RETRO BANACH FRAMES, ALMOST EXACT RETRO BANACH FRAMES IN BANACH SPACES

(COMMUNICATED BY OLEG REINOV)

KHOLE TIMOTHY POUMAI AND S.K.KAUSHIK

Abstract

In this paper, we give characterizations of retro Banach frames in Banach spaces. The notion of almost exact retro Banach frame is defined and a characterization of retro Banach frame has been given. Also results exhibiting relationship between frames, almost exact retro Banach frames and Riesz bases has been proved. Finally, we give some perturbation results of retro Banach frames and an almost exact retro Banach frames for Banach spaces.

1. Introduction and Preliminaries

Duffin and Schaeffer [7] introduced the notion of frames. Let \mathcal{H} be a real (or complex) separable Hilbert space with inner product $\langle.$,$\rangle . A countable sequence$ $\left\{f_{k}\right\} \subset \mathcal{H}$ is called a frame (or Hilbert frame) for \mathcal{H}, if there exist numbers $A, B>0$ such that

$$
\begin{equation*}
A\|f\|^{2} \leq \sum_{n=1}^{\infty}\left|\left\langle f, f_{k}\right\rangle\right|^{2} \leq B\|f\|^{2}, \text { for all } f \in \mathcal{H} \tag{1.1}
\end{equation*}
$$

The scalars A and B are called the lower and upper frame bounds of the frame, respectively. They are not unique. The inequality in 1.1 is called the frame inequality of the frame. Feichtinger and Gröcheing [9] extended the notion of frames to Banach space and defined the notion of atomic decomposition. Gröcheing [10] introduced a more general concept for Banach spaces called Banach frame. Casazza, Christensen and Stoeva [3] studied E_{d}-frame and E_{d}-Bessel sequence. For more on the theory of frames, one may refer to [5]. Recall that a BK-space is, by definition, a Banach (scalar) sequence space in which the coordinate functionals are continuous.

Definition 1.1. 3] Let E be a Banach space and E_{d} be a BK-space. A sequence $\left\{f_{n}\right\}_{n=1}^{\infty} \subseteq E^{*}$ is called an E_{d}-frame for E if
(1) $\left\{f_{n}(x)\right\} \in E_{d}$, for all $x \in E$,
(2) there exist constants A and B with $0<A \leq B<\infty$ such that

$$
\begin{equation*}
A\|x\|_{E} \leq\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}} \leq B\|x\|_{E}, \text { for all } x \in E . \tag{1.2}
\end{equation*}
$$

[^0]A and B are called E_{d}-frame bounds. If at least (a) and the upper bound condition in 1.2) are satisfied, then $\left\{f_{n}\right\}$ is called an E_{d}-Bessel sequence for E . If $\left\{f_{n}\right\}$ is an E_{d}-Bessel sequence for E , then a $U: E \rightarrow E_{d}$ given by

$$
U(x)=\left\{f_{n}(x)\right\}, \text { for } x \in E
$$

is a bounded linear operator and U is called the analysis operator associated to $E_{d^{-}}$ Bessel sequence $\left\{f_{n}\right\}$. If $\left\{f_{n}\right\}$ is an E_{d}-frame and there exists a sequence $\left\{x_{n}\right\} \subseteq E$ such that $x=\sum_{n=1}^{\infty} f_{n}(x) x_{n}$, for all $x \in E$, then a pair $\left(x_{n}, f_{n}\right)$ is called an atomic decomposition for E with respect E_{d}. Further, if $\left\{f_{n}\right\}$ is an E_{d}-frame for E and there exists a bounded linear operator $S: E_{d} \longrightarrow E$ such that $S\left(\left\{f_{n}(x)\right\}\right)=x$ for all $x \in \mathrm{E}$, then a pair $\left(\left\{f_{n}\right\}, S\right)$ is called a Banach frame for E with respect to E_{d}.

