BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 6 Issue 1 (2014), Pages 23-33

ON k-QUASI CLASS \mathcal{A}_n^* OPERATORS

(COMMUNICATED BY FUAD KITTANEH)

ILMI HOXHA AND NAIM L. BRAHA

ABSTRACT. In this paper, we introduce a new class of operators, called k-quasi class \mathcal{A}_n^* operators, which is a superclass of hyponormal operators and a subclass of (n, k)-quasi-*-paranormal operators. We will show basic structural properties and some spectral properties of this class of operators. We show that, if $T \in \mathcal{A}_n^*$ then $\sigma_{jp}(T) = \sigma_p(T)$, $\sigma_{ja}(T) = \sigma_a(T)$ and $T - \lambda$ has finite ascent for all $\lambda \in \mathbb{C}$. Also, we will prove Browder's theorem, *a*-Browders theorem for *k*-quasi class \mathcal{A}_n^* operator.

1. INTRODUCTION

Throughout this paper, let \mathcal{H} be an infinite dimensional separable complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$. Let $\mathcal{L}(\mathcal{H})$ denote the C^* algebra for all bounded operators on \mathcal{H} . We shall denote the set of all complex numbers by \mathbb{C} and the complex conjugate of a complex number λ by $\overline{\lambda}$. The closure of a set Mwill be denoted by \overline{M} and we shall henceforth shorten $T - \mu I$ to $T - \mu$. For $T \in \mathcal{L}(\mathcal{H})$, we denote by kerT the null space and by $T(\mathcal{H})$ the range of T. We write $\alpha(T) = \dim \mathbb{H}T, \ \beta(T) = \dim \mathcal{H}/T(\mathcal{H})$, and $\sigma(T)$ for the spectrum of T.

For an operator $T \in \mathcal{L}(\mathcal{H})$, as usual, $|T| = (T^*T)^{\frac{1}{2}}$ and $[T^*, T] = T^*T - TT^*$ (the self-commutator of T). An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be normal, if $[T^*, T]$ is zero, and T is said to be hyponormal, if $[T^*, T]$ is nonnegative (equivalently if $|T|^2 \geq |T^*|^2$). An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be paranormal [11], if $||Tx||^2 \leq$ $||T^2x||$ for any unit vector x in \mathcal{H} . Further, T is said to be *-paranormal [3], if $||T^*x||^2 \leq ||T^2x||$ for any unit vector x in \mathcal{H} . T is said to be n-paranormal operator if $||Tx||^{n+1} \leq ||T^{n+1}x|| ||x||^n$ for all $x \in \mathcal{H}$, and T is said to be n - *-paranormal operator if $||T^*x||^{n+1} \leq ||T^{n+1}x|| ||x||^n$, for all $x \in \mathcal{H}$. An operator T is said to be (n, k)-quasi- *-paranormal [22] if

$$||T^*T^kx|| \le ||T^{1+n+k}x||^{\frac{1}{1+n}} ||T^kx||^{\frac{n}{n+1}}$$
, for all $x \in \mathcal{H}$.

T. Furuta, M. Ito and T. Yamazaki [12] introduced a very interesting class of bounded linear Hilbert space operators: class \mathcal{A} defined by $|T^2| \geq |T|^2$, and they showed that the class \mathcal{A} is a subclass of paranormal operators. B. P. Duggal, I. H.

²⁰¹⁰ Mathematics Subject Classification. 47B20, 47B37.

Key words and phrases. k-quasi class \mathcal{A}_n^* operator, SVEP, Ascent, Browder's theorem, a-Browders theorem.

^{©2014} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted July 4, 2013. Published January 10, 2014.

Jeon, and I. H. Kim [10], introduced *-class \mathcal{A} operator. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be a *-class \mathcal{A} operator, if $|T^2| \geq |T^*|^2$. A *-class \mathcal{A} is a generalization of a hyponormal operator, [10, Theorem 1.2], and *-class \mathcal{A} is a subclass of the class of *-paranormal operators, [10, Theorem 1.3]. We denote the set of *-class \mathcal{A} by \mathcal{A}^* . An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be a quasi- *-class \mathcal{A} operator, if $T^*|T^2|T \geq T^*|T^*|^2T$, [17]. We denote the set of quasi- *-class \mathcal{A} by $\mathcal{Q}(\mathcal{A}^*)$. T. Furuta and J. Haketa [13], introduced *n*-perinormal operator: an operator $T \in \mathcal{L}(\mathcal{H})$, is said to be *n*-perinormal operator, if $T^{*n}T^n \geq (T^*T)^n$, for each $n \geq 1$. An operator $T \in \mathcal{L}(\mathcal{H})$, is said to be n - *-perinormal operator [7], if $T^{*n}T^n \geq (TT^*)^n$, for each $n \geq 1$. For n = 1, T is hyponormal operator, while, if T is 2 - *-perinormal operator, then T is *-paranormal operator. If T is n - *-perinormal operator, then T is (n + 1)-perinormal operator. Further properties of the extended class of the n - *-paranormal operators are given in [5]. In [20], is defined class \mathcal{A}_n operator: an operator $T \in \mathcal{L}(\mathcal{H})$, is said to be \mathcal{A}_n operator if $|T^{n+1}|^{\frac{2}{n+1}} \geq |T|^2$, for some positive integer n.

