APPROXIMATELY n-MULTIPLICATIVE AND APPROXIMATELY ADDITIVE FUNCTIONS IN NORMED ALGEBRAS

(COMMUNICATED BY MOHAAMAD MOSLEHIAN)

E. ANSARI-PIRI, H. SHAYANPOUR AND Z. HEIDARPOUR

Abstract

We derive some properties of (ε, δ, n)-multiplicative maps between normed algebras and establish the superstability of (δ, n)-multiplicative functionals on normed algebras. We also prove that if φ is an (ε, δ, n)-multiplicative such that in the case where n is odd, $1 \in \varphi(A)$, then $\|\varphi\| \| \leq(1+\delta)^{1 /(n-1)}$. Moreover, under certain conditions, we prove that if $\varphi: A \rightarrow C_{0}(X)$ is an (ε, δ, n)-multiplicative, then $\|\varphi\| \| \leq(1+\delta)^{1 /(n-1)}$, where $C_{0}(X)$ is the algebra of all real valued continuous functions which vanish at infinity defined on a locally compact Hausdorff space X.

1. Introduction

The notion of n-homomorphism between (Banach) algebras was introduced in 5]. Suppose that $n \geq 2$ is an integer. A mapping $\varphi: A \rightarrow B$ between (Banach) algebras is called n-multiplicative if $\varphi\left(a_{1} a_{2} \cdots a_{n}\right)=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \cdots \varphi\left(a_{n}\right)$ for all elements $a_{1}, a_{2}, \cdots, a_{n} \in A$. Moreover, φ is called an n-ring if φ is n-multiplicative and additive. If φ is also linear, it is called an n-homomorphism. For further details on the above concepts and properties one can refer, for example, to [4, 5, 6, 7, 8, 10, 14,

Let A and B be normed algebras, $\varphi: A \rightarrow B$ a map and δ be a non-negative real number. The mapping φ is said to be δ-multiplicative if $\|\varphi(x y)-\varphi(x) \varphi(y)\| \leq$ $\delta\|x\|\|y\|$ for all $x, y \in A$.

A mapping $\varphi: A \rightarrow B$ is called (δ, n)-multiplicative if $\left\|\varphi\left(x_{1} \ldots x_{n}\right)-\varphi\left(x_{1}\right) \ldots \varphi\left(x_{n}\right)\right\| \leq$ $\delta\left\|x_{1}\right\| \ldots\left\|x_{n}\right\|$ for all $x_{1}, \ldots, x_{n} \in A$. If further φ is linear mapping, then it is called (δ, n)-homomorphism. Also we say that φ is approximately n-homomorphism if there exists a constant $\delta>0$ such that φ is (δ, n)-homomorphisms. The (δ, n) homomorphisms are near to the δ-homomorphisms but they are not the same. An example of an approximately n-homomorphism which is not approximately homomorphism is given in [1, 3.6].

[^0]Also, a mapping $\varphi: A \rightarrow B$ is called an ε-additive for some $\varepsilon>0$ if $\| \varphi(x+y)-$ $\varphi(x)-\varphi(y) \| \leq \varepsilon(\|x\|+\|y\|)$ for all $x, y \in A$. It is clear that $\varphi(0)=0$. The mapping φ is said to be approximately additive if there exists a constant $\varepsilon>0$ such that φ is ε-additive. We say that φ is an (ε, δ, n)-multiplicative if φ is ε-additive and (δ, n)-multiplicative. For further details on the above concepts and properties one can refer, for example, to [1, 2, 9, 15].

In 1980, Baker 3 proved that if φ is a complex valued function on a semigroup A such that $|\varphi(x y)-\varphi(x) \varphi(y)| \leq \delta$ for all $x, y \in A$, then either φ is multiplicative or $|\varphi(x)| \leq \frac{1+\sqrt{1+4 \delta}}{2}$ for all $x \in A$.

Šemrl [13] indicated that there exists an $(\varepsilon, \delta, 2)$-multiplicative such that it is continuous only at the origin.
Let $\varphi: A \rightarrow B$ be (ε, δ, n)-multiplicative. Define $\|\varphi\|=\sup _{a \in A \backslash\{0\}} \frac{\|\varphi(a)\|}{\|a\|} \leq \infty$. The map φ is called bounded if $\|\mid \varphi\| \|<\infty$.