In 14 Stoeva defined and studied E_{d}-Riesz bases.
Definition 1.2. [14] Let E be a Banach space and E_{d} be a BK-space. The sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq E$ is called an E_{d}-Riesz basis for E , if it is complete in E and there exist constants $0<A \leq B<\infty$ such that for every $\left\{c_{n}\right\}_{n=1}^{\infty} \in E_{d}$ one has

$$
\begin{equation*}
A\left\|\left\{c_{n}\right\}_{n=1}^{\infty}\right\|_{E_{d}} \leq\left\|\sum_{n=1}^{\infty} c_{n} x_{n}\right\|_{E} \leq B\left\|\left\{c_{n}\right\}_{n=1}^{\infty}\right\|_{E_{d}} \tag{1.3}
\end{equation*}
$$

The number A (resp. B) in $\sqrt{1.3}$ is called a lower (resp. upper) E_{d}-Riesz basis bound.

Next, we give few results in the form of lemmas which will be used in the subsequent work.

Lemma 1.3. [3] Let E_{d} be a BK-space for which the canonical unit vectors $\left\{e_{n}\right\}$ form a Schauder basis. Then the space $Y_{d}=\left\{\left\{h\left(e_{n}\right)\right\}: h \in E_{d}^{*}\right\}$ with norm $\left\|\left\{h\left(e_{n}\right)\right\}\right\|_{Y_{d}}=\|h\|_{E_{d}^{*}}$ is a BK-space isometrically isomorphic to E_{d}^{*}. Also, every continuous linear functional Φ on E_{d} has the form $\Phi\left\{c_{n}\right\}=\sum_{n=1}^{\infty} c_{n} d_{n}$, where $\left\{d_{n}\right\} \in$ Y_{d} is uniquely determined by $d_{n}=\Phi\left(e_{n}\right)$, and $\|\Phi\|=\left\|\left\{\Phi\left(e_{n}\right)\right\}\right\|_{Y_{d}}$.
Lemma 1.4. 15] Let X, Y be Banach spaces and $S \in B(X, Y)$. Then the following are equivalent.
(1) S has a pseudoinverse operator S^{\dagger}. i.e. $S^{\dagger}: S S^{\dagger} S=S$.
(2) There exist closed subspaces W, Z of X, Y such that

$$
X=k e r S \oplus W, Y=S(X) \oplus Z
$$

Lemma 1.5. 14 Let E_{d} be BK-space which has a sequence of canonical unit vectors as basis and $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq E$ be a sequence. Then, $\left\{x_{n}\right\}$ is a Riesz basis if and only if the operator T, given by $T\left\{\alpha_{n}\right\}_{n=1}^{\infty}=\sum_{n=1}^{\infty} \alpha_{n} x_{n}$ is an isomorphism of E_{d} onto E.

Lemma 1.6. 2] If E is a Banach space, $\lambda_{1}, \lambda_{2} \in[0,1)$ and $S: E \rightarrow E$ is a linear operator satisfying

$$
\|x-S(x)\| \leq \lambda_{1}\|x\|+\lambda_{2}\|S(x)\|, \text { for all } \in E
$$

Then, S is a bounded invertible operator.

Throughout this paper, E will denote a Banach space over the scaler field \mathbb{K} (which is \mathbb{R} or \mathbb{C}), E^{*} the conjugate space of $E,\left[x_{n}\right]$ the closed linear span of $\left\{x_{n}\right\}$ in the norm topology of E. Further, E_{d} denotes a BK-space which has a sequence of canonical unit vectors $\left\{e_{n}\right\}_{n=1}^{\infty}$ as basis, E_{d}^{*} the conjugate space of E_{d} and $Y_{d}=\left\{\left\{h\left(e_{n}\right)\right\}: h \in E_{d}^{*}\right\}$ denotes a BK-space which is defined in Lemma 1.3

2. Main Results

In this section, we begin with defining few definitions. In [11, 12] Jain, Kaushik, Vashisht had introduced and studied retro Banach frames for Banach spaces. Further, P.A.Terekhin [16] introduced and studied the notion of frames for Banach spaces.

