BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 7 Issue 1(2015), Pages 12-19

APPROXIMATELY *n*-MULTIPLICATIVE AND APPROXIMATELY ADDITIVE FUNCTIONS IN NORMED ALGEBRAS

(COMMUNICATED BY MOHAAMAD MOSLEHIAN)

E. ANSARI-PIRI, H. SHAYANPOUR AND Z. HEIDARPOUR

ABSTRACT. We derive some properties of (ε, δ, n) -multiplicative maps between normed algebras and establish the superstability of (δ, n) -multiplicative functionals on normed algebras. We also prove that if φ is an (ε, δ, n) -multiplicative such that in the case where n is odd, $1 \in \varphi(A)$, then $|||\varphi||| \leq (1 + \delta)^{1/(n-1)}$. Moreover, under certain conditions, we prove that if $\varphi : A \to C_0(X)$ is an (ε, δ, n) -multiplicative, then $|||\varphi||| \leq (1 + \delta)^{1/(n-1)}$, where $C_0(X)$ is the algebra of all real valued continuous functions which vanish at infinity defined on a locally compact Hausdorff space X.

1. INTRODUCTION

The notion of *n*-homomorphism between (Banach) algebras was introduced in [5]. Suppose that $n \ge 2$ is an integer. A mapping $\varphi : A \to B$ between (Banach) algebras is called *n*-multiplicative if $\varphi(a_1a_2\cdots a_n) = \varphi(a_1)\varphi(a_2)\cdots\varphi(a_n)$ for all elements $a_1, a_2, \cdots, a_n \in A$. Moreover, φ is called an *n*-ring if φ is *n*-multiplicative and additive. If φ is also linear, it is called an *n*-homomorphism. For further details on the above concepts and properties one can refer, for example, to [4, 5, 6, 7, 8, 10, 14].

Let A and B be normed algebras, $\varphi : A \to B$ a map and δ be a non-negative real number. The mapping φ is said to be δ -multiplicative if $\|\varphi(xy) - \varphi(x)\varphi(y)\| \le \delta \|x\| \|y\|$ for all $x, y \in A$.

A mapping $\varphi: A \to B$ is called (δ, n) -multiplicative if $\|\varphi(x_1...x_n) - \varphi(x_1)...\varphi(x_n)\| \le \delta \|x_1\|...\|x_n\|$ for all $x_1, ..., x_n \in A$. If further φ is linear mapping, then it is called (δ, n) -homomorphism. Also we say that φ is approximately *n*-homomorphism if there exists a constant $\delta > 0$ such that φ is (δ, n) -homomorphisms. The (δ, n) -homomorphisms are near to the δ -homomorphisms but they are not the same. An example of an approximately *n*-homomorphism which is not approximately homomorphism is given in [1, 3.6].

²⁰¹⁰ Mathematics Subject Classification. Primary 46H40; 39B72; secondary 39B82.

Key words and phrases. (δ, n) -multiplicative, (ε, δ, n) -multiplicative, approximately additive, approximately *n*-multiplicative.

Submitted October 16, 2014. Published December 16, 2014.

The second author was partially supported by the Center of Excellence for Mathematics, University of Shahrekord.

Also, a mapping $\varphi : A \to B$ is called an ε -additive for some $\varepsilon > 0$ if $\|\varphi(x+y) - \varphi(x) - \varphi(y)\| \le \varepsilon(\|x\| + \|y\|)$ for all $x, y \in A$. It is clear that $\varphi(0) = 0$. The mapping φ is said to be approximately additive if there exists a constant $\varepsilon > 0$ such that φ is ε -additive. We say that φ is an (ε, δ, n) -multiplicative if φ is ε -additive and (δ, n) -multiplicative. For further details on the above concepts and properties one can refer, for example, to [1, 2, 9, 15].