Definition 1.1. An operator $T \in \mathcal{L}(\mathcal{H})$, is said to belongs to *-class \mathcal{A}_n operator if

$$T^{n+1}|^{\frac{2}{n+1}} \ge |T^*|^2$$

for some positive integer n.

We denote the set of *-class \mathcal{A}_n by \mathcal{A}_n^* .

If n = 1, then \mathcal{A}_1^* coincides with the class \mathcal{A}^* operator.

If T is (n+1) - *-perinormal operator, then T is class \mathcal{A}_n^* . If $T \in \mathcal{A}_n^*$, then T is n - *-paranormal operator.

2. Definition and Basic Properties

Definition 2.1. An operator $T \in \mathcal{L}(\mathcal{H})$, is said to belong to k-quasi class \mathcal{A}_n^* operator if

$$T^{*k}\left(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2\right)T^k \ge 0$$

for some positive integer n and some positive integer k.

If n = 1 and k = 1 then k-quasi class \mathcal{A}_n^* operators coincides with $\mathcal{Q}(\mathcal{A}^*)$ operators.

Since $S \ge 0$ implies $T^*ST \ge 0$, then: If T belongs to class \mathcal{A}_n^* for some positive integer $n \ge 1$, then T belongs k-quasi class \mathcal{A}_n^* , for every positive integer k.

Obviously,

1 – quasi class $\mathcal{A}_n^* \subseteq 2$ – quasi class $\mathcal{A}_n^* \subseteq 3$ – quasi class $\mathcal{A}_n^* \subseteq \ldots$

Lemma 2.1. Let $K = \bigoplus_{n=-\infty}^{\infty} \mathcal{H}_n$, where $\mathcal{H}_n \cong \mathbb{R}^2$. For given positive operators A, B on \mathbb{R}^2 and for any fixed $n \in \mathbb{N}$ define the operator $T = T_{A,B,n}$ on K as follows:

$$T(x_1, x_2, ...) = (0, Ax_1, Ax_2, ..., Ax_n, Bx_{n+1}, ...),$$

and the adjoint operator of T is

$$T^*(x_1, x_2, \ldots) = (Ax_2, Ax_3, \ldots, Ax_{n+1}, Bx_{n+2}, \ldots).$$

The operator T is k-quasi class \mathcal{A}_n^* operator for $n \geq k$, if and only if

$$A^k \left(A^{n+1-i} B^{2i} A^{n+1-i} \right)^{\frac{1}{n+1}} A^k \ge A^{2k+2} \text{ for } i = k+1, k+2, ..., n+1.$$

Example 2.2. Let $0 \le k \le n$ and $T = T_{A,B,n}$ where

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}.$$

Then T is k-quasi class \mathcal{A}_n^* operator.

Lemma 2.2. [14, Hansen Inequality] If $A, B \in \mathcal{L}(\mathcal{H})$, satisfying $A \ge 0$ and $||B|| \le 1$, then

$$(B^*AB)^{\delta} \ge B^*A^{\delta}B$$
 for all $\delta \in (0,1]$.

Theorem 2.3. Let $T \in \mathcal{L}(\mathcal{H})$ be a k-quasi class \mathcal{A}_n^* operator, T^k not have a dense range, and T let have the following representation

$$T = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \quad on \quad \mathcal{H} = \overline{T^k(\mathcal{H})} \oplus \ker T^{*k}.$$

Then A is a class \mathcal{A}_n^* on $\overline{T^k(\mathcal{H})}$, $C^k = 0$ and $\sigma(T) = \sigma(A) \cup \{0\}$.

Proof. Let P be the projection of \mathcal{H} onto $\overline{T^k(\mathcal{H})}$, where $A = T \mid_{\overline{T^k(\mathcal{H})}}$ and

$$\begin{pmatrix} A & 0\\ 0 & 0 \end{pmatrix} = TP = PTP.$$

Since T is k-quasi class \mathcal{A}_n^* , we have

$$P\left(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2\right)P \ge 0.$$

We remark,

$$P|T^*|^2 P = PTT^* P = \begin{pmatrix} AA^* + BB^* & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} |A^*|^2 + |B^*|^2 & 0\\ 0 & 0 \end{pmatrix}$$

and by Hansen inequality, we have

$$\begin{split} P|T^{n+1}|^{\frac{2}{n+1}}P \\ &= P\left(T^{*(n+1)}T^{(n+1)}\right)^{\frac{1}{n+1}}P \le \left(PT^{*(n+1)}T^{(n+1)}P\right)^{\frac{1}{n+1}} \\ &= \left((TP)^{*(n+1)}(TP)^{(n+1)}\right)^{\frac{1}{n+1}} = \left(\begin{vmatrix}A^{n+1}|^2 & 0\\ 0 & 0\end{vmatrix}^{\frac{1}{n+1}} \\ &= \left(\begin{vmatrix}A^{n+1}|^{\frac{2}{n+1}} & 0\\ 0 & 0\end{vmatrix}\right) \end{split}$$