Šemrl [12] proved that if A is a real Banach algebra and $\varphi: A \rightarrow \mathbb{R}$ is an $(\varepsilon, \delta, 2)$-multiplicative, then $\|\varphi\| \| \leq \frac{1+\sqrt{1+4 \delta}}{2}$.

In this paper, we derive some properties of (ε, δ, n)-multiplicative maps between normed algebras and establish the superstability of (δ, n)-multiplicative functionals on normed algebras. We also prove that if φ is an (ε, δ, n)-multiplicative such that in the case where n is odd, $1 \in \varphi(A)$, then $\|\varphi \varphi\| \leq(1+\delta)^{1 /(n-1)}$. Moreover, under certain conditions, we prove that if $\varphi: A \rightarrow C_{0}(X)$ is an (ε, δ, n)-multiplicative, then $\left\|\|\varphi\| \leq(1+\delta)^{1 /(n-1)}\right.$, where $C_{0}(X)$ is the algebra of all real valued continuous functions which vanish at infinity defined on a locally compact Hausdorff space X. Finally, we show that if A is a real Banach algebra and $\phi: A \rightarrow \mathbb{R}$ is (δ, δ, n) multiplicative such that $0<\delta<1$ and in the case where n is odd, we have $1 \in \phi(A)$ and also, if $\psi: A \rightarrow \mathbb{R}$ satisfies $|\phi(x)-\psi(x)| \leq \varepsilon\|x\|$ for all $x \in A$ where $\varepsilon>0$, then ψ is (γ, γ, n)-multiplicative whenever $\gamma=\varepsilon+\delta+\varepsilon\left[2(1+\delta)^{1 /(n-1)}+\varepsilon\right]^{1 /(n-1)}$.

2. Approximately n-MULTIPLICATIVE AND APPROXIMATELY ADDITIVE

For the sake of completeness we first state the following result, which appeared in [2, 2.4].

Theorem 2.1. Let A be a normed algebra, and $p \geq 0$. If $\varphi: A \rightarrow \mathbb{C}$ satisfies $\left|\varphi\left(x_{1} \cdots x_{n}\right)-\varphi\left(x_{1}\right) \cdots \varphi\left(x_{n}\right)\right| \leq \delta\left\|x_{1}\right\|^{p} \cdots\left\|x_{n}\right\|^{p}$ for all $x_{1} \cdots x_{n} \in A$, then φ is n-multiplicative or there exists a constant k such that $|\varphi(x)| \leq k\|x\|^{p}$ for all $x \in A$.

Proof. Suppose that φ is not n-multiplicative, that is, there exist $a_{1}, \cdots, a_{n} \in A$ such that

$$
\varphi\left(a_{1} \cdots a_{n}\right) \neq \varphi\left(a_{1}\right) \cdots \varphi\left(a_{n}\right)
$$

Then for every non-zero element $x \in A$, we have

$$
\begin{aligned}
|\varphi(x)|^{(n-1)} \mid \varphi\left(a_{1} \cdots a_{n}\right)- & \varphi\left(a_{1}\right) \cdots \varphi\left(a_{n}\right) \mid \\
= & \mid \varphi(x)^{(n-1)} \varphi\left(a_{1} \cdots a_{n}\right)-\varphi(x)^{(n-1)} \varphi\left(a_{1}\right) \cdots \varphi\left(a_{n}\right) \pm \\
& \varphi\left(x^{(n-1)} a_{1} \cdots a_{n}\right) \pm \varphi\left(x^{(n-1)} a_{1}\right) \varphi\left(a_{2}\right) \cdots \varphi\left(a_{n}\right) \mid \\
\leq & \left|\varphi(x)^{(n-1)} \varphi\left(a_{1} \cdots a_{n}\right)-\varphi\left(x^{(n-1)} a_{1} \cdots a_{n}\right)\right|+ \\
& \left|\varphi\left(x^{(n-1)} a_{1} \cdots a_{n}\right)-\varphi\left(x^{(n-1)} a_{1}\right) \varphi\left(a_{2}\right) \cdots \varphi\left(a_{n}\right)\right|+ \\
& \left|\varphi\left(x^{(n-1)} a_{1}\right) \varphi\left(a_{2}\right) \cdots \varphi\left(a_{n}\right)-\varphi(x)^{(n-1)} \varphi\left(a_{1}\right) \cdots \varphi\left(a_{n}\right)\right| \\
\leq & 2 \delta\|x\|^{p(n-1)}\left\|a_{1}\right\|^{p} \cdots\left\|a_{n}\right\|^{p}+\left|\varphi\left(a_{2}\right) \cdots \varphi\left(a_{n}\right)\right| \delta\|x\|^{p(n-1)}\left\|a_{1}\right\|^{p} \\
= & \delta\|x\|^{p(n-1)}\left\|a_{1}\right\|^{p}\left[2\left\|a_{2}\right\|^{p} \cdots\left\|a_{n}\right\|^{p}+\left|\varphi\left(a_{2}\right) \cdots \varphi\left(a_{n}\right)\right|\right] .
\end{aligned}
$$

