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ON k−QUASI CLASS A∗n OPERATORS

(COMMUNICATED BY FUAD KITTANEH)

ILMI HOXHA AND NAIM L. BRAHA

Abstract. In this paper, we introduce a new class of operators, called k−quasi

class A∗
n operators, which is a superclass of hyponormal operators and a sub-

class of (n, k)−quasi−∗−paranormal operators. We will show basic structural
properties and some spectral properties of this class of operators. We show

that, if T ∈ A∗
n then σjp(T ) = σp(T ), σja(T ) = σa(T ) and T − λ has fi-

nite ascent for all λ ∈ C. Also, we will prove Browder’s theorem, a−Browders
theorem for k−quasi class A∗

n operator.

1. Introduction

Throughout this paper, let H be an infinite dimensional separable complex
Hilbert space with inner product 〈·, ·〉. Let L(H) denote the C∗ algebra for all
bounded operators on H. We shall denote the set of all complex numbers by C
and the complex conjugate of a complex number λ by λ. The closure of a set M
will be denoted by M and we shall henceforth shorten T − µI to T − µ. For
T ∈ L(H), we denote by kerT the null space and by T (H) the range of T . We write
α(T ) = dimkerT, β(T ) = dimH/T (H), and σ(T ) for the spectrum of T .

For an operator T ∈ L(H), as usual, |T | = (T ∗T )
1
2 and [T ∗, T ] = T ∗T − TT ∗

(the self−commutator of T ). An operator T ∈ L(H) is said to be normal, if [T ∗, T ]
is zero, and T is said to be hyponormal, if [T ∗, T ] is nonnegative (equivalently if
|T |2 ≥ |T ∗|2). An operator T ∈ L(H) is said to be paranormal [11], if ‖Tx‖2 ≤
‖T 2x‖ for any unit vector x in H. Further, T is said to be ∗−paranormal [3], if
‖T ∗x‖2 ≤ ‖T 2x‖ for any unit vector x in H. T is said to be n−paranormal operator
if ‖Tx‖n+1 ≤ ‖Tn+1x‖‖x‖n for all x ∈ H, and T is said to be n − ∗−paranormal
operator if ‖T ∗x‖n+1 ≤ ‖Tn+1x‖‖x‖n, for all x ∈ H. An operator T is said to be
(n, k)−quasi− ∗ −paranormal [22] if

‖T ∗T kx‖ ≤ ‖T 1+n+kx‖
1

1+n ‖T kx‖
n

n+1 , for all x ∈ H.
T. Furuta, M. Ito and T. Yamazaki [12] introduced a very interesting class of

bounded linear Hilbert space operators: class A defined by |T 2| ≥ |T |2, and they
showed that the class A is a subclass of paranormal operators. B. P. Duggal, I. H.
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Jeon, and I. H. Kim [10], introduced ∗−class A operator. An operator T ∈ L(H)
is said to be a ∗−class A operator, if |T 2| ≥ |T ∗|2. A ∗−class A is a generalization
of a hyponormal operator, [10, Theorem 1.2], and ∗−class A is a subclass of the
class of ∗−paranormal operators, [10, Theorem 1.3]. We denote the set of ∗−class
A by A∗. An operator T ∈ L(H) is said to be a quasi− ∗ −class A operator, if
T ∗|T 2|T ≥ T ∗|T ∗|2T, [17]. We denote the set of quasi− ∗ −class A by Q(A∗).
T. Furuta and J. Haketa [13], introduced n−perinormal operator: an operator
T ∈ L(H), is said to be n−perinormal operator, if T ∗nTn ≥ (T ∗T )n, for each
n ≥ 1. An operator T ∈ L(H), is said to be n − ∗−perinormal operator [7],
if T ∗nTn ≥ (TT ∗)n, for each n ≥ 1. For n = 1, T is hyponormal operator,
while, if T is 2 − ∗−perinormal operator, then T is ∗−paranormal operator. If
T is n − ∗−perinormal operator, then T is (n + 1)−perinormal operator. Further
properties of the extended class of the n − ∗−paranormal operators are given in
[5]. In [20], is defined class An operator: an operator T ∈ L(H), is said to be An
operator if |Tn+1|

2
n+1 ≥ |T |2, for some positive integer n.