Then,

$$\begin{pmatrix} |A^{n+1}|^{\frac{2}{n+1}} & 0\\ 0 & 0 \end{pmatrix} \ge P|T^{n+1}|^{\frac{2}{n+1}}P \ge P|T^*|^2P = \begin{pmatrix} |A^*|^2 + |B^*|^2 & 0\\ 0 & 0 \end{pmatrix} \ge \begin{pmatrix} |A^*|^2 & 0\\ 0 & 0 \end{pmatrix}$$

so A is \mathcal{A}_n^* operator on $\overline{T^k(\mathcal{H})}$. Let $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathcal{H} = \overline{T^k(\mathcal{H})} \oplus \ker T^{*k}$. Then, $\langle C^k x_2, x_2 \rangle = \langle T^k (I - P) x, (I - P) x \rangle = \langle (I - P) x, T^{*k} (I - P) x \rangle = 0$,

thus $C^k = 0$.

By [15, Corollary 7], $\sigma(A) \cup \sigma(C) = \sigma(T) \cup \vartheta$, where ϑ is the union of the holes in $\sigma(T)$, which happen to be a subset of $\sigma(A) \cap \sigma(C)$ and $\sigma(A) \cap \sigma(C)$ has no interior points. Therefore $\sigma(T) = \sigma(A) \cup \sigma(C) = \sigma(A) \cup \{0\}$.

Theorem 2.4. If T is k-quasi class \mathcal{A}_n^* and \mathcal{M} is a closed T-invariant subspace, then the restriction $T_{|\mathcal{M}|}$ is also T is k-quasi class \mathcal{A}_n^* operator.

Proof. Let P be the projection of \mathcal{H} onto \mathcal{M} . Thus we can represent T as the following matrix with respect to the decomposition $\mathcal{M} \oplus \mathcal{M}^{\perp}$,

$$T = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}.$$

Put $A = T \mid_{\mathcal{M}}$ and we have

$$\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} = TP = PTP.$$

Since T is k-quasi class \mathcal{A}_n^* , we have

$$PT^{*k}\left(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2\right)T^kP \ge 0.$$

We remark,

$$PT^{*k}|T^*|^2T^kP$$

$$= PT^{*k}P|T^{*}|^{2}PT^{k}P = PT^{*k}PTT^{*}PT^{k}P$$
$$= \begin{pmatrix} A^{*k}|A^{*}|^{2}A^{k} + |B^{*}A^{k}|^{2} & 0\\ 0 & 0 \end{pmatrix} \ge \begin{pmatrix} A^{*k}|A^{*}|^{2}A^{k} & 0\\ 0 & 0 \end{pmatrix}$$

and by Hansen inequality, we have

$$\begin{split} PT^{*k}|T^{n+1}|^{\frac{2}{n+1}}T^kP \\ &= PT^{*k}P\left(T^{*(n+1)}T^{(n+1)}\right)^{\frac{1}{n+1}}PT^kP \\ &\leq PT^{*k}\left(PT^{*(n+1)}T^{(n+1)}P\right)^{\frac{1}{n+1}}T^kP \\ &= \begin{pmatrix}A^{*k} & 0\\ 0 & 0\end{pmatrix}\begin{pmatrix}|A^{n+1}|^2 & 0\\ 0 & 0\end{pmatrix}^{\frac{1}{n+1}}\begin{pmatrix}A^k & 0\\ 0 & 0\end{pmatrix} \\ &= \begin{pmatrix}A^{*k} & 0\\ 0 & 0\end{pmatrix}\begin{pmatrix}|A^{n+1}|^{\frac{2}{n+1}} & 0\\ 0 & 0\end{pmatrix}\begin{pmatrix}A^k & 0\\ 0 & 0\end{pmatrix} \\ &= \begin{pmatrix}A^{*k}|A^{n+1}|^{\frac{2}{n+1}}A^k & 0\\ 0 & 0\end{pmatrix} \end{split}$$

Then,

$$\begin{pmatrix} A^{*k} | A^{n+1} |^{\frac{2}{n+1}} A^k & 0 \\ 0 & 0 \end{pmatrix} \ge PT^{*k} |T^{n+1} |^{\frac{2}{n+1}} T^k P \\ \ge PT^{*k} |T^*|^2 T^k P \ge \begin{pmatrix} A^{*k} | A^* |^2 A^k & 0 \\ 0 & 0 \end{pmatrix}$$

so A is k-quasi class \mathcal{A}_n^* operator on \mathcal{M} .

Lemma 2.3. [6, Holder-McCarthy inequality] Let T be a positive operator. Then, the following inequalities hold for all $x \in \mathcal{H}$:

(1) $\langle T^r x, x \rangle \leq \langle Tx, x \rangle^r ||x||^{2(1-r)} \text{ for } 0 < r < 1,$ (2) $\langle T^r x, x \rangle \geq \langle Tx, x \rangle^r ||x||^{2(1-r)} \text{ for } r \ge 1.$

Theorem 2.5. If T is k-quasi class \mathcal{A}_n^* then T is (n,k)-quasi-*-paranormal operator.