Therefore, if

$$
k=\left(\frac{\delta\left\|a_{1}\right\|^{p}\left[2\left\|a_{2}\right\|^{p} \cdots\left\|a_{n}\right\|^{p}+\left|\varphi\left(a_{2}\right) \cdots \varphi\left(a_{n}\right)\right|\right]}{\left|\varphi\left(a_{1} \cdots a_{n}\right)-\varphi\left(a_{1}\right) \cdots \varphi\left(a_{n}\right)\right|}\right)^{\frac{1}{(n-1)}}
$$

then we have $|\varphi(x)| \leq k\|x\|^{p}$.
Theorem 2.2. Let A be a normed algebra and let φ be (δ, n)-multiplicative functional. Then either φ is n-multiplicative or $|\varphi(x)| \leq(1+\delta)\|x\|$ for each $x \in A$.
Proof. Suppose that φ is not n-multiplicative. Then by the Theorem 2.1, there exists $k>0$ such that $|\varphi(x)| \leq k\|x\|$ for all $x \in A$, so $\varphi(0)=0$. Assume towards a contradiction that there exists $a \in A$ with $|\varphi(a)|>(1+\delta)\|a\|$, then $|\varphi(a)|=(1+$ $\delta+p)\|a\|$ for some $p>0$. Since φ is (δ, n)-multiplicative, $\left|\varphi(a)^{n}-\varphi\left(a^{n}\right)\right| \leq \delta\|a\|^{n}$. Hence
$\left|\varphi\left(a^{n}\right)\right| \geq\left|\varphi(a)^{n}\right|-\left|\varphi(a)^{n}-\varphi\left(a^{n}\right)\right| \geq(1+\delta+p)^{n}\|a\|^{n}-\delta\|a\|^{n} \geq(1+\delta+p)\|a\|^{n}$. Now, we assume the induction assumption $\left|\varphi\left(a^{n^{m}}\right)\right| \geq(1+\delta+m p)\|a\|^{n^{m}}$. We have

$$
\begin{aligned}
\left|\varphi\left(a^{n^{m+1}}\right)\right| & \geq\left|\varphi\left(a^{n^{m}}\right)^{n}\right|-\left|\varphi\left(a^{n^{m}}\right)^{n}-\varphi\left(a^{n^{m+1}}\right)\right| \\
& \geq(\delta+1+m p)^{n}\|a\|^{n^{m+1}}-\delta\left\|a^{n^{m}}\right\|^{n} \\
& \geq(\delta+1+m p)^{n}\|a\|^{n^{m+1}}-\delta\|a\|^{n^{m+1}} \\
& \geq(\delta+1+(m+1) p)\|a\|^{n^{m+1}}
\end{aligned}
$$

Therefore $\left|\varphi\left(a^{n^{m}}\right)\right| \geq(1+\delta+m p)\|a\|^{n^{m}}$ holds for all positive integer m. Now, let $x_{1}, \ldots, x_{n+1} \in A$. We have

$$
\begin{equation*}
\left|\varphi\left(x_{1} \ldots x_{n}\right)-\varphi\left(x_{1}\right) \ldots \varphi\left(x_{n}\right)\left\|\varphi\left(x_{n+1}\right) \mid \leq \delta k\right\| x_{1}\|\ldots\| x_{n+1} \|\right. \tag{2.1}
\end{equation*}
$$

In particular, if $x_{n+1}=a^{n^{m}}$ by 2.1 we have

$$
\left|\varphi\left(x_{1} \ldots x_{n}\right)-\varphi\left(x_{1}\right) \ldots \varphi\left(x_{n}\right)\right| \leq \frac{\delta k\left\|x_{1}\right\| \ldots\left\|x_{n}\right\|\left\|a^{n^{m}}\right\|}{\left|\varphi\left(a^{n^{m}}\right)\right|} \leq \frac{\delta k\left\|x_{1}\right\| \ldots\left\|x_{n}\right\|}{1+\delta+m p}
$$

