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THE KUNZE-STEIN PHENOMENON ASSOCIATED WITH
JACOBI-DUNKL CONVOLUTION

(COMMUNICATED BY SALAH MECHERI)

ABDESSALEM GASMI

ABSTRACT. The main purpose of this paper is to establish the endpoint es-
timate for the Kunze-Stein phenomenon in Lorentz spaces associated with
Jacobi-Dunkl convolution.

1. Introduction

Let p denote the Haar measure on locally compact group G. The convolution of
two compactly supported continuous functions f and g is the function f * g on G
defined by setting

frglx) = /Gf(y)g(y‘laf)du(y% vz eG.

In 1960, R.A. kunze and E.M. Stein proved in [8] that, if G is SL(2, R), then

the continuous inclusion
LP(G) * L3(G) C L*(G) (1)

holds whenever 1 < p < 2. A group satisfying (1) for any 1 < p < 2 is called the
Kunze-Stein phenomenon group and for such a group (1) is called the Kunze-Stein
phenomenon for G. In 1978 M. Cowling proved in [2] that every connected real
semisimple Lie group with finite center is a Kunze-Stein phenomenon group. After
twenty years Cowling, S. Meda and A.G. Setti proved that if G is the group of
isometries of a homogeneous tree H (see [4]) or a semisimple Lie group of real rank
1( see [3]), then G satisfies a more accurate version of the Kunze-Stein phenomenon.
By using the Lorentz spaces LP>9, they proved that for 1 < p < 2, the continuous
inclusion

L7 0 (G) « L% (G) C LP(G) 2)
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holds if and only if % < q% + q% — 1. In 2000, A.D. Ionescu [6] studied the validity
of (2) when p — 2. He proved that

L*Y@G) « L*Y(G) C L* (@), (3)

when G is a semisimple Lie group of rank one. In this paper we establish the
endpoint estimate for the Kunze-Stein phenomenon associated with Jacobi-Dunkl
convolution similar to (3) and (2).

2. Preliminaries

In this section we recapitulate some results about harmonic analysis associated
to Jacobi-Dunkl operators and the Lorentz spaces. For details the reader is referred

to ([1], [5]) -

Let a > 3 > —%, we consider the Jacobi-Dunkl operator A, g defined on E(R)

the space of C*°-functions on R by:

o) =Sy

Aas(f)(@) = (@) + (20 + 1) coth(x) + (28 + 1) tanh(x)) (=2

For A € C, the initial problem
Ao p(f)(x) =irf(z), [f(0)=1, =ze€R,
has a unique solution \I'f’ﬂ (called the Jacobi-Dunkl kernel) given by

\I!?\B(x) = cpz"ﬂ(x) + 2(;7)_;_1) sinh(z) cosh(x)apﬁ‘“’ﬂ"’l(x),
where
N =p2+p* with p=a+8+1
and

+1 —1 .
‘Pg’ﬁ(x) = 2F1(p 5 Ma %% a+1; —sinh®z),

here oI denotes the Gaussian hypergeometric function.
Notation. For all z,y,z € R and x € [0, 7], we put:

__ cosh z cos x—cosh z cosh y .
sinh z sinh y ) if Ty 7& 0

X
® Ory,z =

0, otherwise
i Qx(xa Y, Z) =1- U;‘(,y,z + U?z(,y,m + U;(Ty

o Loy = | = lal = lyl, = [lel = lol[]  [| 2] = Iy, l2] + Jy1].
o K, s(x, y, 2) = My g(sinh |z| sinh |y| sinh |z|)*2°‘11m~y (2)
x / X(z, 9, 2)(g(@, v, 2 )2 sin?® xdy,
0

where g(z, y, z, x) =1 — cosh? z — cosh? y — cosh? z + cosh z cosh y cosh z cos y. Here

t, ift>0
t+ -
0, otherwise
and )
2==rT 1
Mo = (a+1)

" V(e = BB +3)
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Proposition 2.1. For z € I, , there exist positive constants C such that

L+ [z + [y + IZI))QQ><

Ko ooy, 2 Scefpuwmymz\)((
Kas(2,3,2) th

( (Il + |yl + |z (2| + yl — |z[)(I2] — [=] + ly[)(|2] + [=] — ly[) )a—%
(L+ 2| + [y + |2 + |z + |y] = [2D) @ + [2] = |2| + [y])(L + 2] + |z] = |y])

