Volume 6 Issue 1 (2014.), Pages 38-44

THE KUNZE-STEIN PHENOMENON ASSOCIATED WITH JACOBI-DUNKL CONVOLUTION

(COMMUNICATED BY SALAH MECHERI)

ABDESSALEM GASMI

ABSTRACT. The main purpose of this paper is to establish the endpoint estimate for the Kunze-Stein phenomenon in Lorentz spaces associated with Jacobi-Dunkl convolution.

1. Introduction

Let μ denote the Haar measure on locally compact group G. The convolution of two compactly supported continuous functions f and g is the function f * g on G defined by setting

$$f * g(x) = \int_G f(y)g(y^{-1}x)d\mu(y), \quad \forall x \in G.$$

In 1960, R.A. kunze and E.M. Stein proved in [8] that, if G is $SL(2,\mathbb{R})$, then the continuous inclusion

$$L^p(G) * L^2(G) \subseteq L^2(G) \tag{1}$$

holds whenever $1 \le p < 2$. A group satisfying (1) for any $1 \le p < 2$ is called the Kunze-Stein phenomenon group and for such a group (1) is called the Kunze-Stein phenomenon for G. In 1978 M. Cowling proved in [2] that every connected real semisimple Lie group with finite center is a Kunze-Stein phenomenon group. After twenty years Cowling, S. Meda and A.G. Setti proved that if G is the group of isometries of a homogeneous tree \mathbf{H} (see [4]) or a semisimple Lie group of real rank 1(see [3]), then G satisfies a more accurate version of the Kunze-Stein phenomenon. By using the Lorentz spaces $L^{p,\,q}$, they proved that for 1 , the continuous inclusion

$$L^{p, q_1}(G) * L^{p, q_2}(G) \subseteq L^{p, q}(G)$$
 (2)

⁰2000 Mathematics Subject Classification: Primary 43A90, Secondary 43A32, 22E30. Jacobi-Dunkl convolution, Lorentz spaces, Kunze-Stein phenomenon.

^{© 2014} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted October 5, 2012. Published March 17, 2014.

Supported by a generous grant from Taibah University Research Project.

holds if and only if $\frac{1}{q} \leq \frac{1}{q_1} + \frac{1}{q_2} - 1$. In 2000, A.D. Ionescu [6] studied the validity of (2) when $p \to 2$. He proved that

$$L^{2,1}(G) * L^{2,1}(G) \subseteq L^{2,\infty}(G), \tag{3}$$

when G is a semisimple Lie group of rank one. In this paper we establish the endpoint estimate for the Kunze-Stein phenomenon associated with Jacobi-Dunkl convolution similar to (3) and (2).

2. Preliminaries

In this section we recapitulate some results about harmonic analysis associated to Jacobi-Dunkl operators and the Lorentz spaces. For details the reader is referred to ([1], [5]).

Let $\alpha \geq \beta \geq -\frac{1}{2}$, we consider the Jacobi-Dunkl operator $\Lambda_{\alpha,\beta}$ defined on $\mathcal{E}(\mathbb{R})$ the space of C^{∞} -functions on \mathbb{R} by:

$$\Lambda_{\alpha,\beta}(f)(x) = f'(x) + ((2\alpha + 1)\coth(x) + (2\beta + 1)\tanh(x)) \Big(\frac{f(x) - f(-x)}{2}\Big).$$

For $\lambda \in \mathbb{C}$, the initial problem

$$\Lambda_{\alpha,\beta}(f)(x) = i\lambda f(x), \quad f(0) = 1, \quad x \in \mathbb{R},$$

has a unique solution $\Psi_{\lambda}^{\alpha,\beta}$ (called the *Jacobi-Dunkl kernel*) given by

$$\Psi_{\lambda}^{\alpha,\beta}(x) = \varphi_{\mu}^{\alpha,\beta}(x) + \frac{i\lambda}{2(\alpha+1)}\sinh(x)\cosh(x)\varphi_{\mu}^{\alpha+1,\beta+1}(x),$$

where

$$\lambda^2 = \mu^2 + \rho^2$$
 with $\rho = \alpha + \beta + 1$

and

$$\varphi_{\mu}^{\alpha,\beta}(x) = {}_{2}F_{1}(\frac{\rho + i\mu}{2}, \frac{\rho - i\mu}{2}; \alpha + 1; -\sinh^{2}x),$$

here ${}_{2}F_{1}$ denotes the Gaussian hypergeometric function.

