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OSCILLATION CRITERIA FOR EVEN-ORDER NONLINEAR

NEUTRAL DIFFERENTIAL EQUATIONS OF MIXED TYPE

(COMMUNICATED BY IOANNIS P. STAVROULAKIS)

ETHIRAJU THANDAPANI, SANKARAPPAN PADMAVATHI AND SANDRA PINELAS

Abstract. This paper deals with oscillation criteria for even order nonlinear
neutral mixed type differential equations of the form
(

a(t)(x(t) + bx(t − τ1) + cx(t+ τ2))
(n−1)

)

′

+p(t)xα(t−σ1)+q(t)xβ(t+σ2) = 0,

where t ≥ t0 and n ≥ 2 is an even integer, α ≥ 1 and β ≥ 1, are ratios of odd

positive integers. The results are obtained both for the case
∞
∫

a−1(t)dt = ∞,

and in case
∞
∫

a−1(t)dt < ∞. Some examples are given to illustrate our main
results.

1. Introduction

In this paper, we study the oscillatory behavior of the following even order
nonlinear neutral mixed type differential equation of the form
(

a(t)(x(t) + bx(t− τ1) + cx(t+ τ2))
(n−1)

)

′

+p(t)xα(t−σ1)+q(t)xβ(t+σ2) = 0, t ≥ t0,

(1.1)
where n ≥ 2 is an even integer. We set z(t) = x(t) + bx(t − τ1) + cx(t + τ2).
Throughout this paper, we assume that

(C1) a ∈ C([t0,∞),R), a(t) > 0 and a′(t) > 0 for all t ≥ t0;
(C2) p, q ∈ C([t0,∞),R), p(t) > 0 and q(t) > 0 for all t ≥ t0;
(C3) b and c are positive constants,τ1, τ2, σ1, σ2 are nonnegative constants and α

and β are ratios of odd positive integers.

We shall consider the two cases:
∞
∫

t0

1

a(t)
= ∞, (1.2)
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and
∞
∫

t0

1

a(t)
< ∞. (1.3)

Differential equations with delayed and advanced arguments (also called mixed
differential equations or equations with mixed arguments) occur in many problems
of economy, biology and physics (see for example [3, 6, 9, 10, 16]), because differen-
tial equations with mixed arguments are much more suitable than delay differential
equations for an adequate treatment of dynamic phenomena. The concept of delay
is related to a memory of system, the past events are importance for the current
behavior, and the concept of advance is related to a potential future events which
can be known at the current time which could be useful for decision making. The
study of various problems for differential equations with mixed arguments can be
seen in [5, 8, 15, 17, 19, 24]. It is well known that the solutions of these types of
equations cannot be obtained in closed form. In the absence of closed form solu-
tions a rewarding alternative is to resort to the qualitative study of the solutions of
these types of differential equations. But it is not quite clear how to formulate an
initial value problem for such equations and existence and uniqueness of solutions
becomes a complicated issue. To study the oscillation of solutions of differential
equations, we need to assume that there exists a solution of such equation on the
half line.

In [20] the authors established some oscillation results for the nth order (n > 1)
differential equations of mixed type

y(n)(t)−

k
∑

i=1

pni y(t− nτi)−

l
∑

j=1

qnj y(t+ nσj) = 0 (1.4)

and

y(n)(t) +

k
∑

i=1

pni y(t− nτi) +

l
∑

j=1

qnj y(t+ nσj) = 0 (1.5)

where pi, τi, i = 1, 2, ..., k and qj , σj , j = 1, 2, ..., l are positive constants..
In [25] the author established some oscillation results for the solutions of the

neutral equations of mixed type

d

dt
(x(t) + cx(t− r)) +

k
∑

i=1

pix(t− τi) +

l
∑

j=1

qjx(t+ σj) = 0 (1.6)

and

d

dt
(x(t) + cx(t− r)) −

k
∑

i=1

pix(t+ τi)−

l
∑

j=1

qjx(t− σj = 0 (1.7)

where c ∈ R, r ∈ (0,∞), pi, qj ∈ (0,∞) and τi, σj ∈ [0,∞) for i = 1, 2, ..., k, j =
1, 2, ..., l.