Proof. Since T belongs to k-quasi class \mathcal{A}_n^* , by Holder-McCarthy inequality, we get

$$\begin{split} \|T^*T^kx\|^2 &= \langle T^{*k}|T^*|^2T^kx, x \rangle \\ &\leq \langle T^{*k}|T^{1+n}|^{\frac{2}{1+n}}T^kx, x \rangle \\ &\leq \langle |T^{1+n}|^2T^k, T^kx \rangle^{\frac{1}{1+n}} \|T^kx\|^{\frac{2n}{n+1}} \\ &= \|T^{1+n+k}x\|^{\frac{2}{1+n}} \|T^kx\|^{\frac{2n}{n+1}} \end{split}$$

 \mathbf{so}

$$\|T^*T^kx\| \le \|T^{1+n+k}x\|^{\frac{1}{1+n}} \|T^kx\|^{\frac{n}{n+1}}.$$
(1)

thus T is (n, k)-quasi- * -paranormal operator.

Hence, if T is 1-quasi class \mathcal{A}_n^* , then T is (n, 1) - *-quasi paranormal operator.

3. Spectral Properties

A complex number λ is said to be in the point spectrum $\sigma_p(T)$ of T if there is a nonzero $x \in \mathcal{H}$ such that $(T - \lambda)x = 0$. If in addition, $(T - \lambda)^*x = 0$, then λ is said to be in the joint point spectrum $\sigma_{jp}(T)$ of T. Clearly $\sigma_{jp}(T) \subseteq \sigma_p(T)$. In general $\sigma_{jp}(T) \neq \sigma_p(T)$.

There are many classes of operators for which

$$\sigma_{jp}(T) = \sigma_p(T) \tag{2}$$

for example, if T is either normal or hyponormal operator. In [21] Xia showed that if T is a semihyponormal operator then holds (2). Duggal et.al extended this result to *-paranormal operators in [10]. In [17] the authors this result extended to quasi-class \mathcal{A}^* . Uchiyama [19] showed that if T is class \mathcal{A} operator then non zero points of $\sigma_{jp}(T)$ and $\sigma_p(T)$ are identical. The same thing is true for many operators' classes as well. In the following, we will show that if T is k-quasi class \mathcal{A}^*_n , then nonzero points of $\sigma_{jp}(T)$ and $\sigma_p(T)$ are identical.

Theorem 3.1. If T is k-quasi class \mathcal{A}_n^* , and $(T - \lambda)x = 0$, then $(T - \lambda)^*x = 0$ for all $\lambda \neq 0$.

Proof. We may assume that $x \neq 0$. Let \mathcal{M} be a span of $\{x\}$. Then \mathcal{M} is an invariant subspace of T and let

$$T = \begin{pmatrix} \lambda & B \\ 0 & C \end{pmatrix}$$
 on $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$.

Let P be the projection of \mathcal{H} onto \mathcal{M} , where $T \mid_{\mathcal{M}} = \lambda \neq 0$. For the proof, it is sufficient to show that B = 0. Since T is k-quasi class \mathcal{A}_n^* operator and $x = T^k(\frac{x}{\lambda^k}) \in \overline{T^k(\mathcal{H})}$ we have

$$P\left(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2\right)P \ge 0.$$

By Hansen Inequality, we have

$$\begin{pmatrix} |\lambda|^2 & 0\\ 0 & 0 \end{pmatrix} = \left(PT^{*(n+1)}T^{(n+1)}P \right)^{\frac{1}{n+1}} \ge P\left(T^{*(n+1)}T^{(n+1)} \right)^{\frac{1}{n+1}} P \\ = P|T^{n+1}|^{\frac{2}{n+1}}P \ge P|T^*|^2P = \begin{pmatrix} |\lambda|^2 + |B^*|^2 & 0\\ 0 & 0 \end{pmatrix} \\ B = 0.$$

thus B = 0.

then $\langle x, y \rangle$

Corollary 3.2. If T is k-quasi class \mathcal{A}_n^* , then $\sigma_{jp}(T) \setminus \{0\} = \sigma_p(T) \setminus \{0\}$. **Corollary 3.3.** If T^* is k-quasi class \mathcal{A}_n^* , then $\beta(T-\lambda) \leq \alpha(T-\lambda)$ for all $\lambda \neq 0$. *Proof.* It is obvious from Theorem 3.1.

Theorem 3.4. If T is k-quasi class \mathcal{A}_n^* , and $\alpha, \beta \in \sigma_p(T) \setminus \{0\}$ with $\alpha \neq \beta$, then $\ker(T - \alpha) \perp \ker(T - \beta)$.