In 1980, Baker [3] proved that if φ is a complex valued function on a semigroup A such that $|\varphi(xy) - \varphi(x)\varphi(y)| \leq \delta$ for all $x, y \in A$, then either φ is multiplicative or $|\varphi(x)| \leq \frac{1+\sqrt{1+4\delta}}{2}$ for all $x \in A$.

Šemrl [13] indicated that there exists an $(\varepsilon, \delta, 2)$ -multiplicative such that it is continuous only at the origin.

Let $\varphi : A \to B$ be (ε, δ, n) -multiplicative. Define $|||\varphi||| = \sup_{a \in A \setminus \{0\}} \frac{\|\varphi(a)\|}{\|a\|} \leq \infty$. The map φ is called bounded if $|||\varphi||| < \infty$.

Semrl [12] proved that if A is a real Banach algebra and $\varphi : A \to \mathbb{R}$ is an $(\varepsilon, \delta, 2)$ -multiplicative, then $|||\varphi||| \leq \frac{1+\sqrt{1+4\delta}}{2}$.

In this paper, we derive some properties of (ε, δ, n) -multiplicative maps between normed algebras and establish the superstability of (δ, n) -multiplicative functionals on normed algebras. We also prove that if φ is an (ε, δ, n) -multiplicative such that in the case where n is odd, $1 \in \varphi(A)$, then $|||\varphi||| \leq (1+\delta)^{1/(n-1)}$. Moreover, under certain conditions, we prove that if $\varphi : A \to C_0(X)$ is an (ε, δ, n) -multiplicative, then $|||\varphi||| \leq (1+\delta)^{1/(n-1)}$, where $C_0(X)$ is the algebra of all real valued continuous functions which vanish at infinity defined on a locally compact Hausdorff space X. Finally, we show that if A is a real Banach algebra and $\phi : A \to \mathbb{R}$ is (δ, δ, n) multiplicative such that $0 < \delta < 1$ and in the case where n is odd, we have $1 \in \phi(A)$ and also, if $\psi : A \to \mathbb{R}$ satisfies $|\phi(x) - \psi(x)| \leq \varepsilon ||x||$ for all $x \in A$ where $\varepsilon > 0$, then ψ is (γ, γ, n) -multiplicative whenever $\gamma = \varepsilon + \delta + \varepsilon [2(1+\delta)^{1/(n-1)} + \varepsilon]^{1/(n-1)}$.

2. Approximately n-multiplicative and approximately additive

For the sake of completeness we first state the following result, which appeared in [2, 2.4].

Theorem 2.1. Let A be a normed algebra, and $p \ge 0$. If $\varphi : A \to \mathbb{C}$ satisfies $|\varphi(x_1 \cdots x_n) - \varphi(x_1) \cdots \varphi(x_n)| \le \delta ||x_1||^p \cdots ||x_n||^p$ for all $x_1 \cdots x_n \in A$, then φ is *n*-multiplicative or there exists a constant k such that $|\varphi(x)| \le k ||x||^p$ for all $x \in A$.

Proof. Suppose that φ is not *n*-multiplicative, that is, there exist $a_1, \dots, a_n \in A$ such that