Grace[11] obtained some oscillation theorems for the odd order neutral differen-
tial equation

(x(t) + p1x(t − τ1) + p2x(t+ τ2))
(n) = q1x(t− σ1) + q2x(t+ σ2), t ≥ t0 (1.8)
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where n ≥ 1 is odd. In [13] the authors established some oscillation criteria for the
following mixed neutral equation

(x(t) + p1x(t− τ1) + p2x(t+ τ2))
′′ = q1x(t− σ1) + q2x(t+ σ2), t ≥ t0 (1.9)

with q1 and q2 are nonnegative real valued functions.
Zhang et al.[30] studied the even order nonlinear neutral functional equations

(x(t) + p(t)x(τ(t)))(n) + q(t)f(x(σ(t))) = 0, t ≥ t0, (1.10)

where n is even, 0 ≤ p(t) < 1. The authors established a comparison theorem for
(1.10) and obtained results which improved and generalized some known results.

In 2011, Zhang et al. [29] studied the oscillatory behavior of the following higher
order half quasilinear delay differential equation

(r(t)(x(n−1)(t))α)′ + q(t)xβ(τ(t)) = 0, t ≥ t0, (1.11)

under the condition
∞
∫

t0

1

r
1
α

dt < ∞. The authors obtained some sufficient conditions,

which guarantee that every solution of (1.11) is oscillatory or tends to zero.
In 2012, Y.B.Sun, Z.L.Han, S.R.Sun, Ch.Zhang [26] studied the oscillation cri-

teria for even order nonlinear neutral differential equations

(r(t)(x(t) + p(t)x(τ(t)))(n−1))′ + q(t)f(x(σ(t))) = 0, t ≥ t0, (1.12)

where
∞
∫

t0

r−1(t)dt = ∞,
∞
∫

t0

r−1(t)dt < ∞, τ(t) ≤ t, σ(t) ≤ t, 0 ≤ p(t) ≤ p0 < ∞. The

authors obtained some oscillation theorems, which guarantee that every solution of
equation (1.12) is oscillatory. For the particular case when n = 2, equation (1.1)
reduces to the following equation

(r(t)(x(t) + p(t)x(τ(t)))′)′ + q(t)f(x(σ(t))) = 0, t ≥ t0. (1.13)

Han et al.[14] established the oscillation criteria for the solutions of (1.13), where
∞
∫

t0

r−1(t)dt = ∞, τ(t) ≤ t, σ(t) ≤ t, 0 ≤ p(t) ≤ p0 < ∞.

In [28] the authors obtained several sufficient conditions for the oscillation of
solutions of second order neutral differential equation of the form

(a(t)([x(t)+b(t)x(t−σ1)+c(t)x(t+σ2)]
α)′)′+q(t)xβ(t−τ1)+p(t)xγ(t+τ2) = 0, t ≥ t0

(1.14)

where
∞
∫

t0

a−1(t)dt = ∞, 0 ≤ b(t) ≤ b, 0 ≤ c(t) ≤ c and p and q are nonnegative

continuous real valued functions.
Motivated by the above observations, in this paper we establish some sufficient

conditions for the oscillation of all solutions of equation (1.1) when the condition
(1.2) or (1.3) is satisfied.

In Section 2, we establish some preliminary lemmas and in Section 3, we present
sufficient conditions for the oscillation all solutions of equation (1.1). Examples are
provided to illustrate the main results.
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2. Some preliminary lemmas

In this section, we present some useful lemmas, which will be used in the proofs
of our main results.

Lemma 2.1. [[23]] Let u ∈ Cn([t0,∞),R+). If u(n)(t) is eventually of one sign
for all large t, then there exists a tx > t1, for some t1 > t0, and an integer l,
0 ≤ l ≤ n, with n + l even for u(n)(t) ≥ 0 or n + l odd for u(n)(t) ≤ 0 such that
l > 0 implies that u(k)(t) > 0 for t > tx, k = 0, 1, ..., l − 1, and l ≤ n− 1, implies
that (−1)l+ku(k)(t) > 0 for t > tx, k = l, l+ 1, ..., n− 1.

Lemma 2.2. [[1]] Let u be as in Lemma 2.1. Assume that u(n)(t) is not identically
zero on any interval [t0,∞), and there exists a t1 ≥ t0 such that u(n−1)(t)u(n)(t) ≤ 0
for all t ≥ t1. If lim

t→∞

u(t) 6= 0, then for every λ, 0 < λ < 1, there exists T ≥ t1,

such that for all t ≥ T,

u(t) ≥
λ

(n− 1)!
tn−1u(n−1)(t).

Lemma 2.3. Assume that condition (1.2) holds. Furthermore, assume that x is
an eventually positive solution of equation (1.1). Then there exists t1 ≥ t0, such
that

z(t) > 0, z′(t) > 0, z(n−1)(t) > 0 and z(n)(t) ≤ 0, for all t ≥ t1.

