6% nr
Using the identities (5.8) and (5.9), we obtain
_ _ ok
Fona(zig) = L2 xgnz”:(q k(a2 )k (—g* e ?)
e (@ D2na = (4% ¢k
_ (((quqfii% 2 (g2, —2n—2o¢;0;q27_q20¢+3$—2)
Y n,x
and
_ _ _onk
il2n+1 a(x'Q) = (q’ 9)2n+1 2n+1 Qn;qQ)k(q e 2’q> ( q2a+3x 2)
o (3 Q)2n+1a (@25 6%)k
(C-IvQ)2n+1 p2ntl 2¢1(q—2n7q—2n—204—2;0;q2’ _q2a+3x—2)_
(QaQ)2n+l,a

But, we have (see [11], p.16)

aq

) = (a;¢*)nd®" 2" 1¢1 (77" 0547, 2) . (5.40)

So, taking a = ¢***? and z = —¢*""12? in , we get
2
2@51 ( 7277,7 72n72a,0,q27 _q2a+3z72) — (_1)nq72n +n 72n(q2a+27q )
1¢1 ( 2(x+2 q q2n+1x2)
(5.41)
and taking a = ¢**™ and z = —¢*""32? in (5.40), we obtain
— — — — — — 27 —
2¢1 (q 2n’q 2n—2« 2;0;q27_q2a+3x 2) _ (_1)nq 2n n 2n(q2a+4’q )
X1 (bl ( 20c+4 2n+3 )
(5.42)
which achieves the proof. |

We recall that the ¢-Laguerre polynomials L{®)(z;q) are defined by (see [I1])

a+1.

e} q 7q n —n (0% n—+ao
L) (239) = @) @ ) 1617 "¢ g, =" ).
b n
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Using (5.39) the generalized discrete g-Hermite IT polynomials izn,a(x; q) can also
be expressed in terms of the ¢g-Laguerre polynomials Lﬁf‘) (z;q) as follows:

7 n_—n(2n— (Q; Q)Q o)/ —2a—
hona(ziq) = (=g "¢ ”WL%)(Q 2a-ly2 g%,

_ (¢ D2n+1 1) —2a—1,2, 2
1 nq n(2n+1) .Z‘L%OH_ ) q a=1, - q%).
(=1) (22 %) ( )

Proposition 5.5. The following properties hold:

B2n+1,a($;Q) =

(1) The generalized discrete q-Hermite II polynomials Bn)a(x; q) are related to
the generalized discrete q-Hermite I polynomials hy, o(z;q) by

hna(z3q) = (i) "g~ T p, (iwg=0" g7, (5.43)
(2) g-Integral representation of Mehler type
B (39) = Vi ghn (3 q). (5.44)

(3) Generating function

co n(n—1)
q T n

eg2(—22) By o(r2) = Z @ hna (x5 q)2"™. (5.45)

= (D

(4) Inversion formula:
(3]  _onk+3k2]
n q hn—2k,0(; 9

2" = (G Dna Y n=2ka(;9) (5.46)

= (@) Dn2k

(5) Three terms recursion formula

n+1+(2a+1)60, _

- 1—
1 hot1,a(z;q). (5.47)

xhn,a(x; q) - q1—2n(1 - qn)hnfl,a(m; Q) = 1_ qn+1
Proof. (1) (5.43) follows from the relation (2.2).

(2) Applications of the operator V, , to each term in (5.35) and the result
[@20) give (5.44).

(3) By application of the operator V, , to both sides of equation (5.36) and
using (5.13]) and (4.23)), we obtain (5.45).

(4) Using the same argument to both sides of result (5.37), (4.20) and ([5.44])
gives (5.40).