Definition 1.1. An operator T ∈ L(H), is said to belongs to ∗−class An operator
if

|Tn+1|
2

n+1 ≥ |T ∗|2

for some positive integer n.

We denote the set of ∗−class An by A∗n.
If n = 1, then A∗1 coincides with the class A∗ operator.
If T is (n+ 1)− ∗−perinormal operator, then T is class A∗n. If T ∈ A∗n, then T

is n− ∗−paranormal operator.

2. Definition and Basic Properties

Definition 2.1. An operator T ∈ L(H), is said to belong to k−quasi class A∗n
operator if

T ∗k
(
|Tn+1|

2
n+1 − |T ∗|2

)
T k ≥ 0

for some positive integer n and some positive integer k.

If n = 1 and k = 1 then k−quasi class A∗n operators coincides with Q(A∗)
operators.

Since S ≥ 0 implies T ∗ST ≥ 0, then: If T belongs to class A∗n for some positive
integer n ≥ 1, then T belongs k−quasi class A∗n, for every positive integer k.

Obviously,

1− quasi class A∗n ⊆ 2− quasi class A∗n ⊆ 3− quasi class A∗n ⊆ ...

Lemma 2.1. Let K = ⊕∞n=−∞Hn, where Hn ∼= R2. For given positive operators
A,B on R2 and for any fixed n ∈ N define the operator T = TA,B,n on K as follows:

T (x1, x2, ...) = (0, Ax1, Ax2, ..., Axn, Bxn+1, ...),

and the adjoint operator of T is

T ∗(x1, x2, ...) = (Ax2, Ax3, ..., Axn+1, Bxn+2, ...).

The operator T is k−quasi class A∗n operator for n ≥ k, if and only if

Ak
(
An+1−iB2iAn+1−i) 1

n+1 Ak ≥ A2k+2 for i = k + 1, k + 2, ..., n+ 1.
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Example 2.2. Let 0 ≤ k ≤ n and T = TA,B,n where

A =

(
1 0
0 1

)
and B =

(
3 1
1 2

)
.

Then T is k−quasi class A∗n operator.

Lemma 2.2. [14, Hansen Inequality] If A,B ∈ L(H), satisfying A ≥ 0 and ‖B‖ ≤
1, then

(B∗AB)δ ≥ B∗AδB for all δ ∈ (0, 1].

Theorem 2.3. Let T ∈ L(H) be a k−quasi class A∗n operator, T k not have a dense
range, and T let have the following representation

T =

(
A B
0 C

)
on H = T k(H)⊕ kerT ∗k.

Then A is a class A∗n on T k(H), Ck = 0 and σ(T ) = σ(A) ∪ {0}.

Proof. Let P be the projection of H onto T k(H), where A = T |
Tk(H)

and(
A 0
0 0

)
= TP = PTP.

Since T is k−quasi class A∗n, we have

P
(
|Tn+1|

2
n+1 − |T ∗|2

)
P ≥ 0.

We remark,

P |T ∗|2P = PTT ∗P =

(
AA∗ +BB∗ 0

0 0

)
=

(
|A∗|2 + |B∗|2 0

0 0

)
and by Hansen inequality, we have

P |Tn+1|
2

n+1P

= P
(
T ∗(n+1)T (n+1)

) 1
n+1

P ≤
(
PT ∗(n+1)T (n+1)P

) 1
n+1

=
(

(TP )∗(n+1)(TP )(n+1)
) 1

n+1

=

(
|An+1|2 0

0 0

) 1
n+1

=

(
|An+1|

2
n+1 0

0 0

)
Then,(
|An+1|

2
n+1 0

0 0

)
≥ P |Tn+1|

2
n+1P ≥ P |T ∗|2P =

(
|A∗|2 + |B∗|2 0

0 0

)
≥

(
|A∗|2 0

0 0

)
,

so A is A∗n operator on T k(H).