Proof. For z, y € R\ {0}, we have
|Kap(z,y,2)] < Mgypg(sinh|z|sinh |y|sinh |z|)720‘11:w (2)
X /A [0X(x, y, 2)|(g(@, y, 2, x))T 7" sin® xdy,

where A, , = {x € [0, 7] : g(, y, z, x) > 0}, we have

cosh? z cosh? y sinh? z

X € Ay y < coshzcosy >

)

2 cosh x cosh y
then
0%yl < 1.
Using the fact that
zelyorel,, &ycl,,,

we get ox . [ <1and |oy, | <1. Then we deduce

| Ko p(x,y,2)] < Mg,g(sinh |z|sinh |y| sinh |z|)*20‘11M (2)

x / (g9(x, g, 2 X)) sin® xdx.
Ag,y
From [7], we get

[Ka,(29,2)] < 2Wa sl Iyl |21), 121 € ([l = 1y1], lel + ly])
where W, g is the Jacobi kernel given by

272°T(a + 1)(cosh z cosh y cosh z)*~#~1
V/al(a + 1/2)(sinh |z| sinh |y| sinh | 2] )2

Wa,s(l2l, [yl,[2]) =

1 1-B
X (1_32)0_%F1(a+ﬁ7a_67a+§7T)a
and
B (coshx)? + (coshy)? + (cosh z)? — 1
N 2 cosh z cosh y cosh z '
We have
1 g2 = Snh(lz] + |yl + |2]) sinh(jz] + |y| - |2]) sinh(]z| + |y| — |2[) sinh(|2] + 2] — |y)

4(cosh z cosh y cosh z)?

Using the fact that for ¢ > 0, sinht ~ ﬁet and cosht ~ e’ we obtained the

result. O
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The Jacobi-Dunkl translation operator 7 5,2 € R is defined for a continuous
function f on R, by

aﬂf /f dV ’ﬁza yGR, (4)
where 1/;“,’5 are a signed measures given by
Ko p(z,y,2)dua g(z), if z,y € R\{0}
dygyﬁ(z) =< dig(2), ify=0
ddy(2), ifx=0.
Let djia, 5(2) := Aq p(x)dz, where A, g(x) = 227 (sinh |z])>*** (cosh 2)**T1. We de-
note by LP(uq,g), p € [1,00], the Lebesque space on R with respect to the measure
Mop- In the following we use the shorter notation || ||, 4 instead of || f||Lr(u, »)-
For all z € R and f € L9(ua,p), q € [1,00], we have [|75 5 flga < 4]/ fll,a

Let p,q,r € [1,00] such that 1/p+1/¢ = 1/r + 1. The convolution product of
f € LP(pa,p) and g € LY (pq ) is defined by

fhmg@%iéﬂﬂﬁ@mmw@uﬂmva&x (5)

and we have

If *a.8 gllra < 4l fllpallgllga- (6)

Now we recall first basic definitions about the Lorentz spaces.
Let f be a measurable function defined on (R, f14,5). we assume the function f be
finite almost everywhere and for y > 0, pa,g(Ey) < 0o, where

Ey,={zeR | f(z)|>y}

The distribution function of f is defined by Af(y) = pa,s(Ey), vy > 0 and the
(nonnegative) rearrangement of f is defined by

@) =inf{y >0 : A\f(y) <t} =sup{y >0 : A\e(y) >}, t>0.

The Lorentz space LP (R, pia.g) ( shortly L®P D (u, 5) ) is defined to be vector
space of all (equivalence classes) of measurable functions such that || f[|7, ;) 4 < oo

where .
la= (2 [ [ @] F) 0 <pa<o

IIfIIZ‘p,oo>,A=St»ugt5f*(t), 0<p<oo.
>

It is known that || ||, ,) 4 = [[flp, 2 and so LPP) (1, 5) = LP(jier.3) and if 0 < ¢ <
g2 < 00, 0 < p < oothen || f[[{, 4), 4 < [If1I(p, g1, 4 holds and hence LP ) (1, 5) C LP32)(
Notice that if xg is the characteristic function of a measurable set E C R, we have
* 1
IXEll{2, g),4 = Ha,p(E)? = [IXE|2,4- (7)
The following lemma is shown in [6]:

Lemma 2.2. If§ # 0 and duy(t) = e%dt, dus(t) = e*%tdt ar tow measures on R,
then

I llzr @, i) < CollfllLe v, )

[a,B)-
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3. The Kunze-Stein phenomenon
The main purpose of this paper is to prove the following endpoint estimate.