Proof. Let $x \in \ker(T - \alpha)$ and $y \in \ker(T - \beta)$. Then $Tx = \alpha x$ and $Ty = \beta y$. Therefore

$$\alpha \langle x, y \rangle = \langle Tx, y \rangle = \langle x, T^*y \rangle = \langle x, \beta y \rangle = \beta \langle x, y \rangle,$$

= 0. Therefore, ker $(T - \alpha) \perp \text{ker}(T - \beta).$

Theorem 3.5. If T is k-quasi class \mathcal{A}_n^* , has the representation $T = \lambda \oplus A$ on $\ker(T - \lambda) \oplus \ker(T - \lambda)^{\perp}$, where $\lambda \neq 0$ is an eigenvalue of T, then A is k-quasi class \mathcal{A}_n^* with $\ker(A - \lambda) = \{0\}$.

Proof. Since
$$T = \lambda \oplus A$$
, then $T = \begin{pmatrix} \lambda & 0 \\ 0 & A \end{pmatrix}$ and we have:
 $T^{*k} |T^{n+1}|^{\frac{2}{n+1}} T^k - T^{*k} |T^*|^2 T^k$

$$= \begin{pmatrix} |\lambda|^{2(k+1)} & 0 \\ 0 & A^{*k} |A^{n+1}|^{\frac{2}{n+1}} A^k \end{pmatrix}$$
 $- \begin{pmatrix} |\lambda|^{2(k+1)} & 0 \\ 0 & A^{*k} |A^*|^2 A^k \end{pmatrix}$
 $= \begin{pmatrix} 0 & 0 \\ 0 & A^{*k} |A^{n+1}|^{\frac{2}{n+1}} A^k - A^{*k} |A^*|^2 A^k \end{pmatrix}$

Since T is k-quasi class \mathcal{A}_n^* , then A is k-quasi class \mathcal{A}_n^* . Let $x_2 \in \ker(A - \lambda)$. Then

$$(T-\lambda)\begin{pmatrix}0\\x_2\end{pmatrix} = \begin{pmatrix}0&0\\0&A-\lambda\end{pmatrix}\begin{pmatrix}0\\x_2\end{pmatrix} = \begin{pmatrix}0\\0\end{pmatrix}$$

Hence $x_2 \in \ker(T-\lambda)$. Since $\ker(A-\lambda) \subseteq \ker(T-\lambda)^{\perp}$, this implies $x_2 = 0$. \Box

A complex number λ is said to be in the approximate point spectrum $\sigma_a(T)$ of T if there is a sequence $\{x_n\}$ of unit vectors satisfying $(T - \lambda)x_n \to 0$. If in additions $(T - \lambda)^* x_n \to 0$ then λ is said to be in the joint approximate point spectrum $\sigma_{ja}(T)$ of operator T. Clearly $\sigma_{ja}(T) \subseteq \sigma_a(T)$. In general $\sigma_{ja}(T) \neq \sigma_a(T)$.

There are many classes of operators for which

$$\sigma_{ja}(T) = \sigma_a(T) \tag{3}$$

28

for example, if T is either normal or hyponormal operator. In [21] Xia showed that if T is a semihyponormal operator then holds (3). Duggal et.al extended this result to *-paranormal operators in [10]. Cho and Yamazaki in [8] showed that if T is class \mathcal{A} operator, then nonzero points of $\sigma_{ja}(T)$ and $\sigma_a(T)$ are identical. In the following, we will show that if T is k-quasi class \mathcal{A}_n^* , then nonzero points of $\sigma_{ja}(T)$ and $\sigma_a(T)$ are identical.

Lemma 3.1. [4] Let \mathcal{H} be a complex Hilbert space. Then there exists a Hilbert space \mathcal{Y} such that $\mathcal{H} \subset \mathcal{Y}$ and a map $\varphi : \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{Y})$ such that:

(1). φ is a faithful *-representation of the algebra $\mathcal{L}(\mathcal{H})$ on \mathcal{Y} , so:

$$\varphi(I_{\mathcal{H}}) = I_{\mathcal{Y}}, \ \varphi(T^*) = (\varphi(T))^*, \ \varphi(TS) = \varphi(T)\varphi(S)$$

 $\varphi(\alpha T + \beta S) = \alpha \varphi(T) + \beta \varphi(S)$ for any $T, S \in \mathcal{L}(\mathcal{H})$ and $\alpha, \beta \in \mathbb{C}$,

- (2). $\varphi(T) > 0$ for any T > 0 in $\mathcal{L}(\mathcal{H}, \mathcal{H})$
- (3). $\sigma_a(T) = \sigma_a(\varphi(T)) = \sigma_p(\varphi(T))$ for any $T \in \mathcal{L}(\mathcal{H})$,
- (4). If T is positive operator, then $\varphi(T^{\alpha}) = |\varphi(T)|^{\alpha}$, for $\alpha > 0$,
- (5).[21] $\sigma_{ja}(T) = \sigma_{jp}(\varphi(T))$ for any $T \in \mathcal{L}(\mathcal{H})$.