Letting $m \rightarrow \infty$ shows that φ is n-multiplicative, which is a contradiction.
Theorem 2.3. Let A be a semigroup and φ be a complex valued function defined on A such that $\left|\varphi\left(x_{1} \ldots x_{n}\right)-\varphi\left(x_{1}\right) \ldots \varphi\left(x_{n}\right)\right| \leq \delta$ for all $x_{1}, . ., x_{n} \in A$. Then either $|\varphi(x)| \leq 1+\delta$ for all $x \in A$ or φ is n-multiplicative.

Proof. If φ is not n-multiplicative, then by the Theorem 2.1, there exists $k>0$ such that $|\varphi(x)| \leq k$ for all $x \in A$. Suppose there exists $a \in A$ such that $|\varphi(a)|>1+\delta$. Thus, $|\varphi(a)|=1+\delta+p$ for some $p>0$. By a similar argument to that in the Theorem 2.2, we obtain $\left|\varphi\left(a^{n^{m}}\right)\right| \geq 1+\delta+m p$ for all positive integer m , and the rest of the proof is similar to the proof of the Theorem 2.2 .

Theorem 2.4. Let A be a Banach algebra and $\varphi: A \rightarrow \mathbb{C}$ be a nonzero (δ, n) homomorphism. Then $\|\varphi\| \leq 1+\delta$.

Proof. If φ is n-homomorphism, then as in the proof of [14, Lemma 2.1] we can see that $\|\varphi\| \leq 1$. If φ is (δ, n)-homomorphism such that φ is not n-multiplicative, then by the Theorem 2.2, the result follows.

Lemma 2.5. Let A be a normed algebra and $0<\delta<1$. If $\phi: A \rightarrow \mathbb{C}$ is (ε, δ, n) homomorphism such that $\|\mid \phi\| \|<\infty$, then $\left\|\|\phi\| \leq(1+\delta)^{1 /(n-1)}\right.$.

Proof. Suppose that $\mid\|\phi\| \|=k>0$. By the hypothesis, we have $\left|\phi(x)^{n}-\phi\left(x^{n}\right)\right| \leq$ $\delta\|x\|^{n}$ for all $x \in A$, so $|\phi(x)|^{n} \leq \delta\|x\|^{n}+\left|\phi\left(x^{n}\right)\right|$. Therefore for all $x \neq 0$, where $x^{n} \neq 0$, we have

$$
\frac{|\phi(x)|^{n}}{\|x\|^{n}} \leq \delta+\frac{\left|\phi\left(x^{n}\right)\right|}{\|x\|^{n}} \leq \delta+\frac{\left|\phi\left(x^{n}\right)\right|}{\left\|x^{n}\right\|} \leq \delta+k
$$

If $x^{n}=0$, since $\varphi(0)=0$ then

$$
\frac{|\phi(x)|^{n}}{\|x\|^{n}} \leq \delta+\frac{\left|\phi\left(x^{n}\right)\right|}{\|x\|^{n}}=\delta+0 \leq \delta+k
$$

and so $k^{n}-k \leq \delta$. Hence, if $k>1$, then $k<(1+\delta)^{1 /(n-1)}$, since $\delta<1$ and if $k \leq 1$, then $k \leq 1<(1+\delta)^{1 /(n-1)}$, so the result follows.

Theorem 2.6. Suppose that A be a normed algebra, $0<\delta<1$ and $p \geq 0$. Let $\phi: A \rightarrow \mathbb{C}$ is a functional such that

$$
\left|\phi\left(x_{1} \cdots x_{n}\right)-\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right| \leq \delta\left\|x_{1}\right\|^{p} \cdots\left\|x_{n}\right\|^{p}\left(x_{1}, \cdots, x_{n} \in A\right)
$$