Notation. For all $x, y, z \in \mathbb{R}$ and $\chi \in [0, \pi]$, we put:

$$\bullet \ \sigma_{x,y,z}^{\chi} = \begin{cases} -\frac{\cosh z \cos \chi - \cosh x \cosh y}{\sinh x \sinh y}, & \text{if } xy \neq 0 \\ 0, & \text{otherwise} \end{cases}$$

$$\bullet \ \varrho^{\chi}(x,y,z) = 1 - \sigma_{x,y,z}^{\chi} + \sigma_{z,y,x}^{\chi} + \sigma_{z,x,y}^{\chi}.$$

$$\bullet \ I_{x,y} = \left[-|x| - |y|, -\left||x| - |y|\right| \right] \cup \left[\left||x| - |y|\right|, |x| + |y|\right].$$

$$\bullet \ K_{\alpha,\beta}(x, y, z) = M_{\alpha,\beta}(\sinh|x|\sinh|y|\sinh|z|)^{-2\alpha} 1_{I_{x,y}}(z)$$

$$\times \int_0^{\pi} \varrho^{\chi}(x, y, z) (g(x, y, z, \chi))_+^{\alpha-\beta-1} \sin^{2\beta} \chi d\chi,$$

where $g(x, y, z, \chi) = 1 - \cosh^2 x - \cosh^2 y - \cosh^2 z + \cosh x \cosh y \cosh z \cos \chi$. Here

$$t_{+} = \begin{cases} t, & \text{if } t > 0 \\ 0, & \text{otherwise} \end{cases}$$

and

$$M_{\alpha,\beta} = \frac{2^{-2\rho}\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha-\beta)\Gamma(\beta+\frac{1}{2})}.$$

Proposition 2.1. For $z \in I_{x,y}$, there exist positive constants C such that

$$|K_{\alpha,\beta}(x,y,z)| \le Ce^{-\rho(|x|+|y|+|z|)} \left(\frac{(1+|x|)(1+|y|)(1+|z|)}{|xyz|}\right)^{2\alpha} \times$$

$$\left(\frac{(|x|+|y|+|z|)(|x|+|y|-|z|)(|z|-|x|+|y|)(|z|+|x|-|y|)}{(1+|x|+|y|+|z|)(1+|x|+|y|-|z|)(1+|z|-|x|+|y|)(1+|z|+|x|-|y|)}\right)^{\alpha-\frac{1}{2}}$$

Proof. For $x, y \in \mathbb{R} \setminus \{0\}$, we have

$$\begin{split} |K_{\alpha,\beta}(x,y,z)| & \leq & M_{\alpha,\beta}(\sinh|x|\sinh|y|\sinh|z|)^{-2\alpha} \mathbf{1}_{I_{x,y}}(z) \\ & \times & \int_{\Delta_{x,y}} |\varrho^{\chi}(x,\ y,\ z)|(g(x,\ y,\ z,\ \chi))_{+}^{\alpha-\beta-1} \sin^{2\beta}\chi d\chi, \end{split}$$

where $\Delta_{x,y} = \{ \chi \in [0, \pi] : g(x, y, z, \chi) > 0 \}$, we have

$$\chi \in \Delta_{x,y} \Leftrightarrow \cosh z \cos \chi > \frac{\cosh^2 x \cosh^2 y \sinh^2 z}{2 \cosh x \cosh y},$$

then

$$|\sigma_{x,y,z}^{\chi}| \le 1.$$

Using the fact that

$$z \in I_{x,y} \Leftrightarrow x \in I_{z,y} \Leftrightarrow y \in I_{z,x}$$

we get $|\sigma_{x,z,y}^{\chi}| \leq 1$ and $|\sigma_{y,z,x}^{\chi}| \leq 1$. Then we deduce

$$|K_{\alpha,\beta}(x,y,z)| \leq M_{\alpha,\beta}(\sinh|x|\sinh|y|\sinh|z|)^{-2\alpha}1_{I_{x,y}}(z)$$

$$\times \int_{\Delta_{x,y}} (g(x,y,z,\chi))_+^{\alpha-\beta-1}\sin^{2\beta}\chi d\chi.$$