Theorem 3.6. If T is of the k-quasi class \mathcal{A}_n^* operator, then $\sigma_{ia}(T) \setminus \{0\} =$ $\sigma_a(T) \setminus \{0\}.$

Proof. Let $\varphi : \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{K})$ be Berberian's faithful *-representation. First we show that $\varphi(T)$ belongs to the k-quasi class \mathcal{A}_n^* . Since T is k-quasi class \mathcal{A}_n^* we have

$$\begin{aligned} (\varphi(T))^{*k} \left(\left| (\varphi(T))^{n+1} \right|^{\frac{2}{n+1}} - \left| (\varphi(T))^{*} \right|^{2} \right) (\varphi(T))^{k} \\ &= \varphi(T^{*k}) \left(\left| \varphi(T^{n+1}) \right|^{\frac{2}{n+1}} - \left| \varphi(T^{*}) \right|^{2} \right) \varphi(T^{k}) \\ &= \varphi(T^{*k}) \left(\varphi \left(\left| (T^{n+1}) \right|^{\frac{2}{n+1}} \right) - \varphi(\left| (T^{*}) \right|^{2}) \right) \varphi(T^{k}) \\ &= \varphi \left(T^{*k} \left(\left| T^{n+1} \right|^{\frac{2}{n+1}} - \left| T^{*} \right|^{2} \right) T^{k} \right) \ge 0 \end{aligned}$$

thus $\varphi(T)$ is k-quasi class \mathcal{A}_n^* operator.

Now by Corollary 3.2 and Lemma 3.1, we have

$$\sigma_{a}(T) \setminus \{0\}$$

$$= \sigma_{a}(\varphi(T)) \setminus \{0\} = \sigma_{p}(\varphi(T)) \setminus \{0\}$$

$$= \sigma_{jp}(\varphi(T)) \setminus \{0\} = \sigma_{ja}(T) \setminus \{0\}.$$

Lemma 3.2. [2] Let T = U|T| be the polar decomposition of T, $\lambda = |\lambda|e^{i\theta} \neq 0$ and $\{x_m\}$ a sequence of vectors. Then the following assertions are equivalent:

- (1) $(T \lambda)x_m \to 0$ and $(T^* \overline{\lambda})x_m \to 0$,

(2) $(|T| - |\lambda|)x_m \to 0$ and $(U - e^{i\theta})x_m \to 0$, (3) $(|T^*| - |\lambda|)x_m \to 0$ and $(U^* - e^{-i\theta})x_m \to 0$.

Theorem 3.7. If T is k-quasi class \mathcal{A}_n^* , and $\lambda \in \sigma_a(T) \setminus \{0\}$ then $|\lambda| \in \sigma_a(|T|) \cap$ $\sigma_a(|T^*|).$

Proof. If $\lambda \in \sigma_a(T) \setminus \{0\}$, then by Theorem 3.6, there exists a sequence of unit vectors $\{x_m\}$ such that $(T-\lambda)x_m \to 0$ and $(T-\lambda)^*x_m \to 0$. Hence, from Lemma 3.2 we have $|\lambda| \in \sigma_a(|T|) \cap \sigma_a(|T^*|)$. Let $Hol(\sigma(T))$ be the space of all analytic functions in an open neighborhood of $\sigma(T)$. We say that $T \in \mathcal{L}(\mathcal{H})$ has the single valued extension property at $\lambda \in \mathbb{C}$, if for every open neighborhood U of λ the only analytic function $f: U \to \mathbb{C}$ which satisfies equation $(T - \lambda)f(\lambda) = 0$, is the constant function $f \equiv 0$. The operator T is said to have SVEP if T has SVEP at every $\lambda \in \mathbb{C}$. An operator $T \in \mathcal{L}(\mathcal{H})$ has SVEP at every point of the resolvent $\rho(T) = \mathbb{C} \setminus \sigma(T)$. Every operator T has SVEP at an isolated point of the spectrum.

For $T \in \mathcal{L}(\mathcal{H})$, the smallest nonnegative integer p such that $\ker T^p = \ker T^{p+1}$ is called the ascent of T and is denoted by p(T). If no such integer exists, we set $p(T) = \infty$. We say that $T \in \mathcal{L}(\mathcal{H})$ is of finite ascent (finitely ascentsive) if $p(T) < \infty$.

Corollary 3.8. If T is k-quasi class \mathcal{A}_n^* , then $\ker(T-\lambda) = \ker(T-\lambda)^2$ if $\lambda \neq 0$ and $\ker(T^k) = \ker(T^{k+1})$ if $\lambda = 0$.

Proof. If $\lambda \neq 0$, we have to tell that $\ker(T - \lambda) = \ker(T - \lambda)^2$. To do that, it is sufficient enough to show that $\ker(T - \lambda)^2 \subseteq \ker(T - \lambda)$, since $\ker(T - \lambda) \subseteq \ker(T - \lambda)^2$ is clear.

Let $x \in \ker(T-\lambda)^2$, then $(T-\lambda)^2 x = 0$. From Theorem 3.1 we have $(T-\lambda)^*(T-\lambda)x = 0$. Hence,

$$||(T - \lambda)x||^2 = \langle (T - \lambda)^* (T - \lambda)x, x \rangle = 0,$$

so we have $(T - \lambda)x = 0$, which implies $\ker(T - \lambda)^2 \subseteq \ker(T - \lambda)$. If $\lambda = 0$ and $x \in \ker(T^{k+1})$, from relation (1) we have

$$||T^*T^kx|| \le ||T^n(T^{k+1}x)||^{\frac{1}{1+n}} ||T^kx||^{\frac{n}{n+1}} = 0$$

Hence $T^*T^kx = 0$. Then

$$||T^{k}x||^{2} = \langle T^{*}T^{k}x, T^{k-1}x \rangle = 0,$$

thus $x \in \ker(T^k)$.