$$\varphi(a_1 \cdots a_n) \neq \varphi(a_1) \cdots \varphi(a_n).$$

Then for every non-zero element $x \in A$, we have

$$\begin{aligned} |\varphi(x)|^{(n-1)} |\varphi(a_{1}\cdots a_{n}) - \varphi(a_{1})\cdots \varphi(a_{n})| \\ &= |\varphi(x)^{(n-1)}\varphi(a_{1}\cdots a_{n}) - \varphi(x)^{(n-1)}\varphi(a_{1})\cdots \varphi(a_{n}) \pm \\ \varphi(x^{(n-1)}a_{1}\cdots a_{n}) \pm \varphi(x^{(n-1)}a_{1})\varphi(a_{2})\cdots \varphi(a_{n})| \\ &\leq |\varphi(x)^{(n-1)}\varphi(a_{1}\cdots a_{n}) - \varphi(x^{(n-1)}a_{1}\cdots a_{n})| + \\ &|\varphi(x^{(n-1)}a_{1}\cdots a_{n}) - \varphi(x^{(n-1)}a_{1})\varphi(a_{2})\cdots \varphi(a_{n})| + \\ &|\varphi(x^{(n-1)}a_{1})\varphi(a_{2})\cdots \varphi(a_{n}) - \varphi(x)^{(n-1)}\varphi(a_{1})\cdots \varphi(a_{n})| \\ &\leq 2\delta \|x\|^{p(n-1)} \|a_{1}\|^{p}\cdots \|a_{n}\|^{p} + |\varphi(a_{2})\cdots \varphi(a_{n})|\delta\|x\|^{p(n-1)} \|a_{1}\|^{p} \\ &= \delta \|x\|^{p(n-1)} \|a_{1}\|^{p} [2\|a_{2}\|^{p}\cdots \|a_{n}\|^{p} + |\varphi(a_{2})\cdots \varphi(a_{n})|]. \end{aligned}$$

Therefore, if

$$k = \left(\frac{\delta \|a_1\|^p [2\|a_2\|^p \cdots \|a_n\|^p + |\varphi(a_2) \cdots \varphi(a_n)|]}{|\varphi(a_1 \cdots a_n) - \varphi(a_1) \cdots \varphi(a_n)|}\right)^{\frac{1}{(n-1)}},$$

we $|\varphi(x)| \le k \|x\|^p.$

then we have $|\varphi(x)| \leq k ||x||^p$.

Theorem 2.2. Let A be a normed algebra and let φ be (δ, n) -multiplicative functional. Then either φ is n-multiplicative or $|\varphi(x)| \leq (1+\delta) ||x||$ for each $x \in A$.

Proof. Suppose that φ is not *n*-multiplicative. Then by the Theorem 2.1, there exists k > 0 such that $|\varphi(x)| \le k ||x||$ for all $x \in A$, so $\varphi(0) = 0$. Assume towards a contradiction that there exists $a \in A$ with $|\varphi(a)| > (1+\delta)||a||$, then $|\varphi(a)| = (1+\delta)||a||$ $\delta + p$ ||a|| for some p > 0. Since φ is (δ, n) -multiplicative, $|\varphi(a)^n - \varphi(a^n)| \le \delta ||a||^n$. Hence

$$|\varphi(a^n)| \ge |\varphi(a)^n| - |\varphi(a)^n - \varphi(a^n)| \ge (1+\delta+p)^n \|a\|^n - \delta \|a\|^n \ge (1+\delta+p) \|a\|^n.$$

Now, we assume the induction assumption $|\varphi(a^{n^m})| \ge (1+\delta+mp) \|a\|^{n^m}.$ We have

$$\begin{aligned} |\varphi(a^{n} \rangle)| &\geq |\varphi(a^{n} \rangle)^{n}| - |\varphi(a^{n} \rangle)^{n} - \varphi(a^{n} \rangle)| \\ &\geq (\delta + 1 + mp)^{n} ||a||^{n^{m+1}} - \delta ||a|^{n^{m}} ||^{n} \\ &\geq (\delta + 1 + mp)^{n} ||a||^{n^{m+1}} - \delta ||a||^{n^{m+1}} \\ &\geq (\delta + 1 + (m+1)p) ||a||^{n^{m+1}}. \end{aligned}$$

Therefore $|\varphi(a^{n^m})| \ge (1 + \delta + mp) ||a||^{n^m}$ holds for all positive integer m. Now, let $x_1, \ldots, x_{n+1} \in A$. We have

$$|\varphi(x_1...x_n) - \varphi(x_1)...\varphi(x_n)||\varphi(x_{n+1})| \le \delta k ||x_1||...||x_{n+1}||$$
(2.1)

In particular, if $x_{n+1} = a^{n^m}$ by (2.1) we have

$$|\varphi(x_1...x_n) - \varphi(x_1)...\varphi(x_n)| \le \frac{\delta k ||x_1||...||x_n|| ||a^{n^m}||}{|\varphi(a^{n^m})|} \le \frac{\delta k ||x_1||...||x_n||}{1 + \delta + mp}$$

Letting $m \to \infty$ shows that φ is *n*-multiplicative, which is a contradiction.