From [7], we get

$$|K_{\alpha,\beta}(x,y,z)| \leq 2\,W_{\alpha,\beta}(|x|,|y|,|z|), \quad |z| \in \left[\,\left||x|-|y|\right|,\,|x|+|y|\,\right],$$

where $W_{\alpha,\beta}$ is the Jacobi kernel given by

$$\begin{split} W_{\alpha,\beta}(|x|,|y|,|z|) &= \frac{2^{-2\rho}\Gamma(\alpha+1)(\cosh x\cosh y\cosh z)^{\alpha-\beta-1}}{\sqrt{\pi}\Gamma(\alpha+1/2)(\sinh|x|\sinh|y|\sinh|z|)^{2\alpha}} \\ &\times (1-B^2)^{\alpha-\frac{1}{2}}F_1(\alpha+\beta,\,\alpha-\beta;\,\alpha+\frac{1}{2};\,\frac{1-B}{2}), \end{split}$$

and

$$B = \frac{(\cosh x)^2 + (\cosh y)^2 + (\cosh z)^2 - 1}{2\cosh x \cosh y \cosh z}.$$

We have

$$1 - B^2 = \frac{\sinh(|x| + |y| + |z|)\sinh(|x| + |y| - |z|)\sinh(|z| + |y| - |x|)\sinh(|x| + |x| - |y|)}{4(\cosh x \cosh y \cosh z)^2}.$$

Using the fact that for $t \geq 0$, $\sinh t \sim \frac{t}{1+t}e^t$ and $\cosh t \sim e^t$ we obtained the result.

The Jacobi-Dunkl translation operator $\tau_{\alpha,\beta}^x, x \in \mathbb{R}$ is defined for a continuous function f on \mathbb{R} , by

$$\tau_{\alpha,\beta}^x f(y) = \int_{\mathbb{R}} f(z) d\nu_{x,y}^{\alpha,\beta}(z), \quad y \in \mathbb{R},$$
(4)

where $\nu_{x,y}^{\alpha,\beta}$ are a signed measures given by

$$d\nu_{x,y}^{\alpha,\beta}(z) = \begin{cases} K_{\alpha,\beta}(x,y,z)d\mu_{\alpha,\beta}(z), & \text{if } x,y \in \mathbb{R} \setminus \{0\} \\ d\delta_x(z), & \text{if } y = 0 \\ d\delta_y(z), & \text{if } x = 0. \end{cases}$$

Let $d\mu_{\alpha,\beta}(x) := A_{\alpha,\beta}(x)dx$, where $A_{\alpha,\beta}(x) = 2^{2\rho}(\sinh|x|)^{2\alpha+1}(\cosh x)^{2\beta+1}$. We denote by $L^p(\mu_{\alpha,\beta})$, $p \in [1,\infty]$, the Lebesque space on \mathbb{R} with respect to the measure $\mu_{\alpha,\beta}$. In the following we use the shorter notation $||f||_{p,A}$ instead of $||f||_{L^p(\mu_{\alpha,\beta})}$.

For all $x \in \mathbb{R}$ and $f \in L^q(\mu_{\alpha,\beta})$, $q \in [1,\infty]$, we have $\|\tau_{\alpha,\beta}^x f\|_{q,A} \le 4 \|f\|_{q,A}$.

Let $p, q, r \in [1, \infty]$ such that 1/p + 1/q = 1/r + 1. The convolution product of $f \in L^p(\mu_{\alpha,\beta})$ and $g \in L^q(\mu_{\alpha,\beta})$ is defined by

$$f *_{\alpha,\beta} g(x) = \int_{\mathbb{R}} \tau_{\alpha,\beta}^{x}(f)(-y)g(y)d\mu_{\alpha,\beta}(y), \quad a.e. \ x$$
 (5)

and we have

$$||f *_{\alpha,\beta} g||_{r,A} \le 4||f||_{p,A}||g||_{q,A}. \tag{6}$$

Now we recall first basic definitions about the Lorentz spaces.