The proof is similar to that of Meng and Xu [[22],Lemma 2.3] and so omitted.

Lemma 2.4. [[21]] Assume that α ∈ (0,∞) and c ≥ 0 and d ≥ 0. Then

cα + dα ≥ (c+ d)α if 0 < α < 1,

and

cα + dα ≥
1

2α−1
(c+ d)α if α ≥ 1.

Lemma 2.5. [[27]] Assume that for large t

q(s) 6= 0 for all s ∈ [t, t∗],

where t∗ satisfies σ(t∗) = t. Then

x′(t) + q(t)[x(σ(t))]α = 0, t ≥ t0,

has an eventually positive solution if and only if the corresponding inequality

x′(t) + q(t)[x(σ(t))]α ≤ 0, t ≥ t0,

has an eventually positive solution.

In [7, 12, 18, 30], the authors investigated the oscillatory behavior of the following
equation

x′(t) + q(t)[x(σ(t))]α = 0, t ≥ t0, (2.1)

where q ∈ C([t0,∞),R+), σ ∈ C([t0,∞),R), σ(t) < t, lim
t→∞

σ(t) = ∞ and α ∈ (0,∞)

is a ratio of odd positive integers.
Let α ∈ (0, 1). Then it is shown that every solution of the sublinear equation

(2.1) oscillates if and only if
∞
∫

t0

q(s)ds = ∞. (2.2)



OSCILLATION CRITERIA FOR EVEN-ORDER NONLINEAR DIFFERENTIAL EQUATIONS13

Let α = 1. Then equation (2.1) reduces to the linear delay differential equation

x′(t) + q(t)x(σ(t)) = 0, t ≥ t0, (2.3)

and it is shown that every solution of equation (2.3) oscillates if

lim inf
t→∞

t
∫

σ(t)

q(s)ds >
1

e
. (2.4)

Let α ∈ (1,∞) and σ(t) = t− σ. Then equation (2.3) reduces to

x′(t) + q(t)xα(t− σ) = 0, t ≥ t0, (2.5)

for which the following results was obtained: If there exists λ ∈ (σ−1 lnα,∞) such
that

lim inf
t→∞

q(t)exp(e−λt) > 0, (2.6)

then every solution of equation (2.5) oscillates.

3. Oscillation Results

In this section, we state and prove our main results. Define for all t ≥ t0,

R(t) = P (t) +Q(t),

where

P (t) = min {p(t), p(t− τ1), p(t+ τ2)},

and

Q(t) = min {q(t), q(t− τ1), q(t+ τ2)}. (3.1)

Theorem 3.1. Assume that condition (1.2) holds and 1 ≤ α ≤ β. If

∞
∫

t0

R(t)dt = ∞, (3.2)

then every solution of equation (1.1) is oscillatory.

Proof. Suppose, on the contrary, x is a nonoscillatory solution of equation (1.1).
Without loss of generality, we may assume that there exists a constant t1 ≥ t0,
such that x(t) > 0, for all t ≥ t1. From the definition of z, we have z(t) > 0 for all
t ≥ t1. From the equation (1.1), we obtain

(a(t)z(n−1)(t))′ = −(p(t)xα(t− σ1) + q(t)xβ(t+ σ2)) < 0, t ≥ t1.

Therefore, by Lemma 2.3 a(t)z(n−1)(t) is a positive decreasing function. Further-
more, we have

(a(t)z(n−1)(t))′ + p(t)xα(t− σ1) + q(t)xβ(t+ σ2) = 0, (3.3)

bα(a(t−τ1)z
(n−1)(t−τ1))

′+bαp(t−τ1)x
α(t−τ1−σ1)+bαq(t−τ1)x

β(t−τ1+σ2) = 0,
(3.4)

and

cα(a(t+τ2)z
(n−1)(t+τ2))

′+cαp(t+τ2)x
α(t+τ2−σ1)+cαq(t+τ2)x

β(t+τ2+σ2) = 0.
(3.5)
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Combining (3.3), (3.4), (3.5) and using Lemma 2.4 and (3.1) we obtain for t ≥ t1,

(a(t)z(n−1)(t))′ + bα(a(t− τ1)z
(n−1)(t− τ1))

′ + cα(a(t+ τ2)z
(n−1)(t+ τ2))

′

+P (t)
1

4α−1
zα(t− σ1) +Q(t)