Theorem 2.3. Let A be a semigroup and φ be a complex valued function defined on A such that $|\varphi(x_1...x_n) - \varphi(x_1)...\varphi(x_n)| \leq \delta$ for all $x_1, ..., x_n \in A$. Then either $|\varphi(x)| \leq 1 + \delta$ for all $x \in A$ or φ is n-multiplicative.

Proof. If φ is not *n*-multiplicative, then by the Theorem 2.1, there exists k > 0 such that $|\varphi(x)| \leq k$ for all $x \in A$. Suppose there exists $a \in A$ such that $|\varphi(a)| > 1 + \delta$. Thus, $|\varphi(a)| = 1 + \delta + p$ for some p > 0. By a similar argument to that in the Theorem 2.2, we obtain $|\varphi(a^{n^m})| \geq 1 + \delta + mp$ for all positive integer m, and the rest of the proof is similar to the proof of the Theorem 2.2.

Theorem 2.4. Let A be a Banach algebra and $\varphi : A \to \mathbb{C}$ be a nonzero (δ, n) -homomorphism. Then $\|\varphi\| \leq 1 + \delta$.

Proof. If φ is *n*-homomorphism, then as in the proof of [14, Lemma 2.1] we can see that $\|\varphi\| \leq 1$. If φ is (δ, n) -homomorphism such that φ is not *n*-multiplicative, then by the Theorem 2.2, the result follows.

Lemma 2.5. Let A be a normed algebra and $0 < \delta < 1$. If $\phi : A \to \mathbb{C}$ is (ε, δ, n) -homomorphism such that $|||\phi||| < \infty$, then $|||\phi||| \le (1+\delta)^{1/(n-1)}$.

Proof. Suppose that $|||\phi||| = k > 0$. By the hypothesis, we have $|\phi(x)^n - \phi(x^n)| \le \delta ||x||^n$ for all $x \in A$, so $|\phi(x)|^n \le \delta ||x||^n + |\phi(x^n)|$. Therefore for all $x \ne 0$, where $x^n \ne 0$, we have

$$\frac{|\phi(x)|^n}{\|x\|^n} \le \delta + \frac{|\phi(x^n)|}{\|x\|^n} \le \delta + \frac{|\phi(x^n)|}{\|x^n\|} \le \delta + k.$$

If $x^n = 0$, since $\varphi(0) = 0$ then

$$\frac{|\phi(x)|^n}{\|x\|^n} \le \delta + \frac{|\phi(x^n)|}{\|x\|^n} = \delta + 0 \le \delta + k,$$

and so $k^n - k \leq \delta$. Hence, if k > 1, then $k < (1 + \delta)^{1/(n-1)}$, since $\delta < 1$ and if $k \leq 1$, then $k \leq 1 < (1 + \delta)^{1/(n-1)}$, so the result follows.

Theorem 2.6. Suppose that A be a normed algebra, $0 < \delta < 1$ and $p \ge 0$. Let $\phi : A \to \mathbb{C}$ is a functional such that

$$|\phi(x_1\cdots x_n) - \phi(x_1)\cdots \phi(x_n)| \le \delta ||x_1||^p \cdots ||x_n||^p \ (x_1, \cdots, x_n \in A).$$

Then either ϕ is n-multiplicative or $|\phi(x)| \leq (1+\delta)^{1/(n-1)} ||x||^p$ for all $x \in A$.