Let f be a measurable function defined on $(\mathbb{R}, \mu_{\alpha,\beta})$. we assume the function f be finite almost everywhere and for y > 0, $\mu_{\alpha,\beta}(E_y) < \infty$, where

$$E_y = \{ x \in \mathbb{R} : | f(x) | > y \}.$$

The distribution function of f is defined by $\lambda_f(y) = \mu_{\alpha,\beta}(E_y)$, y > 0 and the (nonnegative) rearrangement of f is defined by

$$f^*(t) = \inf\{y > 0 : \lambda_f(y) \le t\} = \sup\{y > 0 : \lambda_f(y) > t\}, t > 0.$$

The Lorentz space $L^{(p,q)}(\mathbb{R}, \mu_{\alpha,\beta})$ (shortly $L^{(p,q)}(\mu_{\alpha,\beta})$) is defined to be vector space of all (equivalence classes) of measurable functions such that $||f||_{(p,q),A}^* < \infty$ where

$$||f||_{(p,q),A}^* = \left(\frac{q}{p} \int_0^\infty \left[t^{\frac{1}{p}} f^*(t) \right]^q \frac{dt}{t} \right)^{\frac{1}{q}}, \ 0 < p, \ q < \infty,$$

$$||f||_{(p,\infty),A}^* = \sup_{t>0} t^{\frac{1}{p}} f^*(t), \qquad 0$$

It is known that $||f||_{(p,p),A}^* = ||f||_{p,A}$ and so $L^{(p,p)}(\mu_{\alpha,\beta}) = L^p(\mu_{\alpha,\beta})$ and if $0 < q_1 \le q_2 \le \infty$, $0 then <math>||f||_{(p,q_2),A}^* \le ||f||_{(p,q_1),A}^*$ holds and hence $L^{(p,q_1)}(\mu_{\alpha,\beta}) \subseteq L^{(p,q_2)}(\mu_{\alpha,\beta})$. Notice that if χ_E is the characteristic function of a measurable set $E \subset \mathbb{R}$, we have

$$\|\chi_E\|_{(2,q),A}^* = \mu_{\alpha,\beta}(E)^{\frac{1}{2}} = \|\chi_E\|_{2,A}.$$
(7)

The following lemma is shown in [6]:

Lemma 2.2. If $\delta \neq 0$ and $d\mu_1(t) = e^{\delta t} dt$, $d\mu_2(t) = e^{2\delta t} dt$ ar tow measures on \mathbb{R} , then

$$||f||_{L^1(\mathbb{R},\,\mu_1)} \le C_\delta ||f||_{L^{(2,\,1)}(\mathbb{R},\,\mu_2)}.$$

3. The Kunze-Stein phenomenon

The main purpose of this paper is to prove the following endpoint estimate.

Theorem 3.1. The convolution operator defined by (5) satisfies

$$L^{(2,1)}(\mu_{\alpha,\beta}) *_{\alpha,\beta} L^{(2,1)}(\mu_{\alpha,\beta}) \subseteq L^{(2,\infty)}(\mu_{\alpha,\beta}).$$

Proof. In view of the general theory of Lorentz spaces, it suffices to prove that

$$\int_{\mathbb{R}} |(f *_{\alpha,\beta} g)(z)| h(z) d\mu_{\alpha,\beta}(z) \le C \|f\|_{(2,1),A}^* \|g\|_{(2,1),A}^* \|h\|_{(2,1),A}^*$$
(8)

whenever f, g and h are characteristic functions of open sets with finite measure.

First suppose that one function of f, g or h is supported in [-1, 1], say f, we have

$$\int_{\mathbb{R}} |(f *_{\alpha,\beta} g)(z)| h(z) d\mu_{\alpha,\beta}(z) \le ||f *_{\alpha,\beta} g||_{2,A} ||h||_{2,A}.$$

Using (6) and (7), we get

$$\int_{\mathbb{R}} |(f *_{\alpha,\beta} g)(z)|h(z)d\mu_{\alpha,\beta}(z) \leq ||f||_{1,A}||g||_{2,A}||h||_{2,A}
\leq C||f||_{2,A}||g||_{2,A}||h||_{2,A}
\leq C||f||_{(2,1),A}^*||g||_{(2,1),A}^*||h||_{(2,1),A}^*.$$

Assume now f, g and h are characteristic functions of open sets with finite measure, we can writ $f = f_0 + f_1$, $g = g_0 + g_1$ and $h = h_0 + h_1$, where f_0 , g_0 and h_0 are supported in [-1, 1] and f_1 , g_1 and h_1 are supported in $(-\infty, -1] \bigcup [1, \infty)$. By the first step, it suffices to prove (8) for $f = f_1$, $g = g_1$ and $h = h_1$.