Then either ϕ is n-multiplicative or $|\phi(x)| \leq(1+\delta)^{1 /(n-1)}\|x\|^{p}$ for all $x \in A$.
Proof. Suppose that ϕ is not n-multiplicative. Then by the Theorem 2.1 there exists $M>0$ such that $|\phi(x)| \leq M\|x\|^{p}$ for all $x \in A$. It is clear that $\phi(0)=0$ for $p \neq 0$. If $k=\sup _{x \in A}|\phi(x)|$ for $p=0$ and $k=\sup _{x \in A \backslash\{0\}} \frac{|\phi(x)|}{\|x\|^{p}}$ for $p \neq 0$, then we have

$$
|\phi(x)|^{n} \leq \delta\|x\|^{n p}+\left|\phi\left(x^{n}\right)\right| \leq \delta\|x\|^{n p}+k\left\|x^{n}\right\|^{p} \leq(\delta+k)\|x\|^{n p}
$$

for all $x \in A$. Finally, by using a similar argument as in the proof of the Lemma 2.5, we have $|\phi(x)| \leq(1+\delta)^{1 /(n-1)}\|x\|^{p}$ for all $x \in A$, as desired.

Theorem 2.7. [2, 2.6] Let A be a normed algebra and ε, δ, p be non-negative real numbers. Suppose that $\varphi: A \rightarrow \mathbb{C}$ is a functional such that

$$
\begin{aligned}
&|\varphi(x+y)-\varphi(x)-\varphi(y)| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)(x, y \in A) \\
& \text { and } \\
&\left|\varphi\left(x_{1} \cdots x_{n}\right)-\varphi\left(x_{1}\right) \cdots \varphi\left(x_{n}\right)\right| \leq \delta\left\|x_{1}\right\|^{p} \cdots\left\|x_{n}\right\|^{p}\left(x_{1}, \cdots, x_{n} \in A\right)
\end{aligned}
$$

Then φ is additive and n-multiplicative or there is a constant k such that

$$
|\varphi(x)| \leq k\|x\|^{p}(x \in A)
$$

Proof. Suppose that φ is not additive or, is not n-multiplicative. If φ is not n multiplicative, then by the Theorem 2.1, the result follows. Now, if φ is not additive, then there exist $a, b \in A$, such that $\varphi(a+b)-\theta(a)-\varphi(b) \neq 0$. For any $x \in A$, by the hypothesis, we have

$$
\begin{aligned}
|\varphi(x)|^{(n-1)}|\varphi(a+b)-\varphi(a)-\varphi(b)|= & \mid \varphi(x)^{(n-1)} \varphi(a+b)-\varphi(x)^{(n-1)} \varphi(a)-\varphi(x)^{(n-1)} \varphi(b) \pm \\
& \varphi\left(x^{(n-1)}(a+b)\right) \pm \varphi\left(x^{(n-1)} a\right) \pm \varphi\left(x^{(n-1)} b\right) \mid \\
\leq & \left|\varphi(x)^{(n-1)} \varphi(a+b)-\varphi\left(x^{(n-1)}(a+b)\right)\right|+ \\
& \left|\varphi\left(x^{(n-1)} a+x^{(n-1)} b\right)-\varphi\left(x^{(n-1)} a\right)-\varphi\left(x^{(n-1)} b\right)\right|+ \\
& \left|\varphi(x)^{(n-1)} \varphi(a)-\varphi\left(x^{(n-1)} a\right)\right|+ \\
& \left|\varphi\left(x^{(n-1)} b\right)-\varphi(x)^{(n-1)} \varphi(b)\right| \\
\leq & \delta\|x\|^{(n-1) p}\|a+b\|^{p}+\varepsilon\left(\left\|x^{(n-1)} a\right\|^{p}+\left\|x^{(n-1)} b\right\|^{p}\right)+ \\
& \delta\|x\|^{(n-1) p}\|a\|^{p}+\delta\|x\|^{(n-1) p}\|b\|^{p} \\
\leq & \|x\|^{(n-1) p}\left(\delta\left(\|a+b\|^{p}+\|a\|^{p}+\|b\|^{p}\right)+\varepsilon\left(\|a\|^{p}+\|b\|^{p}\right)\right)
\end{aligned}
$$

Therefore, if

$$
k=\left(\frac{\delta\left(\|a+b\|^{p}+\|a\|^{p}+\|b\|^{p}\right)+\varepsilon\left(\|a\|^{p}+\|b\|^{p}\right)}{|\varphi(a+b)-\varphi(a)-\varphi(b)|}\right)^{\frac{1}{(n-1)}}
$$

then we have $|\varphi(x)| \leq k\|x\|^{p}$, as desired.
Theorem 2.8. Let A be a real Banach algebra, $0<\delta<1$ and n be an even number. Let $\phi: A \rightarrow \mathbb{R}$ be (ε, δ, n)-multiplicative. Then $\|\mid \phi\| \| \leq(1+\delta)^{1 /(n-1)}$.