Corollary 3.9. If T is of the k-quasi class \mathcal{A}_n^* operator, then T has SVEP.

Proof. Proof, obvious from [1, Theorem 2.39].

An operator $T \in \mathcal{L}(\mathcal{H})$ is called an upper semi-Fredholm, if it has a closed range and $\alpha(T) < \infty$, while T is called a lower semi-Fredholm if $\beta(T) < \infty$. However, T is called a semi-Fredholm operator if T is either an upper or a lower semi-Fredholm, and T is said to be a Fredholm operator if it is both an upper and a lower semi-Fredholm. If $T \in \mathcal{L}(\mathcal{H})$ is semi-Fredholm, then the index is defined by

$$\operatorname{ind}(T) = \alpha(T) - \beta(T).$$

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be upper semi-Weyl operator if it is upper semi-Fredholm and $\operatorname{ind}(T) \leq 0$, while T is said to be lower semi-Weyl operator if it is lower semi- Fredholm and $\operatorname{ind}(T) \geq 0$. An operator is said to be Weyl operator if it is Fredholm of index zero.

The Weyl spectrum and the essential approximate spectrum are defined by

$$\sigma_w(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl}\},\$$

and

$$\sigma_{uw}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not upper semi-Weyl}\}.$$

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be upper semi-Browder operator, if it is upper semi-Fredholm and $p(T) < \infty$. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be lower semi-Browder operator, if it is lower semi-Fredholm and $q(T) < \infty$. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be Browder operator, if it is Fredholm of finite ascent and descent. The Browder spectrum and the upper semi-Browder spectrum (Browder essential approximate spectrum) are defined by

$$\sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Browder}\},\$$

and

$$\sigma_{ub}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not upper semi-Browder}\}.$$

Theorem 3.10. If T or T^* belongs to k-quasi class \mathcal{A}_n^* , then $\sigma_w(f(T)) = f(\sigma_w(T))$ for all $f \in Hol(\sigma(T))$.

Proof. The inclusion $f(\sigma_w(T)) \subseteq \sigma_w(f(T))$ holds for any operator. If T is k-quasi class \mathcal{A}_n^* , then T has SVEP, then from [1, Theorem 4.19] holds $\sigma_w(f(T)) \subseteq f(\sigma_w(T))$. If T^* is k-quasi class \mathcal{A}_n^* , similar to above.

Theorem 3.11. If T or T^{*} belongs to k-quasi class \mathcal{A}_n^* , then $\sigma_{uw}(f(T)) = f(\sigma_{uw}(T))$ for all $f \in Hol(\sigma(T))$.

Proof. The inclusion $f(\sigma_{uw}(T)) \subseteq \sigma_{uw}(f(T))$ holds for any operator. If T is k-quasi class \mathcal{A}_n^* , then T has SVEP, then from [1, Theorem 4.19] holds $\sigma_{uw}(f(T)) \subseteq f(\sigma_{uw}(T))$. If T^* is k-quasi class \mathcal{A}_n^* , similar to above. \Box

The following concept has been introduced in 1997 by Harte and W.Y. Lee [16]: A bounded operator T is said to satisfy Browder's theorem if

$$\sigma_w(T) = \sigma_b(T).$$

The following concept has been introduced in, [9]: A bounded operator T is said to satisfy a-Browder's theorem if

$$\sigma_{uw}(T) = \sigma_{ub}(T).$$

It is well known that

a-Browder's theorem \Rightarrow Browder's theorem.

Theorem 3.12. If T or T^* belongs to k-quasi class \mathcal{A}_n^* , then a-Browder's theorem holds for f(T) and $f(T)^*$ for all $f \in Hol(\sigma(T))$.

Proof. Since T or T^* has SVEP, then from [1, Theorem 4.33] f(T) and $f(T)^*$ satisfies a-Browder's theorem for all $f \in Hol(\sigma(T))$.

Corollary 3.13. If T or T^{*} belongs to k-quasi class \mathcal{A}_n^* , then f(T) and $f(T)^*$ satisfies Browder's theorem for all $f \in Hol(\sigma(T))$.

 $S, T \in \mathcal{L}(\mathcal{H})$ are said to be quasisimilar if there exist injections $X, Y \in \mathcal{L}(\mathcal{H})$ with dense range such that XS = TX and YT = SY, respectively, and this relation is denoted by $S \sim T$, [18].

Theorem 3.14. If T is k-quasi class \mathcal{A}_n^* and if $S \sim T$, then S has SVEP.