Proof. Suppose that ϕ is not *n*-multiplicative. Then by the Theorem 2.1 there exists M > 0 such that $|\phi(x)| \leq M ||x||^p$ for all $x \in A$. It is clear that $\phi(0) = 0$ for $p \neq 0$. If $k = \sup_{x \in A} |\phi(x)|$ for p = 0 and $k = \sup_{x \in A \setminus \{0\}} \frac{|\phi(x)|}{||x||^p}$ for $p \neq 0$, then we have

$$|\phi(x)|^n \le \delta \|x\|^{np} + |\phi(x^n)| \le \delta \|x\|^{np} + k\|x^n\|^p \le (\delta + k)\|x\|^{np}$$

for all $x \in A$. Finally, by using a similar argument as in the proof of the Lemma 2.5, we have $|\phi(x)| \leq (1+\delta)^{1/(n-1)} ||x||^p$ for all $x \in A$, as desired.

Theorem 2.7. [2, 2.6] Let A be a normed algebra and ε , δ , p be non-negative real numbers. Suppose that $\varphi : A \to \mathbb{C}$ is a functional such that

$$\begin{aligned} |\varphi(x+y) - \varphi(x) - \varphi(y)| &\leq \varepsilon (||x||^p + ||y||^p) \ (x, y \in A), \\ and \end{aligned}$$

$$\varphi(x_1\cdots x_n) - \varphi(x_1)\cdots \varphi(x_n)| \le \delta ||x_1||^p \cdots ||x_n||^p \ (x_1, \cdots, x_n \in A).$$

Then φ is additive and n-multiplicative or there is a constant k such that

$$|\varphi(x)| \le k ||x||^p \ (x \in A)$$

Proof. Suppose that φ is not additive or, is not *n*-multiplicative. If φ is not *n*-multiplicative, then by the Theorem 2.1, the result follows. Now, if φ is not additive, then there exist $a, b \in A$, such that $\varphi(a + b) - \theta(a) - \varphi(b) \neq 0$. For any $x \in A$, by the hypothesis, we have

$$\begin{split} |\varphi(x)|^{(n-1)}|\varphi(a+b) - \varphi(a) - \varphi(b)| &= |\varphi(x)^{(n-1)}\varphi(a+b) - \varphi(x)^{(n-1)}\varphi(a) - \varphi(x)^{(n-1)}\varphi(b) \pm \\ &\varphi(x^{(n-1)}(a+b)) \pm \varphi(x^{(n-1)}a) \pm \varphi(x^{(n-1)}b)| + \\ &\leq |\varphi(x)^{(n-1)}\varphi(a+b) - \varphi(x^{(n-1)}(a+b))| + \\ &|\varphi(x^{(n-1)}a + x^{(n-1)}b) - \varphi(x^{(n-1)}a) - \varphi(x^{(n-1)}b)| + \\ &|\varphi(x^{(n-1)}\varphi(a) - \varphi(x^{(n-1)}a)| + \\ &|\varphi(x^{(n-1)}b) - \varphi(x)^{(n-1)}\varphi(b)| \\ &\leq \delta ||x||^{(n-1)p} ||a + b||^p + \varepsilon(||x^{(n-1)}a||^p + ||x^{(n-1)}b||^p) + \\ &\delta ||x||^{(n-1)p} ||a||^p + \delta ||x||^{(n-1)p} ||b||^p \\ &\leq ||x||^{(n-1)p} \Big(\delta (||a+b||^p + ||a||^p + ||b||^p) + \varepsilon (||a||^p + ||b||^p) \Big) \end{split}$$

Therefore, if

$$k = \left(\frac{\delta\left(\|a+b\|^{p} + \|a\|^{p} + \|b\|^{p}\right) + \varepsilon\left(\|a\|^{p} + \|b\|^{p}\right)}{|\varphi(a+b) - \varphi(a) - \varphi(b)|}\right)^{\frac{1}{(n-1)}},$$

then we have $|\varphi(x)| \leq k ||x||^p$, as desired.

Theorem 2.8. Let A be a real Banach algebra, $0 < \delta < 1$ and n be an even number. Let $\phi : A \to \mathbb{R}$ be (ε, δ, n) -multiplicative. Then $|||\phi||| \leq (1 + \delta)^{1/(n-1)}$.