Theorem 3.1. The convolution operator defined by (5) satisfies
LD (a,8) *a,5 LD (ha,p) © L (o p) -

Proof. In view of the general theory of Lorentz spaces, it suffices to prove that

/Rl(f *a,6 9)(2)[1(2)dpta,5(2) < ClIflIiz, 1, allglliz, 1), all2llEz, 1, 4 (8)

whenever f, g and h are characteristic functions of open sets with finite measure.
First suppose that one function of f, g or h is supported in [—1, 1], say f, we
have

/Rl(f *a,6 9)(2)[(2)dpta,p(2) < [|f *ap gll2, allAll2, 4 -
Using (6) and (7), we get

/R 1(F #o5 9) (2) (=) ()

IA

1£1l1, allgllz, allll2, 4

Clifll2, allgllz, allpll2, o
C”f”z(z1),A||9||2<2,1),A||h||?2,1),A~

Assume now f, g and h are characteristic functions of open sets with finite mea-
sure, we can writ f = fo + f1, g = go + g1 and h = hg + h1, where fy, go and hg
are supported in [—1, 1] and f1, g1 and h; are supported in (—oo, —1]J[1, o). By
the first step, it suffices to prove (8) for f = f1, g = g1 and h = h;.

If a > £, from (5) and (4) we have

/ (f #0.p 9)()B()dpiap(z) = / / @7 59(—2) ()bt 5 ()t 5 (2)
R RJR

/ / F@| | o) oI it (@) 5(2)

Using the fact Ko g(z, —,y) —x,2,y) = Ko g(x,y, z), we obtain

JACESIICIIOT e / / / \K e, )| F @) )RV 5 (@) 5 (0)d )
For |z|, |yl, |z| > 1, By Proposition 2.1, there exists a constant C' such that
|Kop(z,y,2)| < Ce—rUzl+lyl+lz])
Using the fact that for t > 0, A, g(t) = 2%°(sinh )T (cosh t)2P 1 < Ce?, we get

IAIA

L1 5as D@ s) < [ [ [ [Kosen2)| 7@ )h )i, @) 5 () 5(2)
< [ |t ) @0 Aa 5 5) A 0) A 2yt
<

o [ [ @ Dy
|z|>1 J]y| =1 J|z[>1

Using Lemma 2.2 we get (8).
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If —% <a< %, we only need to prove (8) in which the integral is taken over the
domain D = {(z, y, z) : || < |y| < |z <[] + [yl |z], y], [2] = 1}.
By proposition 2.1, for all (z, y, z) € D, we have

2|+ |yl — 2] \o—2
KOM z,Y,z Aa, €z Aa, Yy Aa, z) < C@p(‘T‘-HyH-\z\)( )
| Ka,p( NAa,p(2)Aa,p(y)Aa,p(2) P —

If |z|+ ly| — |2| > 1, by proceeding as in the analysis of the case a > 1, we get (8). If
|z|+|y|—|2| < 1, it suffices to prove (8) for (z, y, 2) € D1 = {(z, y, z) € D, y > 1},
for this, make the change of variable y = u — |z|, we get

[ @ D) 4y 2 vy
(z,y,2)eD:

- /221 (/100 [/1§m§u—|m|§|z| f(x)ep‘m‘g(u_|x|)€p(u_|m|)d$} (“—|Z|)a_%d“>h(z)ef’|zldz.

By Holder’s inequality, we get
/ F(@)g(u — lal eI g
1< || <u—|e| <z

is bounded by || f|l2, 4llg]l2, 4 uniformly in «. Then

[ @ D e oy ) dedyd:
(w,y,2)€D1

00 |z+1 .
<CIflaalolen [ ( /| (u— ) b h()eldz
1

2|

since a — % > —1, then

T z — L * * *
/( - F@)g(y)h(2)e” D (g y—|2)) " 2 dadydz < C||f[[72, 1), allgllia, 1y, allPlfz, 1), a -
x,y,z)ED
This completes the proof of the theorem. ([

From the last Theorem and the bilinear interpolation theorem (see ([3], Theorem
1.2 ), we deduce the following result:

Theorem 3.2. Let 1 < p <2 and (q, q1, q2) € [1, o0]® such that 1 + % < qil + qiz,
then

L(p,ql)(ua“g) a3 L(p,qz)(ﬂa,ﬂ) C L(p’q)(ua,ﬁ)'
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