Proof. Since T is k-quasi class \mathcal{A}_n^* , it follows from Corollary 3.9 that T has SVEP. Let U be any open set and $f: U \to \mathcal{H}$ be any analytic function such that $(S - \lambda)f(\lambda) = 0$ for all $\lambda \in U$. Since $S \sim T$, there exists an injective operator X with dense range such that XS = TX. Thus $X(S - \lambda) = (T - \lambda)X$ for all $\lambda \in U$. Since $(S - \lambda)f(\lambda) = 0$ for all $\lambda \in U$, $X(S - \lambda) = 0 = (T - \lambda)X$ for all $\lambda \in U$. But T has SVEP, hence $Xf(\lambda) = 0$ for all $\lambda \in U$. Since X is injective, $f(\lambda) = 0$ for all $\lambda \in U$. Thus S has SVEP.

Theorem 3.15. If T is k-quasi class \mathcal{A}_n^* and if $S \sim T$, then a-Browder's theorem holds for f(S) for every $f \in Hol(\sigma(T))$.

Proof. Since a-Browder's theorem holds for S, and $\sigma_{ub}(f(T)) = f(\sigma_{ub}(T))$ for all $f \in Hol(\sigma(T))$, we have

$$\sigma_{ub}(f(S)) = f(\sigma_{ub}(S)) = f(\sigma_{uw}(S)) = \sigma_{uw}(f(S)).$$

Hence a-Browder's theorem holds for f(S).

Acknowledgments: The authors thank referees for carefully reading manuscript and for the comments and remarks given on it.

References

- P. Aiena, Semi-Fredholm operators, perturbations theory and localized SVEP, Merida, Venezuela 2007.
- [2] A. Aluthge and D. Wang, The joint approximate point spectrum of an operator, Hokkaido Mathe J., 31(2002), 187-197.
- [3] S.C. Arora, J.K. Thukral, On a class of operators, Glas. Math. 21 (1986) 381386.
- [4] S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 10(1959), 175-182.
- [5] N.L. Braha, M.Lohaj, F.Marevci and Sh. Lohaj, Some properties of paranormal and hyponormal operators. Bull. Math. Anal. Appl. 1 (2009), no. 2, 23-35.
- [6] C.A.Mc Carthy, Cp, Israel J.Math, 5.(1967) 249-271.
- [7] N. Chennappan, S. Karthikeyan,*-Paranormal composition operators, Indian J. Pure Appl. Math., 31(6), (2000), 591-601.
- [8] M. Cho and T. Yamazaki, An operator transform from class A to the class of hyponormal operators and its application, Integral Equations and Operator Theory, vol. 53, no. 4, pp. 497508, 2005.
- S. V. Djordjevic and Y.M.Han, Browders theorem and spectral continuity, Glasgow Math. J. 42 (2000), no.3, 479-486.
- [10] B. P. Duggal, I. H. Jeon, and I. H. Kim, On *-paranormal contractions and properties for *-class A operators, Linear Algebra Appl. 436 (2012), no. 5, 954-962.
- [11] T. Furuta On The Class of Paranormal Operators, Proc. Jap. Acad. 43(1967), 594-598.
- [12] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several classes, Sci. Math. 1 (1998), no. 3, 389403.
- [13] T.Furuta and J.Haketa, Applications of norm inequalities equivalent to Lowner-Heinz theorem, Nihonkai J. Math. 1 (1990), 11-17.
- [14] F. Hansen, An operator inequality, Math. Ann. 246 (1980) 249-250.
- [15] J. K. Han, H. Y. Lee, and W. Y. Lee, Invertible completions of 2 × 2 upper triangular operator matrices Proceedings of the American Mathematical Society, vol. 128, no. 1, pp. 119-123, 2000.
- [16] R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans.Amer. Math.Soc. 349. No.1 2115-2224.
- [17] Shen Li Jun, Zuo Fei and Yang Chang Sen, On Operators Satisfying $T^*|T^2|T \ge T^*|T^*|^2T$, Acta Mathematica Sinica, English Series, Nov., 2010, Vol. 26, No. 11, pp. 2109-2116.
- [18] K.B. Laursen adn M.M. Neumann, An introduction to Local Spectral Theory, London Mathematical society Monographs, Oxford 2000.
- [19] A. Uchiyama, Weyls theorem for class A operators, Mathematical Inequalities and Applications, vol.4, no. 1, pp. 143150, 2001.

 \Box

- [20] Jiangtao Yuan and Zongsheng Gao, Weyl Spectrum of Class A(n) and n-paranormal Operators, Integr. equ. oper. theory 60 (2008), 289298
- [21] D. Xia, Spectral Theory of Hyponormal Operators, Birkhauser, Switzerland 1983.
- [22] Qingping Zeng and Huajine Zhong, On (n,k)-quasi * paranormal operators, arXiv 1209.5050v1 [math. FA], 2012.

Ilmi Hoxha

Department of Mathematics and Computer Sciences, University of Prishtina,, Avenue "Mother Theresa" 5, Prishtinë, 10000, Kosova.

E-mail address: ilmihoxha011@hotmail.com

NAIM L. BRAHA

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, UNIVERSITY OF PRISHTINA,, AVENUE "MOTHER THERESA" 5, PRISHTINË, 10000, KOSOVA.

E-mail address: nbraha@yahoo.com