Let x =

(
x1
x2

)
∈ H = T k(H)⊕ kerT ∗k. Then,

〈Ckx2, x2〉 =
〈
T k(I − P )x, (I − P )x

〉
=

〈
(I − P )x, T ∗k(I − P )x

〉
= 0,

thus Ck = 0.
By [15, Corollary 7], σ(A)∪σ(C) = σ(T )∪ϑ, where ϑ is the union of the holes in

σ(T ), which happen to be a subset of σ(A)∩σ(C) and σ(A)∩σ(C) has no interior
points. Therefore σ(T ) = σ(A) ∪ σ(C) = σ(A) ∪ {0}. �
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Theorem 2.4. If T is k−quasi class A∗n and M is a closed T -invariant subspace,
then the restriction T∣∣M is also T is k−quasi class A∗n operator.

Proof. Let P be the projection of H onto M. Thus we can represent T as the
following matrix with respect to the decomposition M⊕M⊥,

T =

(
A B
0 C

)
.

Put A = T |M and we have(
A 0
0 0

)
= TP = PTP.

Since T is k−quasi class A∗n, we have

PT ∗k
(
|Tn+1|

2
n+1 − |T ∗|2

)
T kP ≥ 0.

We remark,

PT ∗k|T ∗|2T kP
= PT ∗kP |T ∗|2PT kP = PT ∗kPTT ∗PT kP

=

(
A∗k|A∗|2Ak + |B∗Ak|2 0

0 0

)
≥

(
A∗k|A∗|2Ak 0

0 0

)
and by Hansen inequality, we have

PT ∗k|Tn+1|
2

n+1T kP

= PT ∗kP
(
T ∗(n+1)T (n+1)

) 1
n+1

PT kP

≤ PT ∗k
(
PT ∗(n+1)T (n+1)P

) 1
n+1

T kP

=

(
A∗k 0

0 0

)(
|An+1|2 0

0 0

) 1
n+1

(
Ak 0
0 0

)
=

(
A∗k 0

0 0

)(
|An+1|

2
n+1 0

0 0

)(
Ak 0
0 0

)
=

(
A∗k|An+1|

2
n+1Ak 0

0 0

)
Then, (

A∗k|An+1|
2

n+1Ak 0
0 0

)
≥ PT ∗k|Tn+1|

2
n+1T kP

≥ PT ∗k|T ∗|2T kP ≥
(
A∗k|A∗|2Ak 0

0 0

)
so A is k−quasi class A∗n operator on M. �

Lemma 2.3. [6, Holder-McCarthy inequality] Let T be a positive operator. Then,
the following inequalities hold for all x ∈ H:

(1) 〈T rx, x〉 ≤ 〈Tx, x〉r ‖x‖2(1−r) for 0 < r < 1,
(2) 〈T rx, x〉 ≥ 〈Tx, x〉r ‖x‖2(1−r) for r ≥ 1.

Theorem 2.5. If T is k−quasi class A∗n then T is (n, k)−quasi− ∗ −paranormal
operator.
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Proof. Since T belongs to k−quasi class A∗n, by Holder-McCarthy inequality, we
get

‖T ∗T kx‖2

=
〈
T ∗k|T ∗|2T kx, x

〉
≤ 〈T ∗k|T 1+n|

2
1+nT kx, x〉

≤ 〈|T 1+n|2T k, T kx〉
1

1+n ‖T kx‖
2n

n+1

= ‖T 1+n+kx‖
2

1+n ‖T kx‖
2n

n+1

so

‖T ∗T kx‖ ≤ ‖T 1+n+kx‖
1

1+n ‖T kx‖
n

n+1 . (1)

thus T is (n, k)−quasi− ∗ −paranormal operator. �

Hence, if T is 1−quasi class A∗n, then T is (n, 1)−∗−quasi paranormal operator.