1

4α−1
zα(t+ σ2) ≤ 0, t ≥ t1. (3.6)

But z(t) > 0 and increasing, we have

(a(t)z(n−1)(t))′ + bα(a(t− τ1)z
(n−1)(t− τ1))

′ + cα(a(t+ τ2)z
(n−1)(t+ τ2))

′

+
1

4α−1
R(t)zα(t− σ1) ≤ 0, t ≥ t1. (3.7)

Integrating (3.7) from t1 to t, we have

t
∫

t1

(a(s)z(n−1)(s))′ds+

t
∫

t1

bα(a(s− τ1)z
(n−1)(s− τ1))

′ds

+

t
∫

t1

cα(a(s+ τ2)z
(n−1)(s+ τ2))

′ds+

t
∫

t1

1

4α−1
R(s)zα(s− σ1)ds ≤ 0, t ≥ t1,

again we get

1

4α−1

t
∫

t1

R(s)zα(s− σ1)ds ≤ −

t
∫

t1

(a(s)z(n−1)(s))′ds

−bα
t

∫

t1

(a(s− τ1)z
(n−1)(s− τ1))

′ds− cα
t

∫

t1

(a(s+ τ2)z
(n−1)(s+ τ2))

′ds

≤ a(t1)z
(n−1)(t1)− a(t)z(n−1)(t)

+bα
(

a(t1 − τ1)z
(n−1)(t1 − τ1)− a(t− τ1)z

(n−1)(t− τ1)
)

+cα
(

a(t1 + τ2)z
(n−1)(t1 + τ2)− a(t+ τ2)z

(n−1)(t+ τ2)
)

. (3.8)

Since z′(t) > 0 for t ≥ t1, we can find a constant M > 0 such that z(t−σ1) ≥ M,for
all t ≥ t1. Then from (3.8) and the fact that a(t)z(n−1)(t) is positive, we obtain

∞
∫

t1

R(s)ds < ∞,

which is in contradiction with (3.2). This completes the proof. �

Theorem 3.2. Assume that condition (1.2) holds. Further assume that α = 1and
σ1 > τ1. If either

lim inf
t→∞

t
∫

t−(σ1−τ1)

R(s)(s− σ1)
n−1

a(s− σ1)
ds >

(1 + b+ c)(n− 1)!

λ0e
, (3.9)

or

lim sup
t→∞

t
∫

t−(σ1−τ1)

R(s)(s− σ1)
n−1

a(s− σ1)
ds >

(1 + b+ c)(n− 1)!

λ0
, (3.10)
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for some λ0 ∈ (0, 1),then every solution of equation (1.1) is oscillatory.

Proof. Suppose, on the contrary, x is a nonoscillatory solution of equation (1.1).
Without loss of generality, we may assume that there exists a constant t1 ≥ t0,
such that x(t) > 0, for all t ≥ t1. Proceeding as in the proof of Theorem 3.1, we
have (3.7). By Lemma 2.2 and (3.7), for every λ, 0 < λ < 1, we obtain

(a(t)z(n−1)(t))′ + bα(a(t− τ1)z
(n−1)(t− τ1))

′ + cα(a(t+ τ2)z
(n−1)(t+ τ2))

′

+
R(t)

4α−1

(

λ

(n− 1)!
(t− σ1)

n−1z(n−1)(t− σ1)

)α

≤ 0, t ≥ t1.

Let y(t) = a(t)z(n−1)(t) > 0. Then for all t large enough, we have

(y(t) + bαy(t− τ1) + cαy(t+ τ2))
′

+
R(t)

4α−1aα(t− σ1)

(

λ

(n− 1)!
(t− σ1)

n−1

)α

yα(t− σ1) ≤ 0, t ≥ t1. (3.11)

Next, set

w(t) = y(t) + bαy(t− τ1) + cαy(t+ τ2).

Since y is decreasing, it follows that

w(t) ≤ (1 + bα + cα)y(t− τ1), t ≥ t1. (3.12)

Combining (3.11) and (3.12), we get

w′(t)+
R(t)

4α−1(1 + bα + cα)αaα(t− σ1)

(

λ

(n− 1)!
(t− σ1)

n−1

)α

wα(t− σ1+ τ1) ≤ 0.