Proof. If ϕ is not additive or is not n-multiplicative, then by the Theorem 2.7 there exists $k>0$ such that $|\phi(x)| \leq k\|x\|$ for all $x \in A$, so by the Lemma 2.5 . $\left|\left||\phi| \|<(1+\delta)^{1 /(n-1)}\right.\right.$.

Now suppose ϕ is additive and n-multiplicative. Fix $x \in A$ with $\|x\|=1$. Then the mapping $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(t)=\phi(t x)$ is additive. We now show that h is linear. To do this, we define two functions $f, g: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ by $f(t)=\frac{\phi\left(t^{\frac{n}{2}} x^{n}\right)}{t^{\frac{n}{2}}}$ and $g(t)=\left(\frac{\phi(t x)}{t}\right)^{\frac{n}{2}}$. It is easy to see that $f(t s)=g(t) g(s)$ for all $s, t \in R \backslash\{0\}$. Then by [12, Theorem 3] we can assume that either g is bounded or $g(1) \neq 0$ and $g(t)=g(1) k(t)$, where k is multiplicative. First, suppose that g is bounded, then there exists $M>0$ such that $|g(t)| \leq M$ for all $t \in \mathbb{R} \backslash\{0\}$. Then $|h(t)| \leq M^{\frac{2}{n}}|t|$ and so h is continuous at zero. Since h is additive, it is easy to see that h is linear. In the second case, define $\psi: \mathbb{R} \rightarrow \mathbb{R}$ by $\psi(t)=t k(t)^{\frac{n}{2}}=g(1)^{-\frac{2}{n}} h(t)$ for all $t \in \mathbb{R} \backslash\{0\}$ and $\psi(0)=0$. Since k is multiplicative, then ψ is multiplicative and since h is additive, so ψ is additive. Now, because $\psi: \mathbb{R} \rightarrow \mathbb{R}$ is additive and multiplicative map and $g(1) \neq 0$, then it is easy to see that it is the identity map. Thus h is continuous, and so it is easy to see that h is linear. Therefore $\phi(t x)=t \phi(x)$ for all $t \in \mathbb{R}$ and $x \in A$ with $\|x\|=1$. Now suppose that $y \in A \backslash\{0\}$. For all $t \in \mathbb{R}$ we have $\phi(t y)=\phi\left(t\|y\| \frac{y}{\|y\|}\right)=t\|y\| \phi\left(\frac{y}{\|y\|}\right)$. Consequently ϕ is linear and then it is an n-homomorphism. Now the result follows by the Theorem 2.4 and the Lemma 2.5 .

Corollary 2.9. Let A be a real Banach algebra, $0<\delta<1$, X be a locally compact Hausdorff space and let $\phi: A \rightarrow C_{0}(X)$ be (ε, δ, n)-multiplicative. If n is an even number, then $\|\phi\| \| \leq(1+\delta)^{1 /(n-1)}$.

Proof. By the hypothesis the functional $\phi_{x}: A \rightarrow \mathbb{R}$ by $\phi_{x}(a)=\phi(a)(x)$ is also (ε, δ, n)-multiplicative for every $x \in X$. Then by the Theorem 2.8, $\left\|\left\|\phi_{x}\right\|\right\| \leq(1+$ $\delta)^{1 /(n-1)}$ for all $x \in X$. Hence

$$
\|\|\phi\|\|=\sup _{a \in A \backslash\{0\}} \frac{\|\phi(a)\|}{\|a\|}=\sup _{a \in A \backslash\{0\}} \sup _{x \in X} \frac{\left|\phi_{x}(a)\right|}{\|a\|} \leq(1+\delta)^{1 /(n-1)}
$$

Theorem 2.10. Let A be a real Banach algebra, $0<\delta<1$ and n an odd number. Suppose $\phi: A \rightarrow \mathbb{R}$ is (ε, δ, n)-multiplicative such that in the case where ϕ is an additive and n-multiplicative, we have $1 \in \phi(A)$. Then $\|\phi\| \| \leq(1+\delta)^{1 /(n-1)}$.

Proof. If ϕ is not additive or not n-multiplicative, then by the Theorem 2.7 there exists $k>0$ such that $|\phi(x)| \leq k\|x\|$ for all $x \in A$, so by the Lemma 2.5, $\||\phi|\|<$ $(1+\delta)^{1 /(n-1)}$.