3. Spectral Properties

A complex number λ is said to be in the point spectrum σp(T ) of T if there is a
nonzero x ∈ H such that (T −λ)x = 0. If in addition, (T −λ)∗x = 0, then λ is said
to be in the joint point spectrum σjp(T ) of T . Clearly σjp(T ) ⊆ σp(T ). In general
σjp(T ) 6= σp(T ).

There are many classes of operators for which

σjp(T ) = σp(T ) (2)

for example, if T is either normal or hyponormal operator. In [21] Xia showed
that if T is a semihyponormal operator then holds (2). Duggal et.al extended this
result to ∗−paranormal operators in [10]. In [17] the authors this result extended
to quasi-class A∗. Uchiyama [19] showed that if T is class A operator then non
zero points of σjp(T ) and σp(T ) are identical. The same thing is true for many
operators’ classes as well. In the following, we will show that if T is k−quasi class
A∗n, then nonzero points of σjp(T ) and σp(T ) are identical .

Theorem 3.1. If T is k−quasi class A∗n, and (T − λ)x = 0, then (T − λ)∗x = 0
for all λ 6= 0.

Proof. We may assume that x 6= 0. Let M be a span of {x}. Then M is an
invariant subspace of T and let

T =

(
λ B
0 C

)
on H =M⊕M⊥.

Let P be the projection of H onto M, where T |M= λ 6= 0. For the proof,
it is sufficient to show that B = 0. Since T is k−quasi class A∗n operator and

x = T k( x
λk ) ∈ T k(H) we have

P
(
|Tn+1|

2
n+1 − |T ∗|2

)
P ≥ 0.
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By Hansen Inequality, we have(
|λ|2 0
0 0

)
=

(
PT ∗(n+1)T (n+1)P

) 1
n+1 ≥ P

(
T ∗(n+1)T (n+1)

) 1
n+1

P

= P |Tn+1|
2

n+1P ≥ P |T ∗|2P =

(
|λ|2 + |B∗|2 0

0 0

)
thus B = 0. �

Corollary 3.2. If T is k−quasi class A∗n, then σjp(T ) \ {0} = σp(T ) \ {0}.

Corollary 3.3. If T ∗ is k−quasi class A∗n, then β(T −λ) ≤ α(T −λ) for all λ 6= 0.

Proof. It is obvious from Theorem 3.1. �

Theorem 3.4. If T is k−quasi class A∗n, and α, β ∈ σp(T ) \ {0} with α 6= β, then
ker(T − α) ⊥ ker(T − β).

Proof. Let x ∈ ker(T − α) and y ∈ ker(T − β). Then Tx = αx and Ty = βy.
Therefore

α〈x, y〉 = 〈Tx, y〉 = 〈x, T ∗y〉 = 〈x, βy〉 = β〈x, y〉,
then 〈x, y〉 = 0. Therefore, ker(T − α) ⊥ ker(T − β). �

Theorem 3.5. If T is k−quasi class A∗n , has the representation T = λ ⊕ A on
ker(T − λ) ⊕ ker(T − λ)⊥, where λ 6= 0 is an eigenvalue of T , then A is k−quasi
class A∗n with ker(A− λ) = {0}.

Proof. Since T = λ⊕A, then T =

(
λ 0
0 A

)
and we have:

T ∗k|Tn+1|
2

n+1T k − T ∗k|T ∗|2T k

=

(
|λ|2(k+1) 0

0 A∗k|An+1|
2

n+1Ak

)
−

(
|λ|2(k+1) 0

0 A∗k|A∗|2Ak
)

=

(
0 0

0 A∗k|An+1|
2

n+1Ak −A∗k|A∗|2Ak

)
Since T is k−quasi class A∗n , then A is k−quasi class A∗n.
Let x2 ∈ ker(A− λ). Then

(T − λ)

(
0
x2

)
=

(
0 0
0 A− λ

)(
0
x2

)
=

(
0
0

)
.