(3.13)
Hence for α = 1, we have

w′(t) +
R(t)

(1 + b+ c)a(t− σ1)

(

λ

(n− 1)!
(t− σ1)

n−1

)

w(t − σ1 + τ1) ≤ 0. (3.14)

Therefore, w is a positive solution of (3.14). Now, we consider the following two
cases, depending on whether (3.9) or (3.10) holds.
Case (i):It is easy to see that if (3.9) holds, then we can choose a constant 0 <
λ0 < 1, such that

lim inf
t→∞

t
∫

t−(σ1−τ1)

R(s)(s− σ1)
n−1λ

a(s− σ1)(n− 1)!(1 + b+ c)
ds >

1

e
. (3.15)

But according to the Lemma 2.5, (3.15) guarantees that (3.14) has no positive
solution, which is a contradiction.
Case (ii): Using the definition of w and (3.7), we obtain

w′(t) = y′(t) + bαy′(t− τ1) + cαy′(t+ τ2)

≤ (a(t)z(n−1)(t))′ + bα(a(t− τ1)z
(n−1)(t− τ1))

′ + cα(a(t+ τ2)z
(n−1)(t+ τ2))

′

≤ −
1

4α−1
R(t)zα(t− σ1) ≤ 0, t ≥ t1. (3.16)

Noting that α = 1 and σ1 ≥ τ1, there exists t2 ≥ t1, such that

w(t− σ1 + τ1) ≥ w(t), t ≥ t2. (3.17)
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Integrating (3.14) from t− σ1 + τ1 to t, we have

w(t)−w(t−σ1+τ1)+
λ

(1 + b+ c)(n− 1)!

t
∫

t−σ1+τ1

(s− σ1)
n−1R(s)

a(s− σ1)
w(s−σ1+τ1)ds ≤ 0,

wheret ≥ t2.Thus

w(t)−w(t−σ1+τ1)+
λ

(1 + b+ c)(n− 1)!
w(t−σ1+τ1)

t
∫

t−σ1+τ1

(s− σ1)
n−1R(s)

a(s− σ1)
ds ≤ 0,

where t ≥ t2. From the above inequality, we obtain

w(t)

w(t − σ1 + τ1)
− 1 +

λ

(1 + b + c)(n− 1)!

t
∫

t−σ1+τ1

(s− σ1)
n−1R(s)

a(s− σ1)
ds ≤ 0, t ≥ t2.

Hence from (3.17), we have

λ

(1 + b+ c)(n− 1)!

t
∫

t−σ1+τ1

(s− σ1)
n−1R(s)

a(s− σ1)
ds ≤ 1, t ≥ t2. (3.18)

Taking the sup limit as t → ∞ in (3.18), we get

lim sup
t→∞

t
∫

t−(σ1−τ1)

R(s)(s− σ1)
n−1

a(s− σ1)
ds ≤

(1 + b+ c)(n− 1)!

λ
. (3.19)

If (3.10) holds, we can choose a constant 0 < λ0 < 1, such that

lim sup
t→∞

t
∫

t−(σ1−τ1)

R(s)(s− σ1)
n−1

a(s− σ1)
ds >

(1 + b+ c)(n− 1)!

λ
,

which is in contradiction with (3.18). This completes the proof. �

Theorem 3.3. Assume that condition (1.2) holds and 1 ≤ β ≤ α. If
∞
∫

t0

R(t)dt = ∞, (3.20)

then every solution of equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 3.1 and hence the details are omitted.
�

Theorem 3.4. Assume that condition (1.2) holds. Further assume that β = 1and
σ1 > τ1. If either

lim inf
t→∞

t
∫

t−(σ1−τ1)

R(s)(s− σ1)
n−1

a(s− σ1)
ds >

(1 + b+ c)(n− 1)!

λ0e
, (3.21)

or

lim sup
t→∞

t
∫

t−(σ1−τ1)

R(s)(s− σ1)
n−1

a(s− σ1)
ds >

(1 + b+ c)(n− 1)!

λ0
, (3.22)
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for some λ0 ∈ (0, 1),then every solution of equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 3.2 and hence the details are omitted.
�

Corollary 3.5. Assume that condition (1.2) holds, σ1 − τ1 > 0 and α ∈ (1,∞). If
there exists µ ∈ ((σ1 − τ1)

−1 lnα,∞) such that

lim inf
t→∞

R(t)

(

(t− σ1)
n−1

a(t− σ1)(n− 1)!

)α

exp(e−µt) > 0, (3.23)

then every solution of equation (1.1) is oscillatory.