Definition 2.1. [16] Let E be a Banach space and E_{d} be a BK-space. A sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \backslash\{0\} \subseteq E$ is called a frame for E with respect to E_{d} if
(1) $\left\{f\left(x_{n}\right)\right\} \in Y_{d}$ for all $f \in E^{*}$,
(2) there exist constants A and B with $0<A \leq B<\infty$ such that

$$
\begin{equation*}
A\|f\|_{E^{*}} \leq\left\|\left\{f\left(x_{n}\right)\right\}\right\|_{Y_{d}} \leq B\|f\|_{E^{*}}, \text { for all } f \in E^{*} \tag{2.1}
\end{equation*}
$$

We refer 2.1) as the frame inequalities. If at least (a) and the upper bound condition in 2.1 are satisfied, then $\left\{x_{n}\right\}$ is called Bessel sequence for E with respect to E_{d}. If $\left\{x_{n}\right\}$ is a frame for E with respect to E_{d} and there exists a bounded linear operator $\mathcal{J}: Y_{d} \rightarrow E^{*}$ such that $\mathcal{J}\left(\left\{f\left(x_{n}\right)\right\}\right)=f$ for all $f \in E^{*}$, then a pair $\left(\left\{x_{n}\right\}, \mathcal{J}\right)$ is called a retro Banach frame for E^{*} with respect to Y_{d}. The operator $\mathcal{J}: Y_{d} \rightarrow E^{*}$ is called the reconstruction operator. If removal one element x_{k} renders the collection $\left\{x_{n}\right\}_{n \neq k}$ no longer a retro Banach frame, then $\left(\left\{x_{n}\right\}, \mathcal{J}\right)$ is called an exact retro Banach frame.

In the following result, we give a necessary and sufficient conditions for the existence of frame in E .

Theorem 2.2. $\left\{x_{n}\right\}$ is a frame for E with respect to E_{d} if and only if there exists a bounded linear operator $\mathcal{T}: E_{d} \rightarrow E$ from E_{d} onto E for which $\mathcal{T}\left(e_{n}\right)=x_{n}$ for all $n \in \mathbb{N}$.

Proof. Let $f \in E^{*}$, B be upper bound of frame $\left\{x_{n}\right\}$. By Lemma 1.3 , $\left\{f\left(x_{n}\right)\right\}=\left\{\Phi_{f}\left(e_{n}\right)\right\}$ for some $\Phi_{f} \in E_{d}^{*}$ and $\left\|\left\{f\left(x_{n}\right)\right\}\right\|=\left\|\Phi_{f}\right\|$. Let $n, m \in \mathbb{N}$ with $n \leq m$ and $\left\{c_{n}\right\} \in E_{d}$, then

$$
\begin{aligned}
\left\|\sum_{k=n}^{m} c_{k} x_{k}\right\| & =\sup _{f \in E^{*},\|f\|=1}\left|\sum_{k=n}^{m} c_{k} f\left(x_{k}\right)\right|=\sup _{f \in E^{*},\|f\|=1}\left|\sum_{k=n}^{m} c_{k} \Phi_{f}\left(e_{k}\right)\right| \\
& =\sup _{f \in E^{*},\|f\|=1}\left|\Phi_{f}\left(\sum_{k=n}^{m} c_{k} e_{k}\right)\right| \leq \sup _{f \in E^{*},\|f\|=1}\left\|\Phi_{f}\right\|\left\|\sum_{k=n}^{m} c_{k} e_{k}\right\| \\
& =\sup _{f \in E^{*},\|f\|=1}\left\|\left\{f\left(x_{n}\right)\right\}\right\|\left\|\sum_{k=n}^{m} c_{k} e_{k}\right\| \leq B\left\|\sum_{k=n}^{m} c_{k} e_{k}\right\| .
\end{aligned}
$$