Hence x2 ∈ ker(T −λ). Since ker(A−λ) ⊆ ker(T −λ)⊥, this implies x2 = 0. �

A complex number λ is said to be in the approximate point spectrum σa(T ) of T
if there is a sequence {xn} of unit vectors satisfying (T − λ)xn → 0. If in additions
(T −λ)∗xn → 0 then λ is said to be in the joint approximate point spectrum σja(T )
of operator T . Clearly σja(T ) ⊆ σa(T ). In general σja(T ) 6= σa(T ).

There are many classes of operators for which

σja(T ) = σa(T ) (3)
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for example, if T is either normal or hyponormal operator. In [21] Xia showed that
if T is a semihyponormal operator then holds (3). Duggal et.al extended this result
to ∗−paranormal operators in [10]. Cho and Yamazaki in [8] showed that if T is
class A operator, then nonzero points of σja(T ) and σa(T ) are identical. In the
following, we will show that if T is k−quasi class A∗n, then nonzero points of σja(T )
and σa(T ) are identical .

Lemma 3.1. [4] Let H be a complex Hilbert space. Then there exists a Hilbert
space Y such that H ⊂ Y and a map ϕ : L(H)→ L(Y) such that:

(1). ϕ is a faithful ∗−representation of the algebra L(H) on Y, so:

ϕ(IH) = IY , ϕ(T ∗) = (ϕ(T ))∗ , ϕ(TS) = ϕ(T )ϕ(S)

ϕ(αT + βS) = αϕ(T ) + βϕ(S) for any T, S ∈ L(H) and α, β ∈ C,
(2). ϕ(T ) ≥ 0 for any T ≥ 0 in L(H,
(3). σa(T ) = σa (ϕ(T )) = σp (ϕ(T )) for any T ∈ L(H),
(4). If T is positive operator, then ϕ(Tα) = |ϕ(T )|α, for α > 0,
(5).[21] σja(T ) = σjp(ϕ(T )) for any T ∈ L(H).

Theorem 3.6. If T is of the k−quasi class A∗n operator, then σja(T ) \ {0} =
σa(T ) \ {0}.

Proof. Let ϕ : L(H) → L(K) be Berberian’s faithful ∗−representation. First we
show that ϕ(T ) belongs to the k−quasi class A∗n. Since T is k−quasi class A∗n we
have

(ϕ(T ))∗k
(∣∣∣(ϕ(T ))

n+1
∣∣∣ 2
n+1 −

∣∣(ϕ(T ))
∗∣∣2) (ϕ(T ))k

= ϕ(T ∗k)
(∣∣ϕ(Tn+1)

∣∣ 2
n+1 − |ϕ(T ∗)|2

)
ϕ(T k)

= ϕ(T ∗k)
(
ϕ
(
|(Tn+1)|

2
n+1

)
− ϕ(|(T ∗)|2)

)
ϕ(T k)

= ϕ
(
T ∗k

(∣∣Tn+1
∣∣ 2
n+1 − |T ∗|2

)
T k

)
≥ 0

thus ϕ(T ) is k−quasi class A∗n operator.
Now by Corollary 3.2 and Lemma 3.1, we have

σa(T ) \ {0}
= σa(ϕ(T )) \ {0} = σp(ϕ(T )) \ {0}
= σjp(ϕ(T )) \ {0} = σja(T ) \ {0}.

�

Lemma 3.2. [2] Let T = U |T | be the polar decomposition of T , λ = |λ|eiθ 6= 0
and {xm} a sequence of vectors. Then the following assertions are equivalent:

(1) (T − λ)xm → 0 and (T ∗ − λ)xm → 0,
(2) (|T | − |λ|)xm → 0 and (U − eiθ)xm → 0,
(3) (|T ∗| − |λ|)xm → 0 and (U∗ − e−iθ)xm → 0.