If $\alpha \geq \frac{1}{2}$, from (5) and (4) we have

$$\int_{\mathbb{R}} |(f *_{\alpha,\beta} g)(z)| h(z) d\mu_{\alpha,\beta}(z) = \int_{\mathbb{R}} \int_{\mathbb{R}} f(x) |\tau_{\alpha,\beta}^{z} g(-x)| h(z) d\mu_{\alpha,\beta}(x) d\mu_{\alpha,\beta}(z)
= \int_{\mathbb{R}} \int_{\mathbb{R}} f(x) |\int_{\mathbb{R}} g(y) d\nu_{z,-x}(y) |h(z) d\mu_{\alpha,\beta}(x) d\mu_{\alpha,\beta}(z)$$

Using the fact $K_{\alpha,\beta}(z,-x,y)=K_{\alpha,\beta}(-x,z,y)=K_{\alpha,\beta}(x,y,z)$, we obtain

$$\int_{\mathbb{R}} |(f*_{\alpha,\beta}g)(z)|h(z)d\mu_{\alpha,\beta}(z) \leq \int_{\mathbb{R}} \int_{\mathbb{R}} \left|K_{\alpha,\beta}(x,y,z)\right| f(x)g(y)h(z)d\mu_{\alpha,\beta}(x)d\mu_{\alpha,\beta}(y)d\mu_{\alpha,\beta}(z)$$

For $|x|, |y|, |z| \ge 1$, By Proposition 2.1, there exists a constant C such that

$$|K_{\alpha,\beta}(x,y,z)| \le Ce^{-\rho(|x|+|y|+|z|)}$$
.

Using the fact that for $t \ge 0$, $A_{\alpha,\beta}(t) = 2^{2\rho} (\sinh t)^{2\alpha+1} (\cosh t)^{2\beta+1} \le Ce^{2\rho t}$, we get

$$\int_{\mathbb{R}} \left| (f *_{\alpha,\beta} g)(z) | h(z) d\mu_{\alpha,\beta}(z) \right| \leq \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \left| K_{\alpha,\beta}(x,y,z) | f(x)g(y)h(z) d\mu_{\alpha,\beta}(x) d\mu_{\alpha,\beta}(y) d\mu_{\alpha,\beta}(z) \right| \\
\leq \int_{\mathbb{R}} \int_{\mathbb{R}} \left| K_{\alpha,\beta}(x,y,z) | f(x)g(y)h(z) A_{\alpha,\beta}(x) A_{\alpha,\beta}(y) A_{\alpha,\beta}(z) dx dy dz \right| \\
\leq C \int_{|x| \geq 1} \int_{|y| \geq 1} \int_{|z| \geq 1} f(x)g(y)h(z) e^{\rho(|x| + |y| + |z|)} dx dy dz.$$

Using Lemma 2.2 we get (8).

If $-\frac{1}{2} < \alpha < \frac{1}{2}$, we only need to prove (8) in which the integral is taken over the domain $D = \{(x, y, z) : |x| \le |y| \le |z| \le |x| + |y|, |x|, |y|, |z| \ge 1\}$. By proposition 2.1, for all $(x, y, z) \in D$, we have

$$|K_{\alpha,\beta}(x,y,z)|A_{\alpha,\beta}(x)A_{\alpha,\beta}(y)A_{\alpha,\beta}(z) \le Ce^{\rho(|x|+|y|+|z|)} \left(\frac{|x|+|y|-|z|}{1+|x|+|y|-|z|}\right)^{\alpha-\frac{1}{2}}$$