Proof. According to Lemma 2.5, the condition (3.23) guarantees that (3.13) with
α > 1 has no positive solution. Hence by Theorem 3.2, every solution of equation
(1.1) is oscillatory. This completes the proof. �

Corollary 3.6. Assume that condition (1.2) holds, σ1 − τ1 > 0 and β ∈ (1,∞). If
there exists ν ∈ ((σ1 − τ1)

−1 lnβ,∞) such that

lim inf
t→∞

R(t)

(

(t− σ1)
n−1

a(t− σ1)(n− 1)!

)β

exp(e−νt) > 0, (3.24)

then every solution of equation (1.1) is oscillatory.

Proof. According to Lemma 2.5, the condition (3.24) guarantees that (3.13) with
β > 1 has no positive solution. Hence by Theorem 3.2, every solution of equation
(1.1) is oscillatory. This completes the proof. �

Theorem 3.7. Assume that condition (1.3) holds and σ1−τ1 > 0. Suppose, further
that the first order differential equation

w′(t) +
R(t)

4α−1(1 + bα + cα)αaα(t− σ1)

(

λ0

(n− 1)!
(t− σ1)

n−1

)α

wα(t− σ1 + τ1) = 0

(3.25)
is oscillatory for some constant λ0 ∈ (0, 1). If

lim sup
t→∞

t
∫

t1

[

k1R(s)

(

1

(n− 2)!
(s− σ1)

n−2

)α

δ(s)−
(1 + bα + cα)

4a(s+ τ2)δ(s)

]

ds = ∞,

(3.26)
for all constants k1 > 0, then equation (1.1) is almost oscillatory.

Proof. Suppose, on the contrary, x is a nonoscillatory solution of equation (1.1).
Without loss of generality, we may assume that there exists a constant t1 ≥ t0,
such that x(t) > 0, for all t ≥ t1. It follows from the equation (1.1) and Kiguradze’s
Lemma 2.1 that there exist three possible cases:

(i) z(t) > 0, z′(t) > 0, z(n−1)(t) > 0, z(n)(t) ≤ 0;
(ii) z(t) > 0, z′(t) > 0, z(n−2)(t) > 0, z(n−1)(t) < 0;
(iii) z(t) > 0, z′(t) < 0, z(n−2)(t) > 0, z(n−1)(t) < 0;

for t ≥ t2 ≥ t1, t1 is sufficiently large. Assume that case(i) holds. From the proof
of Theorem 3.2 we get

w′(t)+
R(t)

4α−1(1 + bα + cα)αaα(t− σ1)

(

λ0

(n− 1)!
(t− σ1)

n−1

)α

wα(t− σ1+ τ1) ≤ 0.
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By [[12],Corollary 3.2.2], w is a positive solution of

w′(t) +
R(t)

4α−1(1 + bα + cα)αaα(t− σ1)

(

λ0

(n− 1)!
(t− σ1)

n−1

)α

wα(t− σ1 + τ1) = 0

for every λ ∈ (0, 1), which contradicts the fact that (3.25) is oscillatory.
Assume that case (ii) holds. Define the function u by

u(t) =
a(t+ τ2)z

(n−1)(t+ τ2)

z(n−2)(t)
, t ≥ t2. (3.27)

Clearly, u(t) < 0 for t ≥ t2. Noting that a(t + τ2)z
(n−1)(t + τ2) is decreasing, we

obtain

a(s+ τ2)z
(n−1)(s+ τ2) ≤ a(t+ τ2)z

(n−1)(t+ τ2), s ≥ t ≥ t2. (3.28)

Dividing (3.28) by a(s+ τ2) and integrating it from t to l(l ≥ t), we have

z(n−2)(l + τ2) ≤ z(n−2)(t+ τ2) + a(t+ τ2)z
(n−1)(t+ τ2)

l
∫

t

du

a(u)
.

Letting l → ∞, we get

0 ≤ z(n−2)(t) + a(t+ τ2)z
(n−1)(t+ τ2)δ(t),

that is

−1 ≤
a(t+ τ2)z

(n−1)(t+ τ2)δ(t)

z(n−2)(t)
.