(5) By considering separately the even and the odd cases in

Thpa(39) — ¢ 72 (1 = @) hn—1,0(2;9),

(5.47) follows from (5.38]) by elementary calculus.
[ ]

In the following proposition we derive some of the important properties of gener-
alized discrete ¢-Hermite IT polynomials hy, o (x; ¢) from those of generalized discrete
g-Hermite I polynomials hy, (x;¢) by using the identity (5.43).
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Proposition 5.6. The generalized discrete g-Hermite II polynomials ?ana (z;q) sat-
isfy the following properties:
(1) Affect of the forward shift operator

o (3 q) — ¢tV 1k, (g2 9) = ¢ (1 — ¢)ahy—1,0(q7;q) (5.48)

or equivalently

- 1"
Ag ghnol(T;q) = q_”+1ﬁhn_17a(qa;; q), n=1,2, .. (5.49)

(2) Affect of the backward shift operator
1— q7n717(2oc+1)9n
1— q—n—l

i a(@;q) — 2TV (14 g2 2P hy, o (qasq) = —¢"

XwﬁnJrl,a(x; q)

or equivalently

—n—1—(2a+1)6, B

Loa ) (i), (550

-a-g

Aoz,q [Wa(x; Q)ﬁn,a(m; CI) = 7qn
where
wa(r;q) = eqz(_q_Qa_lx )- (5.51)
(3) q-Difference equations
(14+q 2% 2 hon o (q2; ) —(14¢ > +¢" > 0 han o (2 0)+q > hanal(g ' 259) = 0.
and

(14 ¢ 2 ) honi1.a(qr;q) — (g + ¢ 271

+¢" 2 2 honi1,a(239)
+4 **hant1,a(q ;) = 0.
The following formula can be proved by induction:

Proposition 5.7. Rodrigues-type formula

—n(n—1)
(U A B U
(@49 e
where wq (23 q) is the function given by .

Proof. Since hq o (2;q) = 1, the formula is clearly true for n = 0. Assume that
(5.52) is true for an integer n. Then, applying the operator A, , to both sides of

equation (5.52)) and using (5.50)), we get

oo (5 @)oo (3 4) = AR a(wig) (5.52)

: (= g)l—g ") -
@ D a(w:0) =~ L A o (5 @) (5 0)|
IS —n(n—1) _ _
B )¢ e A B C et O A C Y M 1)
q 1_ q7n717(2o¢+1)6’” (q—l;q—l)ma

xAZj’lea(x; q).

Finally, the use of (3.2)), where ¢ is replaced by ¢~', shows that (5.52)) is also true
for (n 4+ 1). This achieves the proof. |

To establish an orthogonality relation for the g-polynomials {ﬁma(x; q)}, we need
the following lemma.
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Lemma 5.5. The polynomials {hy o (x; )}, satisfy

o0
/ Pl (5 @) (1 0) 222 g2

— 00

2
207" (1—q)(—¢, -4, ¢* ¢*) (4; 9),,

(—q=20—1, —qRat3 2042 ¢2)
0

if p=n,

if p=0,1,...,

n—1.
(5.53)

Proof. As in the proof of (5.30), we consider two cases. First, we compute the

following g-integral

— 0o

From the definition (5.38)), the g-integral (5.54) is equal to

o0
/ J)thgma(x; q)we (T; q)|x|2a+1dqx.

n 2 —200—
(=D* 7GR (a7

2(g: an(~1)"0 Y0
k=

— (0% 0*)n—k (0% @*)e (T2 %)

72(171) 72a71)q7(k+p)2 (q2a+2

where G7 ;4 ,(q = ¢q.alq i q )

Then the above sum becomes

_ _ 2
20,0 (¢ > )G Q)2n(—1)"q 2 "

n k 2k%—k 7(k+p)

k=
Using (5.8]) and the fact that

(q2a+27q )k+p — (q2p+2a+2; q2)k (q2o¢+2; q2)

the above sum can be written as

20— n_ —2n24n—p? «
20,0 (@2 (=) 2 TP (q;¢7)n (P ¢P)

2n. q ) (q2p+2a+2’q )k 2

> ’ q n—p)k
EE% k(225 6%,

o _ .2
= 2¢4a(g7" U(—1YW 2540 (4:.2),0 (g
X2¢1(q—2n)q2p+2o¢+2;q2a+2, 2 2n—2p)-

454
By the summation formula (see [I1], p.15)

2n -1 2
—2n 7. .. 2 ¢4 o (b7 ;%)
2¢1(q 7b7 cq, b ) - (C, qz)n

the g-integral in (5.54) becomes

9o o2, 2
2¢4,0(q7 2 (1) T (5670 (%67,

q
EE: k(% q ) (g% +2; 42y, (@50

p

1q%),

(750
(®F2;:¢2),

(5.54)

is given by 1)