If ϕ is additive and n-multiplicative, then by the hypothesis there exists $a \in A$ such that $\phi(a)=1$. Now we define additive function $\psi: A \rightarrow \mathbb{R}$ by $\psi(x)=\phi(a x)$ for all $x \in A$. By the following proof of [14, Lemma 2.1], ψ is multiplicative and $\psi^{n-1}(x)=\phi^{n-1}(x)$ for all $x \in A$. Using the proof of the Theorem 2.8 . Since ψ is additive and multiplicative so it is linear, and hence ϕ is linear. Therefore the result follows by the Theorem 2.4 and the Lemma 2.5 .

Corollary 2.11. Let A be a real Banach algebra, $0<\delta<1$, n be an odd number and let X be a locally compact Hausdorff space. Suppose $\phi: A \rightarrow C_{0}(X)$ is (ε, δ, n) multiplicative and $1 \in \phi_{x}(A)$ for all $x \in X$. Then $\|\phi\| \| \leq(1+\delta)^{1 /(n-1)}$.

Proof. By adopting the proof of the Corollary 2.9, the result follows.
Theorem 2.12. Let A be a real Banach algebra, $0<\delta<1$ and $\varepsilon>0$. Let $\phi: A \rightarrow \mathbb{R}$ be (δ, δ, n)-multiplicative such that in the case where n is odd, we have $1 \in \phi(A)$. If $\psi: A \rightarrow \mathbb{R}$ satisfies $|\phi(x)-\psi(x)| \leq \varepsilon\|x\|$ for all $x \in A$, then ψ is (γ, γ, n)-multiplicative whenever $\gamma=\varepsilon+\delta+\varepsilon\left[2(1+\delta)^{1 /(n-1)}+\varepsilon\right]^{1 /(n-1)}$.

Proof. By the Theorems 2.8 and 2.10 , we have $\||\phi|\| \leq(1+\delta)^{1 /(n-1)}=k$, so $\|\|\psi\| \leq \varepsilon+k$. We prove that the following inequality

$$
\begin{equation*}
\left|\phi\left(a_{1}\right) \ldots \phi\left(a_{m}\right)-\psi\left(a_{1}\right) \ldots \psi\left(a_{m}\right)\right| \leq \varepsilon\left\|a_{1}\right\| \ldots\left\|a_{m}\right\|[k+(\varepsilon+k)]^{m-1} \tag{2.2}
\end{equation*}
$$

for all $1 \leq m \leq n$. By the hypothesis, the inequality 2.2 is certainly true if $m=1$. Assume that 2.2 is true for $m-1$. Therefore

$$
\begin{aligned}
\left|\phi\left(a_{1}\right) \ldots \phi\left(a_{m}\right)-\psi\left(a_{1}\right) \ldots \psi\left(a_{m}\right)\right| \leq & \left|\phi\left(a_{1}\right) \ldots \phi\left(a_{m-1}\right) \| \phi\left(a_{m}\right)-\psi\left(a_{m}\right)\right|+ \\
& \left|\psi\left(a_{m}\right)\right|\left|\phi\left(a_{1}\right) \ldots \phi\left(a_{m-1}\right)-\psi\left(a_{1}\right) \ldots \psi\left(a_{m-1}\right)\right| \\
& \leq \varepsilon\left[k^{m-1}+(\varepsilon+k)[k+(\varepsilon+k)]^{m-2}\right]\left\|a_{1}\right\| \ldots\left\|a_{m}\right\| \\
& \left.\leq \varepsilon[k+(\varepsilon+k)]^{m-1}\right]\left\|a_{1}\right\| \ldots\left\|a_{m}\right\|
\end{aligned}
$$

which complete the proof of 2.2 . Now by 2.2 for all $a_{1}, \ldots, a_{n} \in A$, we have