Therefore, from (3.28), we obtain

− 1 ≤ u(t)δ(t) ≤ 0, t ≥ t2. (3.29)

Next, we define the function w as

w(t) =
a(t)z(n−1)(t)

z(n−2)(t)
, t ≥ t2. (3.30)

Clearly, w(t) < 0 for t ≥ t2. Noting that a(t)z(n−1)(t) is decreasing, we have

a(t+ τ2)z
(n−1)(t+ τ2) ≤ a(t)z(n−1)(t),

then u(t) ≤ w(t). Thus, by (3.30), we get

− 1 ≤ w(t)δ(t) ≤ 0, t ≥ t2. (3.31)

Next, define the function v as

v(t) =
a(t− τ1)z

(n−1)(t− τ1)

z(n−2)(t)
, t ≥ t2. (3.32)

Clearly, v(t) < 0 for t ≥ t2. Noting that a(t − τ1)z
(n−1)(t − τ1) is decreasing, we

have
a(t)z(n−1)(t) ≤ a(t− τ1)z

(n−1)(t− τ1),

then u(t) ≤ w(t) ≤ v(t). Thus, by (3.32), we get

− 1 ≤ v(t)δ(t) ≤ 0, t ≥ t2. (3.33)

Differentiating (3.27), we obtain

u′(t) ≤
(a(t+ τ2)z

(n−1)(t+ τ2))
′

z(n−2)(t)
−

u2(t)

a(t+ τ2)
. (3.34)



OSCILLATION CRITERIA FOR EVEN-ORDER NONLINEAR DIFFERENTIAL EQUATIONS19

Differentiating (3.30) and from (3.28), we obtain

w′(t) ≤
(a(t)z(n−1)(t))′

z(n−2)(t)
−

w2(t)

a(t+ τ2)
. (3.35)

Differentiating (3.32) and from (3.28), we obtain

v′(t) ≤
(a(t− τ1)z

(n−1)(t− τ1))
′

z(n−2)(t)
−

v2(t)

a(t+ τ2)
. (3.36)

Combining (3.34),(3.35) and (3.36), we get

w′(t) + bαv′(t) + cαu′(t) ≤
1

z(n−2)(t)
(a(t)z(n−1)(t))′ + bα(a(t− τ1)z

(n−1)(t− τ1))
′

+cα(a(t+ τ2)z
(n−1)(t+ τ2))

′ −
1

a(t+ τ2)

(

w2(t) + bαv2(t) + cαu2(t)
)

. (3.37)

Therefore, by (3.7) and (3.37), we obtain

w′(t) + bαv′(t) + cαu′(t) ≤ −
zα(t− σ1)

z(n−2)(t)4α−1
R(t)

−
1

a(t+ τ2)

(

w2(t) + bαv2(t) + cαu2(t)
)

. (3.38)

On the other hand, by Lemma 2.2, we get

z(t) ≥
λ

(n− 2)!
tn−2z(n−2)(t). (3.39)

for every λ ∈ (0, 1) and for all sufficiently large t. Then there exists a constant
M > 0 such that

w′(t) + bαv′(t) + cαu′(t) ≤ −
R(t)

4α−1

zα(t− σ1)

(z(n−2)(t− σ1))α
(z(n−2)(t− σ1))

α−1 z
(n−2)(t− σ1)

z(n−2)(t)

−
1

a(t+ τ2)

(

w2(t) + bαv2(t) + cαu2(t)
)

≤ −

(

M

4

)α−1

R(t)

(

λ

(n− 2)!
(t− σ1)

n−2

)α

−
1

a(t+ τ2)

(

w2(t) + bαv2(t) + cαu2(t)
)

Multiplying the above inequality by δ(t) and integrating from t2 to t, we obtain

δ(t)w(t) − δ(t2)w(t2) +

t
∫

t2

w(s)

a(s+ τ2)
ds+

t
∫

t2

w2(s)δ(s)

a(s+ τ2)
ds

+bα



δ(t)v(t)− δ(t2)v(t2) +

t
∫

t2

v(s)

a(s+ τ2)
ds+

t
∫

t2

v2(s)δ(s)

a(s+ τ2)
ds





+cα



δ(t)u(t)− δ(t2)u(t2) +

t
∫

t2

u(s)

a(s+ τ2)
ds+

t
∫

t2

u2(s)δ(s)

a(s+ τ2)
ds





+

(

M

4

)α−1
t

∫

t2

R(s)

(

λ

(n− 2)!
(s− σ1)

n−2

)α

δ(s)ds ≤ 0. (3.40)
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It follows from (3.40), taking into account that −1 ≤ w(t)δ(t) ≤ 0, −1 ≤ v(t)δ(t) ≤
0 and −1 ≤ u(t)δ(t) ≤ 0,

δ(t)w(t) − δ(t2)w(t2) + bα(δ(t)v(t) − δ(t2)v(t2))

+cα(δ(t)u(t) − δ(t2)u(t2)) +

(

M

4

)α−1 (
λ

(n− 2)!