(5.55)

The only case that the above product is not zero is when p = n, where we have

—Z0— n*nzn —zn
2¢4,0(47 )@ ¢ )n(=1)"¢ > (72 4%, -
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By using the fomula (5.33)), the g-integral in (5.54)) equals

2(1 - q)(—¢,—4,¢*; ¢*) o —an (g )
(_q—2a—17 _q2a+3,q2a+2;q2)ooq 4 9)2n

In the case where both p and n are odd integers the proof follows the same steps
as in the first case

o0
/ 22 1 o (1 Q)wa (2 ) 2|20 Ly
—o0

s (CDkgRRGE fppr (@27
=2(q;q)2n+1(—1)"q 2" " Br ,
(05 0)zna (1) Zo (0% ¢)n-k (0% ¢)k(@** 2 4%k

(5.56)
— — — — — 2 . .
where Gq k+p+1(q 2a 1) _ Cq,a(q 2a 1)q (k+p+1) (q2a+2;q2)k+p+l is given by
(5.2). Then the above sum becomes
p— p— — 27
2¢4,0(¢7 %) (g Qansa (1) g2 "
i )kq2k2+k —(k+p+1)2 ( — )
X g :
0 n k q q ) (q2a+2’q )k+1 kt+p+1
Using (5.8)) and (5.55)), it can be written as
Coa— Con2_ o 2
2c,0(q 2 (=) g T (g3 ¢7) i (2007
n 72n’q ) (q2p+2a+4’q ) N~
XZ 20T
P $4%)k41
_ _ _ P 2
= 2ca(g % 1)(—1)"61 208 =m0 D (g5 g2) (%),
g2 2p+20+4. 2
XZ n’q ) (@2 +g )kq2(n—p)k
P k(295 ¢2)y,
_ _ _ P 2
= 2,0(q% 1)(—1)"q = (g g7 (0 6),
X2¢1(q72n q2p+20¢+4 q2a+4 q q2n72p)
(*":¢%)n

C9n— _9p2_ 2
= 2Cq,a(q 2 1)(*1)71(1 2 —n=(p+1) (Q;q2)n+1 (q2a+4;q2)p X W
bl n

The only case that the above product is not zero is when p = n, and in this case

the g-integral in (5.56] ) equals
2
2¢4,0(¢ NG I (1) P (7P 7)),
By using the fomula (5.33)), the g-integral in (5.56|) equals

20 - q)(=4:=0:% ") _(ans1)? (
(—q 201, —q2a+3 g2012, 42) q

Q§Q)2n+1 .

o0
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Theorem 5.2. The sequence of the q-polynomials {iznya(x;q)}ff:o, satisfies the
orthogonality relation

- . 2" (1 - q)(—q, —q,¢% ¢°
| na@s e moltide — 2EZOCETGI
(—q ,—q2oT3, 202 q2)

- -
(:9);, 5

X
(qv Q)'ma

n,m-

(5.57)

Proof. Without loss of generality, we assume that m < n, by (5.38)) the g-integral
in (5.57) is equal

(%] (_1)pq—2mpqp(2p+1) /oo
= (0%6*)p(6 Dm-2p.0 /o

3

(@ @)m 2"y 0 (5 q)wa (23 @) dya.

Then the result (5.53]) concludes the proof of the theorem. [ |

6. THE ¢-DUNKL HEAT EQUATION
Let us consider the following g-Dunkl heat equation:

Dpu=A2 u (6.1)

«,q,xr ")

where D2 ; is the partial ¢*-derivative in time defined by (2.13) and Aq 4, is the
g-Dunkl operator in space defined by (4.8)).

Taking into account that ;L)rr% D2 yu(t,z) = 8—?(@ x) and (£1_>n% Aiyq)xu(t, x) = Aiﬂu(t, x),

and clearly, the standard Heat equation for Dunkl operator is recovered when ¢ — 1
(see [15] [16]).