Theorem 3.7. If T is k−quasi class A∗n, and λ ∈ σa(T ) \ {0} then |λ| ∈ σa(|T |)∩
σa(|T ∗|).

Proof. If λ ∈ σa(T ) \ {0}, then by Theorem 3.6, there exists a sequence of unit
vectors {xm} such that (T − λ)xm → 0 and (T − λ)∗xm → 0. Hence, from Lemma
3.2 we have |λ| ∈ σa(|T |) ∩ σa(|T ∗|). �
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Let Hol(σ(T )) be the space of all analytic functions in an open neighborhood of
σ(T ). We say that T ∈ L(H) has the single valued extension property at λ ∈ C, if
for every open neighborhood U of λ the only analytic function f : U → C which
satisfies equation (T − λ)f(λ) = 0, is the constant function f ≡ 0. The operator T
is said to have SVEP if T has SVEP at every λ ∈ C. An operator T ∈ L(H) has
SVEP at every point of the resolvent ρ(T ) = C\σ(T ). Every operator T has SVEP
at an isolated point of the spectrum.

For T ∈ L(H), the smallest nonnegative integer p such that kerT p = kerT p+1

is called the ascent of T and is denoted by p(T ). If no such integer exists, we set
p(T ) =∞.We say that T ∈ L(H) is of finite ascent (finitely ascentsive) if p(T ) <∞.

Corollary 3.8. If T is k−quasi class A∗n, then ker(T − λ) = ker(T − λ)2 if λ 6= 0
and ker(T k) = ker(T k+1) if λ = 0.

Proof. If λ 6= 0, we have to tell that ker(T − λ) = ker(T − λ)2. To do that, it
is sufficient enough to show that ker(T − λ)2 ⊆ ker(T − λ), since ker(T − λ) ⊆
ker(T − λ)2 is clear.

Let x ∈ ker(T − λ)2, then (T − λ)2x = 0. From Theorem 3.1 we have (T −
λ)∗(T − λ)x = 0. Hence,

‖(T − λ)x‖2 = 〈(T − λ)∗(T − λ)x, x〉 = 0,

so we have (T − λ)x = 0, which implies ker(T − λ)2 ⊆ ker(T − λ).
If λ = 0 and x ∈ ker(T k+1), from relation (1) we have

‖T ∗T kx‖ ≤ ‖Tn(T k+1x)‖
1

1+n ‖T kx‖
n

n+1 = 0.

Hence T ∗T kx = 0. Then

‖T kx‖2 = 〈T ∗T kx, T k−1x〉 = 0,

thus x ∈ ker(T k).
�

Corollary 3.9. If T is of the k−quasi class A∗n operator, then T has SVEP.

Proof. Proof, obvious from [1, Theorem 2.39].
�

An operator T ∈ L(H) is called an upper semi-Fredholm, if it has a closed range
and α(T ) <∞, while T is called a lower semi-Fredholm if β(T ) <∞. However, T
is called a semi-Fredholm operator if T is either an upper or a lower semi-Fredholm,
and T is said to be a Fredholm operator if it is both an upper and a lower semi-
Fredholm. If T ∈ L(H) is semi-Fredholm, then the index is defined by

ind(T ) = α(T )− β(T ).

An operator T ∈ L(H) is said to be upper semi-Weyl operator if it is upper
semi-Fredholm and ind(T ) ≤ 0, while T is said to be lower semi-Weyl operator if it
is lower semi- Fredholm and ind(T ) ≥ 0. An operator is said to be Weyl operator
if it is Fredholm of index zero.