If $|x|+|y|-|z| \ge 1$, by proceeding as in the analysis of the case $\alpha \ge \frac{1}{2}$, we get (8). If $|x|+|y|-|z| \le 1$, it suffices to prove (8) for $(x, y, z) \in D_1 = \{(x, y, z) \in D, y \ge 1\}$, for this, make the change of variable y = u - |x|, we get

$$\int_{(x, y, z) \in D_1} f(x)g(y)h(z)e^{\rho(|x|+y+|z|)})(|x|+y-|z|)^{\alpha-\frac{1}{2}}dxdydz$$

$$\leq \int_{|z|\geq 1} \Big(\int_{1}^{\infty} \Big[\int_{1\leq |x|\leq u-|x|\leq |z|} f(x) e^{\rho|x|} g(u-|x|) e^{\rho(u-|x|)} dx \Big] (u-|z|)^{\alpha-\frac{1}{2}} du \Big) h(z) e^{\rho|z|} dz \,.$$

By Holder's inequality, we get

$$\int_{1 \le |x| \le u - |x| \le z} f(x)g(u - |x|)e^{\rho|x|}e^{\rho(u - |x|)}dx$$

is bounded by $||f||_{2,A}||g||_{2,A}$ uniformly in u. Then

$$\int_{(x,y,z)\in D_1} f(x)g(y)h(z)e^{\rho(|x|+y+|z|)}(|x|+y-|z|)^{\alpha-\frac{1}{2}}dxdydz
\leq C||f||_{2,A}||g||_{2,A}\int_1^\infty \left(\int_{|z|}^{|z|+1} (u-|z|)^{\alpha-\frac{1}{2}}du\right)h(z)e^{|z|}dz,$$

since $\alpha - \frac{1}{2} > -1$, then

$$\int_{(x,\,y,\,z)\in D_1} f(x)g(y)h(z)e^{\rho(|x|+y+|z|)}(|x|+y-|z|)^{\alpha-\frac{1}{2}}dxdydz \leq C\|f\|_{(2,\,1),\,A}^*\|g\|_{(2,\,1),\,A}^*\|h\|_{(2,\,1),\,A}^*.$$

This completes the proof of the theorem.

From the last Theorem and the bilinear interpolation theorem (see ([3], Theorem 1.2)), we deduce the following result:

Theorem 3.2. Let $1 and <math>(q, q_1, q_2) \in [1, \infty]^3$ such that $1 + \frac{1}{q} \le \frac{1}{q_1} + \frac{1}{q_2}$, then

$$L^{(p,q_1)}(\mu_{\alpha,\beta}) *_{\alpha,\beta} L^{(p,q_2)}(\mu_{\alpha,\beta}) \subseteq L^{(p,q)}(\mu_{\alpha,\beta}).$$

References

- [1] N. Ben Salem and A. Ould Ahemed Salem [2006], Convolution structure associated with the Jacobi-Dunkl operator on \mathbb{R} , Ramanujan J 2: 359-378.
- [2] M. Cowling [1978], The Kunze-Stein phenomenon Ann. Math (2), 107:209-234,
- [3] M. Cowling. Herz's [1997], "principe de majoration" and the Kunze-Stein phenomenon. Canad. Math..Soc. Conference Proc., 21:73-88.
- [4] M. Cowling, S.Meda, and Setti [1998], An overview of harmonic analysis on the group of isometries of a homogeneous tree, Exposition. Math. 16(5):385-423.
- [5] R. A. Hunt [1966], On L(p, q) Spaces, L'Enseignement Math. 12, 249-276. MR0223874 (36:6921).
- [6] A. D. Ionescu [2000], An endpoint estimate for the Kunze-Stein phenomenon and related maximal operators, Ann. of Math.(2), 152(1):259-275.

- [7] T. H. Koornwinder [1984], Jacobi functions and analysis on noncompact semi simple Lie groups. Special Function: Group Theoretical Aspects and Applications, (R.A. Askey, T.H.Koornwinder and W. Schempp, eds.) Dordrecht.
- [8] R. A. Kunze and E. M. Stein [1960], Uniformly bounded representations and harmonic analysis of the 2×2 real unimodular group, Amer. J. Math., 82:1-62.

ABDESSALEM GASMI
DEPARTMENT OF MATHEMATICS,
FACULTY OF SCIENCES, TAIBAH UNIVERSITY,
ALMADINA ALMUNAWARAH, P.O.BOX:344, KINGDOM OF SAUDI ARABIA.
E-mail address: aguesmi@taibahu.edu.sa