Ifa= —g3 then 1| reduces to the g-heat equation D2 ju = 8§,$u studied in [7].

6.1. The ¢g-Dunkl heat polynomials. We define the g-Dunkl heat polynomial of
degre n as

EI

Un,oz(mv t; Q) = n!q bn72k,a(m; q2) (62)
kly2
k=0
We easily derive from (4.9) that
Aoz,mvn,a(irvt;q) = [n]qvnfl,a(xat;q)a (63)
and we have
Dq"’,tvn,a(-ra t; Q) = [n}q[n - 1]qvn—2,o¢(-r7 1 Q)' (64)

It Follows from (6.3) and (6.4)) that all g-Dunkl heat polynomials vy, o(z,t;q) are
solutions of (6.1)).
Note that when o = —3 vn’_%(x, t;q) = vn(x,t; q) the g-heat polynomials defined

in [7]. According to the limit in (3.4), the g-Dunkl heat polynomials are the g-
analogue of the generalized heat polynomials introduced by M. Rosenblum in [15].
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Proposition 6.1. The generating function of the sequence {v, o(T,t;q)}neg s
given by

. - 2"
e (122) U3 (i2) = 3 vua(o i) I (6.5)
n=0 :

The expansion of a monomial in terms of the v, o(x,t;q) is given by
(%]

bn,a (377 q2> =
k=0

Proof. (6.5 follows by using (2.5) and (3.7) and expanding the g-exponential func-
(6.5)

tions in (6.5 as power series, and taking the Cauchy product of the results.
Multiply both sides of 1) with Expge (—tz%) and next compare the coefficients of

z", we obtain . [ ]

It is not very difficult to verify that the ¢g-Dunkl heat polynomials are closely related
to the g-polynomials h,, o(z;¢q) as follows:

(_t)qu(k_l)vn—2k:,a(x7 t7 q)
k!q2 (n — Qk)!q

(6.6)

Proposition 6.2.

q—n(n—l) )
’1)2»,17,1(1‘7 t, q) = Wh?n,a(zﬁqnx; Q)7 (67)
g
V2n41,0(7, 5 q) = Wh%wrl,a(iﬂqnx; ), (6.8)

where

B=B(t.q) = ,/t(llqu). (6.9)

6.2. The ¢-Dunkl heat kernel. In order to find the g-Dunkl heat kernel of (6.1),
we suggest to apply the g-Dunkl transform as described in [7] for ¢-Rubin Fourier
transform to the function k, (z,t; ¢) defined by

—2a .2
q ““x
ko(z,t:q) = Ca(t; S R, >0, 6.10
(wuti0) = Caltiaear (~ s ) w€R 1200 (010
where
(_q’r"(‘*(l—)q) _q2“?2t(1)+q) q2a+2.q2)
t(1+q ) 1—q ’ ’
Caltia) = 2(1 — _¢*(-q) _t(14+q) 2. o (6.11)
( Q) t(1+q) ) (1_q) , 4734 o
Since
x _
Aacka(z,t;q) = Dy ka(z,t;q) = —mka(q L, t;q), (6.12)
and
—2a—2 200+2 2
q 1—gq x 1
A2 kalz,tiq) = — - ke t;
2 abaontia) = i B k()

= qu’tk)a(l‘,t; Q)'

ko(z,t;q) is solution of ¢g-Dunkl heat equation (6.1) and called the g-Dunkl heat
kernel. It generalizes the g-source solution of g-heat equation k(z,t;q) studied in

1
[7 by taking a = —5 in (6.10).
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Proposition 6.3. The g-Dunkl heat kernel k. (x,t;q) has the following properties:

oo tn
/ ko (2,5 @)bon o (73 ¢*) 2> T e = . t>0, n=0,1,2....  (6.13)

— g2
Frlka(, t;q)(z) = Kaexpga (—tz?). (6.14)

—2«a 1—
Proof. Take A = u in , to get
t(1+q)

o) —2a o —n(n+1) nin
¢ “(l—gq at2n q L+q)"t a
/ eq2 <_ ( ( )y2> y2 +2 Jrldqy — Cq,a(A) ( ) (q2 +2;q2)n’
0

t(1+q) (1—q)
where
21— t(1+
(]- - CI) <_ qt((1+qq))7 ((1 ;))7(] q )
Cga(A) = 77— (6.15)
a-%(1—q) 2‘”2%(1%1) 20+2.