Proof. If ϕ is not additive or is not *n*-multiplicative, then by the Theorem 2.7 there exists k > 0 such that $|\phi(x)| \leq k ||x||$ for all $x \in A$, so by the Lemma 2.5, $|||\phi||| < (1+\delta)^{1/(n-1)}$.

Now suppose ϕ is additive and *n*-multiplicative. Fix $x \in A$ with ||x|| = 1. Then the mapping $h : \mathbb{R} \to \mathbb{R}$ defined by $h(t) = \phi(tx)$ is additive. We now show that his linear. To do this, we define two functions $f, g: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ by $f(t) = \frac{\phi(t^{\frac{n}{2}}x^n)}{t^{\frac{n}{2}}}$ and $g(t) = \left(\frac{\phi(tx)}{t}\right)^{\frac{n}{2}}$. It is easy to see that f(ts) = g(t)g(s) for all $s, t \in \mathbb{R} \setminus \{0\}$. Then by [12, Theorem 3] we can assume that either g is bounded or $g(1) \neq 0$ and q(t) = q(1)k(t), where k is multiplicative. First, suppose that q is bounded, then there exists M > 0 such that $|g(t)| \leq M$ for all $t \in \mathbb{R} \setminus \{0\}$. Then $|h(t)| \leq M^{\frac{2}{n}}|t|$ and so h is continuous at zero. Since h is additive, it is easy to see that h is linear. In the second case, define $\psi: \mathbb{R} \to \mathbb{R}$ by $\psi(t) = tk(t)^{\frac{n}{2}} = g(1)^{-\frac{2}{n}}h(t)$ for all $t \in \mathbb{R} \setminus \{0\}$ and $\psi(0) = 0$. Since k is multiplicative, then ψ is multiplicative and since h is additive, so ψ is additive. Now, because $\psi: \mathbb{R} \to \mathbb{R}$ is additive and multiplicative map and $g(1) \neq 0$, then it is easy to see that it is the identity map. Thus h is continuous, and so it is easy to see that h is linear. Therefore $\phi(tx) = t\phi(x)$ for all $t \in \mathbb{R}$ and $x \in A$ with ||x|| = 1. Now suppose that $y \in A \setminus \{0\}$. For all $t \in \mathbb{R}$ we have $\phi(ty) = \phi(t||y|| \frac{y}{||y||}) = t||y|| \phi(\frac{y}{||y||})$. Consequently ϕ is linear and then it is an *n*-homomorphism. Now the result follows by the Theorem 2.4 and the Lemma 2.5.

$$\square$$

Corollary 2.9. Let A be a real Banach algebra, $0 < \delta < 1$, X be a locally compact Hausdorff space and let $\phi : A \to C_0(X)$ be (ε, δ, n) -multiplicative. If n is an even number, then $|||\phi||| \le (1+\delta)^{1/(n-1)}$.

Proof. By the hypothesis the functional $\phi_x : A \to \mathbb{R}$ by $\phi_x(a) = \phi(a)(x)$ is also (ε, δ, n) -multiplicative for every $x \in X$. Then by the Theorem 2.8, $|||\phi_x||| \leq (1 + \delta)^{1/(n-1)}$ for all $x \in X$. Hence

$$|||\phi||| = \sup_{a \in A \setminus \{0\}} \frac{\|\phi(a)\|}{\|a\|} = \sup_{a \in A \setminus \{0\}} \sup_{x \in X} \frac{|\phi_x(a)|}{\|a\|} \le (1+\delta)^{1/(n-1)}.$$

Theorem 2.10. Let A be a real Banach algebra, $0 < \delta < 1$ and n an odd number. Suppose $\phi : A \to \mathbb{R}$ is (ε, δ, n) -multiplicative such that in the case where ϕ is an additive and n-multiplicative, we have $1 \in \phi(A)$. Then $|||\phi||| \leq (1+\delta)^{1/(n-1)}$.