The Weyl spectrum and the essential approximate spectrum are defined by

σw(T ) = {λ ∈ C : T − λ is not Weyl},
and

σuw(T ) = {λ ∈ C : T − λ is not upper semi-Weyl}.
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An operator T ∈ L(H) is said to be upper semi-Browder operator, if it is upper
semi-Fredholm and p(T ) < ∞. An operator T ∈ L(H) is said to be lower semi-
Browder operator, if it is lower semi-Fredholm and q(T ) < ∞. An operator T ∈
L(H) is said to be Browder operator, if it is Fredholm of finite ascent and descent.
The Browder spectrum and the upper semi-Browder spectrum (Browder essential
approximate spectrum) are defined by

σb(T ) = {λ ∈ C : T − λ is not Browder},

and

σub(T ) = {λ ∈ C : T − λ is not upper semi-Browder}.

Theorem 3.10. If T or T ∗ belongs to k−quasi class A∗n, then σw(f(T )) = f(σw(T ))
for all f ∈ Hol(σ(T )).

Proof. The inclusion f(σw(T )) ⊆ σw(f(T )) holds for any operator. If T is k−quasi
class A∗n, then T has SVEP, then from [1, Theorem 4.19] holds σw(f(T )) ⊆
f(σw(T )). If T ∗ is k−quasi class A∗n, similar to above. �

Theorem 3.11. If T or T ∗ belongs to k−quasi class A∗n, then σuw(f(T )) =
f(σuw(T )) for all f ∈ Hol(σ(T )).

Proof. The inclusion f(σuw(T )) ⊆ σuw(f(T )) holds for any operator. If T is
k−quasi classA∗n, then T has SVEP, then from [1, Theorem 4.19] holds σuw(f(T )) ⊆
f(σuw(T )). If T ∗ is k−quasi class A∗n, similar to above. �

The following concept has been introduced in 1997 by Harte and W.Y. Lee [16]:
A bounded operator T is said to satisfy Browder’s theorem if

σw(T ) = σb(T ).

The following concept has been introduced in, [9]: A bounded operator T is said
to satisfy a−Browder’s theorem if

σuw(T ) = σub(T ).

It is well known that

a−Browder’s theorem ⇒ Browder’s theorem.

Theorem 3.12. If T or T ∗ belongs to k−quasi class A∗n, then a−Browder’s theorem
holds for f(T ) and f(T )∗ for all f ∈ Hol(σ(T )).

Proof. Since T or T ∗ has SVEP, then from [1, Theorem 4.33] f(T ) and f(T )∗

satisfies a−Browder’s theorem for all f ∈ Hol(σ(T )). �

Corollary 3.13. If T or T ∗ belongs to k−quasi class A∗n, then f(T ) and f(T )∗

satisfies Browder’s theorem for all f ∈ Hol(σ(T )).

S, T ∈ L(H) are said to be quasisimilar if there exist injections X,Y ∈ L(H)
with dense range such that XS = TX and Y T = SY , respectively, and this relation
is denoted by S ∼ T , [18].

Theorem 3.14. If T is k−quasi class A∗n and if S ∼ T , then S has SVEP.
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Proof. Since T is k−quasi class A∗n, it follows from Corollary 3.9 that T has SVEP.
Let U be any open set and f : U → H be any analytic function such that (S −
λ)f(λ) = 0 for all λ ∈ U . Since S ∼ T , there exists an injective operator X with
dense range such that XS = TX. Thus X(S − λ) = (T − λ)X for all λ ∈ U . Since
(S − λ)f(λ) = 0 for all λ ∈ U , X(S − λ) = 0 = (T − λ)X for all λ ∈ U . But T has
SVEP, hence Xf(λ) = 0 for all λ ∈ U . Since X is injective, f(λ) = 0 for all λ ∈ U .
Thus S has SVEP. �

Theorem 3.15. If T is k−quasi class A∗n and if S ∼ T , then a−Browder’s theorem
holds for f(S) for every f ∈ Hol(σ(T )).

Proof. Since a−Browder’s theorem holds for S, and σub(f(T )) = f(σub(T )) for all
f ∈ Hol(σ(T )), we have

σub(f(S)) = f(σub(S)) = f(σuw(S)) = σuw(f(S)).

Hence a−Browder’s theorem holds for f(S). �
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