T+ 0T (-q 04 1q° .
Now, by definitions of k. (z,t;¢) (6.10) and of bnya(m;q2) (3.8) the result (6.13)
follows.

By definition of ¥%/(y) in (3.7)), and since kq (y,t; q) is even in y, we have, by using
the Fubini theorem,

f?)’q(ka(.,t;Q))(x) = K, / k‘ y,t q Zb2na —izy; q >|y‘2a+1d y
n=0
o)
= Ka Z n Qn/ ka(%t;Q)bzn,a(y;q2)|y|2“+1dqy
o

So, by (6.13)), we obtain
Fiy kol 1:0)) (2) = Ko Z yratn L

The conclusion follows from ({2.5]). |

6.3. The g¢-associated functions for ¢g-Dunkl operator. We extend the no-
tion of the g-associated functions defined in [7] by defining the ¢-Dunkl associated
functions in terms of the g-Dunkl derivatives of the g-Dunkl heat kernel as follows:

Wno(z,t5q) = (—(1+q)" Ay Jka(z,t5q), n=0,1,2,..., t>0.
Consequently, the g-Dunkl associated functions are solutions of g-Dunkl heat equa-
tion .

Proposition 6.4. Forn=0,1,2,
g "D (g1 q)ona 7

A% ko (2, t5q) =
kol ) (1 —q?)"(q;q)2n

na(@ "2 Q)ka(q "2, t;q), (6.16)

2n+1 . _ g 3 (D) (QO‘H)(q, 9)2n+i1,a
Aa7q k(y(x,taq) - = n+ (6 17)
Il g ) (@ @)2nt :
Xh2n+1,a(q_n ’Y%Q> a( —n-l xat;q)a
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where

Proof. Referring to (6.10) and (5.51)), we can write
ka(z,t;q) = Ca(t; @Jwa(va; q).
Using (4.10)) and (4.11)), we obtain

Ai’rqua (xa t; Q) = Cq (t; q)Ai’rqua (’YfE; Q)
= Calt;q)g """ [AL wal(vg "5 9),

and

AL ha(w,t:0) = Ca(t )AL wal(v25q)
= Ca(t;q)q™ " AT W, ] (g s q).

From Rodrigues-type formula (5.52)) we have

72nq—n(n+1)(q _ 1)—2nqn(2n—1)(q—1; q—l)

A ko (x,tq) = 2n,a
aiaha(®:1:0) } (7% q Van
Xhan,o(q "v2; @)ka(q "2, t;q),
and
2
2n+1 N e B U B ) B e U LT
Aaq ka(x7t7Q) - 1 1
’ . ) (g 2n -1
Xhoni1,6(q " yw;Q)ka(q”" " 1, q).
Use the fact that
(0 YHana _ —n(2a+1) (4 @)2n0 (¢ Vont1a _ qf(n+1)(2a+1) (4 @)2n,0
(% V)2n (@@2n (@0 Y2t (@ @)2n
to obtain the desired result. |

The above calculation shows that the g-Dunkl associated functions are closely re-
lated to the g-polynomials h,, o(z;¢) as follows:

Proposition 6.5. Forn=20,1,2,...

=201 (q; q)an 0 ;

n(
q _ _
hon,a(q "v2; @)k (g™ ", t; q), 6.18

)" (¢ Q)2 (777723 9)hal ) (6.18)

w2n,a(xv t; Q) =

n+1)(n72a71) (Qa q)2n+1 o

(t7)?"1(q; @) 2n+1

q( —n —n—1

z,t;q),
(6.19)

Wani1,0(T,t;q) = hant1,6(@ " vz q)ka(g

where

q(1 —q)

T\ i)
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