Proof. If ϕ is not additive or not *n*-multiplicative, then by the Theorem 2.7 there exists k > 0 such that $|\phi(x)| \le k ||x||$ for all $x \in A$, so by the Lemma 2.5, $|||\phi||| < (1+\delta)^{1/(n-1)}$.

If ϕ is additive and *n*-multiplicative, then by the hypothesis there exists $a \in A$ such that $\phi(a) = 1$. Now we define additive function $\psi : A \to \mathbb{R}$ by $\psi(x) = \phi(ax)$ for all $x \in A$. By the following proof of [14, Lemma 2.1], ψ is multiplicative and $\psi^{n-1}(x) = \phi^{n-1}(x)$ for all $x \in A$. Using the proof of the Theorem 2.8, Since ψ is additive and multiplicative so it is linear, and hence ϕ is linear. Therefore the result follows by the Theorem 2.4 and the Lemma 2.5.

Corollary 2.11. Let A be a real Banach algebra, $0 < \delta < 1$, n be an odd number and let X be a locally compact Hausdorff space. Suppose $\phi : A \to C_0(X)$ is (ε, δ, n) multiplicative and $1 \in \phi_x(A)$ for all $x \in X$. Then $|||\phi||| \leq (1+\delta)^{1/(n-1)}$.

Proof. By adopting the proof of the Corollary 2.9, the result follows.

Theorem 2.12. Let A be a real Banach algebra, $0 < \delta < 1$ and $\varepsilon > 0$. Let $\phi : A \to \mathbb{R}$ be (δ, δ, n) -multiplicative such that in the case where n is odd, we have $1 \in \phi(A)$. If $\psi : A \to \mathbb{R}$ satisfies $|\phi(x) - \psi(x)| \leq \varepsilon ||x||$ for all $x \in A$, then ψ is (γ, γ, n) -multiplicative whenever $\gamma = \varepsilon + \delta + \varepsilon [2(1+\delta)^{1/(n-1)} + \varepsilon]^{1/(n-1)}$.

Proof. By the Theorems 2.8 and 2.10, we have $|||\phi||| \leq (1+\delta)^{1/(n-1)} = k$, so $|||\psi||| \leq \varepsilon + k$. We prove that the following inequality

$$|\phi(a_1)...\phi(a_m) - \psi(a_1)...\psi(a_m)| \le \varepsilon ||a_1||...||a_m||[k + (\varepsilon + k)]^{m-1},$$
(2.2)

for all $1 \le m \le n$. By the hypothesis, the inequality (2.2) is certainly true if m = 1. Assume that (2.2) is true for m - 1. Therefore

$$\begin{aligned} |\phi(a_1)...\phi(a_m) - \psi(a_1)...\psi(a_m)| &\leq |\phi(a_1)...\phi(a_{m-1})| |\phi(a_m) - \psi(a_m)| + \\ &|\psi(a_m)|| |\phi(a_1)...\phi(a_{m-1}) - \psi(a_1)...\psi(a_{m-1})| \\ &\leq \varepsilon [k^{m-1} + (\varepsilon + k)[k + (\varepsilon + k)]^{m-2}] \|a_1\|...\|a_m\| \\ &\leq \varepsilon [k + (\varepsilon + k)]^{m-1} \|a_1\|...\|a_m\|, \end{aligned}$$

which complete the proof of (2.2). Now by (2.2) for all
$$a_1, ..., a_n \in A$$
, we have
 $|\psi(a_1...a_n) - \psi(a_1)...\psi(a_n)| \le |\psi(a_1...a_n) - \phi(a_1...a_n)| + |\phi(a_1...a_n) - \phi(a_1)...\phi(a_n)|$
 $+ |\phi(a_1)...\phi(a_n) - \psi(a_1)...\psi(a_n)|$
 $\le [\varepsilon + \delta + \varepsilon [k + (\varepsilon + k)]^{n-1}] \|a_1\|...\|a_n\|.$