$$
\begin{aligned}
&\left|\psi\left(a_{1} \ldots a_{n}\right)-\psi\left(a_{1}\right) \ldots \psi\left(a_{n}\right)\right| \leq\left|\psi\left(a_{1} \ldots a_{n}\right)-\phi\left(a_{1} \ldots a_{n}\right)\right|+\left|\phi\left(a_{1} \ldots a_{n}\right)-\phi\left(a_{1}\right) \ldots \phi\left(a_{n}\right)\right| \\
&+\left|\phi\left(a_{1}\right) \ldots \phi\left(a_{n}\right)-\psi\left(a_{1}\right) \ldots \psi\left(a_{n}\right)\right| \\
& \leq\left[\varepsilon+\delta+\varepsilon[k+(\varepsilon+k)]^{n-1}\right]\left\|a_{1}\right\| \ldots\left\|a_{n}\right\| .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
&|\psi(x+y)-\psi(x)-\psi(y)| \leq|\psi(x+y)-\phi(x+y)|+\mid \phi(x+y)-\phi(x)-\phi(y) \| \\
&+|\phi(x)-\psi(x)|+|\phi(y)-\psi(y)| \\
& \leq(2 \varepsilon+\delta)(\|x\|+\|y\|) \\
& \leq\left[\varepsilon+\delta+\varepsilon(2 k+\varepsilon)^{n-1}\right](\|x\|+\|y\|)
\end{aligned}
$$

for all $x, y \in A$, as desired.
Acknowledgments. The authors would like to thank the referee for valuable comments and suggestions.

References

[1] E. Ansari-piri and N. Eghbali, Almost n-multiplicative maps, African J. Math. Comp. Sci. Rese. 5 (2012) 200-203.
[2] E. Ansari-piri, H. Shayanpour and Z. Heidarpour, A class of certain properties of almost n-multiplicative maps on normed algebras, Submitted.
[3] J. A. Baker, The stability of the cosine equation. Proc. Amer. Math. Soc. 803 (1980), 411-416.
[4] J. Bračič and S. Moslehian, On automatic continuity of 3-homomorphisms on Banach algebras, Bull. Malays. Math. Sci. Soc. 2302 (2007), 195-200.
[5] M. Hejazian, M. Mirzavaziri and M. S. Moslehian, n-Homomorphisms, Bull. Iranian Math. Soc. 311 (2005) 13-23.
[6] T. G. Honary and H. Shayanpour, Automatic continuity of n-homomorphisms between Banach algebras, Quaest. Math. 332 (2010) 189-196.
[7] T. G. Honary and H. Shayanpour, Automatic continuity of n-homomorphisms between topological algebras, Bull. Aust. Math. Soc. 833 (2011) 389-400.
[8] T. G. Honary, M. Najafi Tavani and H. Shayanpour, Automatic continuity of nhomomorphisms between Fréchet Algebras, Quaest. Math., 342 (2011) 265-274.
[9] K. Jarosz, Perturbations of Banach algebras,
Lecture Notes in Mathematics, Springer, Berlin, 1120 (1985) 384-436.
[10] E. Park and J. Trout, On the nonexistence of nontrivial involutive n-homomorphisms of C^{*}-algebras, Trans. Amer. Math. Soc. 361 (2009) 1949-1961.
[11] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Pro. Amer. Math. Soc. 722 (1978) 297-300.
[12] P. Šemrl, Almost multiplicative functions and almost linear multiplicative functionals, Aequationes. Math. 63 (2002), 180-192.
[13] P. Šemrl, Non-linear perturbations of homomorphisms on $C(X)$, Non-linear perturbations of homomorphisms on $C(X)$, Quart. J. Math. Oxford. 50 (1999), 87-109.
[14] H. Shayanpour, T. G. Honary, M. S. Hashemi, Certain properties of n-characters and nhomomorphisms on topological algebras. Bull. Malays. Math. Sci. Soc. DOI 10.1007/s40840-014-0062-4.
[15] H. Shayanpour, E. Ansari-piri, Z. Heidarpor and A. Zohri, Approximately n-multiplicative functionals on Banach algebras, submitted.
E. Ansari-Piri

Faculty of Mathematical Science, University of Guilan, Rasht, Iran
E-mail address: eansaripiri@gmail.com
H. Shayanpour

Faculty of Mathematical Sciences, Department of Pure Mathematics, University of Shahrekord, , P. O. Box 88186-34141, Shahrekord, Iran.

E-mail address: h.shayanpour@sci.sku.ac.ir
Z. Heidarpour

Payame Noor University, Iran
E-mail address: heidarpor86@yahoo.com

[^0]: 2010 Mathematics Subject Classification. Primary 46H40; 39B72; secondary 39B82.
 Key words and phrases. (δ, n)-multiplicative, (ε, δ, n)-multiplicative, approximately additive, approximately n-multiplicative.

 Submitted October 16, 2014. Published December 16, 2014.
 The second author was partially supported by the Center of Excellence for Mathematics, University of Shahrekord.