)α
t

∫

t2

δ(s)R(s)(s − σ1)
α(n−2)ds

−
1 + bα + cα

4

t
∫

t2

1

a(s+ τ2)δ(s)
≤ 0.

Therefore,

δ(t)w(t) + bαδ(t)v(t) + cαδ(t)u(t)

+

t
∫

t2

[

k1

(

1

(n− 2)!
(s− σ1)

n−2

)α

R(s)δ(s)−
1 + bα + cα

4

1

a(s+ τ2)δ(s)

]

ds

≤ δ(t2)w(t2) + bαδ(t2)v(t2) + cαδ(t2)u(t2).

From (3.26) and the above inequality, we get a contradiction to (3.29),(3.31) and
(3.33).

Assume that case(iii) holds. Similar to the proof of that of [[4],Lemma2], there
exists a constant k > 0 such that

x(t) ≥ kz(t). (3.41)

The conclusion of the proof is similar to that of case (ii) and we can obtain the
contradiction to (3.26), and so is omitted. This completes the proof. �

4. Examples

In this section we present some examples to illustrate the main results.

Example 4.1. Consider the even order nonlinear mixed type differential equation

(x(t) + x(t − π) + 4x(t+ 2π))
(iv)

+ 2x(t− 3π) + 2x(t+ π) = 0, t ≥ 0. (4.1)

Here a(t) = 1, p(t) = q(t) = 2, b = 1, c = 4, τ1 = π, τ2 = 2π, σ1 = 3π, σ2 = π and
α = β = 1. It satisfies all the conditions of the Theorem 3.2. Hence, every solution
of equation (4.1) oscillates. For, example, x(t) = sin t is an oscillatory solution of
equation (4.1).

Example 4.2. Consider the even order nonlinear mixed type differential equation

(2(x(t) + x(t− π) + x(t + π))′′′)
′

+ x(t− 2π) + x(t+ π) = 0, t ≥ 0. (4.2)

Here a(t) = 2, p(t) = q(t) = 1, b = 1, c = 1, τ1 = π, τ2 = π, σ1 = 2π, σ2 = 2π and
α = β = 1. It satisfies all the conditions of the Theorem 3.4. Hence, every solution
of equation (4.2) oscillates. For, example, x(t) = sin t is an oscillatory solution of
equation (4.2).

Example 4.3. Consider the fourth-order differential equation
(

1

e2t
(x(t) + x(t− 1) + x(t+ 1))′′′

)

′

+
1

e4t
(e6 + e7)x3(t− 2)

+
1

e4t+10
x3(t+ 3) = 0, (4.3)
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where t ≥ 0. Here a(t) = 1/e2t, p(t) = 1
e4t , q(t) =

1
e4t+10 , b = c = 1, τ1 = τ2 = 1, σ1 =

2, σ2 = 3 and α = β = 3. Then one can see that all conditions of Theorem 3.4 are
satisfied except the condition (3.2). Therefore all the solutions of equation (4.3)
not necessarily oscillatory. In fact x(t) = et is an oscillatory solution of equation
(4.3).

Example 4.4. Consider the fourth-order differential equation

(etz′′′(t))′ +

(

et−1/2 + et−1

16

)

x(t− 2) +
et

16
x(t+ 1) = 0, t ≥ 2 (4.4)

where z(t) = x(t) + x(t− 1) + x(t + 1). We can see that all conditions of Theorem
3.2 satisfied except the condition (1.2). Therefore all the solutions of equation (4.4)
not necessarily oscillatory. In fact x(t) = e−t/2 is one such nonoscillatory solution,
since it satisfies the equation (4.4).

Example 4.5. Consider the fourth-order differential equation
(

1

e2t
(x(t) +

1

3
x(t− 1) +

1

3
x(t+ 1))′′′

)

′

+
1

e2t
(e2+

1

3
e)x(t−2)+

1

3e2t
x(t+1) = 0, t ≥ 0

(4.5)
Here a(t) = 1/e2t, p(t) = 1

e2t (e
2 + 1

3e), q(t) =
1

3e2t , b = c = 1/3, τ1 = 1, τ2 = 1, σ1 =
2, σ2 = 1 and α = β = 1. Then one can see that all conditions of Theorem 3.4 are
satisfied except the condition (3.2). Therefore all the solutions of equation (4.5) not
necessarily oscillatory. In fact x(t) = et is one such nonoscillatory solution, since
it satisfies the equation (4.5).
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