Moreover,

$$\begin{aligned} |\psi(x+y) - \psi(x) - \psi(y)| &\leq |\psi(x+y) - \phi(x+y)| + |\phi(x+y) - \phi(x) - \phi(y)| \\ &+ |\phi(x) - \psi(x)| + |\phi(y) - \psi(y)| \\ &\leq (2\varepsilon + \delta)(||x|| + ||y||) \\ &\leq [\varepsilon + \delta + \varepsilon(2k + \varepsilon)^{n-1}](||x|| + ||y||) \end{aligned}$$

for all $x, y \in A$, as desired.

Acknowledgments. The authors would like to thank the referee for valuable comments and suggestions.

References

- E. Ansari-piri and N. Eghbali, Almost n-multiplicative maps, African J. Math. Comp. Sci. Rese. 5 (2012) 200-203.
- [2] E. Ansari-piri, H. Shayanpour and Z. Heidarpour, A class of certain properties of almost n-multiplicative maps on normed algebras, Submitted.
- [3] J. A. Baker, The stability of the cosine equation. Proc. Amer. Math. Soc. 80 3 (1980), 411-416.
- [4] J. Bračič and S. Moslehian, On automatic continuity of 3-homomorphisms on Banach algebras, Bull. Malays. Math. Sci. Soc. 2 30 2 (2007), 195 - 200.
- [5] M. Hejazian, M. Mirzavaziri and M. S. Moslehian, n-Homomorphisms, Bull. Iranian Math. Soc. 31 1 (2005) 13-23.
- [6] T. G. Honary and H. Shayanpour, Automatic continuity of n-homomorphisms between Banach algebras, Quaest. Math. 33 2 (2010) 189-196.
- [7] T. G. Honary and H. Shayanpour, Automatic continuity of n-homomorphisms between topological algebras, Bull. Aust. Math. Soc. 83 3 (2011) 389-400.
- [8] T. G. Honary, M. Najafi Tavani and H. Shayanpour, Automatic continuity of nhomomorphisms between Fréchet Algebras, Quaest. Math., 34 2 (2011) 265-274.
- K. Jarosz, Perturbations of Banach algebras, Lecture Notes in Mathematics, Springer, Berlin, 1120 (1985) 384–436.
- [10] E. Park and J. Trout, On the nonexistence of nontrivial involutive n-homomorphisms of C*-algebras, Trans. Amer. Math. Soc. 361 (2009) 1949 - 1961.
- [11] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Pro. Amer. Math. Soc. 72 2 (1978) 297-300.
- [12] P. Šemrl, Almost multiplicative functions and almost linear multiplicative functionals, Aequationes. Math. 63 (2002), 180-192.
- [13] P. Šemrl, Non-linear perturbations of homomorphisms on C(X), Non-linear perturbations of homomorphisms on C(X), Quart. J. Math. Oxford. 50 (1999), 87-109.
- [14] H. Shayanpour, T. G. Honary, M. S. Hashemi, Certain properties of n-characters and nhomomorphisms on topological algebras. Bull. Malays. Math. Sci. Soc. DOI 10.1007/s40840-014-0062-4.
- [15] H. Shayanpour, E. Ansari-piri, Z. Heidarpor and A. Zohri, Approximately n-multiplicative functionals on Banach algebras, submitted.

E. Ansari-Piri

Faculty of Mathematical Science, University of Guilan, Rasht, Iran E-mail address: eansaripiri@gmail.com

H. Shayanpour

FACULTY OF MATHEMATICAL SCIENCES, DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF SHAHREKORD, , P. O. BOX 88186-34141, SHAHREKORD, IRAN.

E-mail address: h.shayanpour@sci.sku.ac.ir

Z. HEIDARPOUR PAYAME NOOR UNIVERSITY, IRAN *E-mail address*: heidarpor86@yahoo.com