Hence, $\mathcal{T}: E_{d} \rightarrow E$ given by $\mathcal{T}\left\{c_{n}\right\}=\sum_{n=1}^{\infty} c_{n} x_{n},\left\{c_{n}\right\} \in E_{d}$ is well defined bounded linear operator from E_{d} into E . Moreover, $\mathcal{T}\left(e_{n}\right)=x_{n}$ for all $n \in \mathbb{N}$. By Lemma 1.3 and for $f \in E^{*}$ we have

$$
\left\|\left\{f\left(x_{n}\right)\right\}\right\|=\left\|\left\{f\left(\mathcal{T}\left(e_{n}\right)\right)\right\}\right\|=\|\left\{\mathcal{T}^{*}(f)\left(e_{n}\right\}\|=\| \mathcal{T}^{*} f \|\right.
$$

and from the frame inequalities we have \mathcal{T}^{*} is one-one and $\mathcal{T}^{*}\left(E^{*}\right)$ is closed. Thus by Theorem in [13, p 103], \mathcal{T} is onto.

Conversely, let $\mathcal{T}: E_{d} \rightarrow E$ be well defined bounded linear operator from E_{d} onto E with $\mathcal{T}\left(e_{n}\right)=x_{n}$ for all $n \in \mathbb{N}$. So \mathcal{T}^{*} is one-one and $\mathcal{T}^{*}\left(E^{*}\right)$ is closed by Theorem in [13, p 103]. Again, by Lemma in [8, p 487], there exists constant $C>0$ such that $\|f\| \leq C\left\|\mathcal{T}^{*}(f)\right\|$ for all $f \in E^{*}$. Let $f \in E^{*}$. Then

$$
\left\{f\left(x_{n}\right)\right\}=\left\{f\left(\mathcal{T}\left(e_{n}\right)\right)\right\}=\left\{\mathcal{T}^{*} f\left(e_{n}\right)\right\} \in Y_{d}
$$

Also, by using Lemma 1.3 and for $f \in E^{*}$ we have

$$
\|f\| \leq C\left\|\mathcal{T}^{*}(f)\right\|=\left\|\left\{\mathcal{T}^{*} f\left(e_{n}\right)\right\}\right\|=\left\|\left\{f\left(\mathcal{T}\left(e_{n}\right)\right)\right\}\right\|=\left\|\left\{f\left(x_{n}\right)\right\}\right\|
$$

To show the upper inequality,

$$
\left\|\left\{f\left(x_{n}\right)\right\}\right\|=\left\|\left\{\mathcal{T}^{*} f\left(e_{n}\right)\right\}\right\|=\left\|\mathcal{T}^{*}(f)\right\| \leq\|\mathcal{T}\|\|f\|, \text { for all } f \in E^{*} .
$$

Hence, $\left\{x_{n}\right\}$ is a frame for E with respect to E_{d}.
Remark 2.3. Note that $\left\{x_{n}\right\} \subseteq E$ is a Bessel sequence for E if and only if there exists a bounded linear operator $\mathcal{T}: E_{d} \rightarrow E$ from E_{d} into E for which $\mathcal{T}\left(e_{n}\right)=x_{n}$ for all $n \in \mathbb{N}$. The operator \mathcal{T} is called the synthesis operator associated with Bessel sequence $\left\{x_{n}\right\}$ and $\mathcal{R}: E^{*} \rightarrow Y_{d}$ given by

$$
\mathcal{R}(f)=\left\{f\left(x_{n}\right)\right\}, \text { for } f \in E^{*}
$$

is called the analysis operator associated with Bessel sequence $\left\{x_{n}\right\}$. From Lemma 1.3. we know that Y_{d} is isometrically isomorphic E_{d}^{*}. Let $j_{d}: Y_{d} \rightarrow E_{d}^{*}$ be isometrically isomorphism from Y_{d} onto E_{d}^{*}. Then, $\mathcal{T}^{*}=j_{d} \circ \mathcal{R}$.

Next, we give the following characterization of retro Banach frame in Banach spaces.

Theorem 2.4. Let $\left\{x_{n}\right\}$ be frame for E with respect to E_{d} with bounds A and B. Let $\mathcal{T}: E_{d} \rightarrow E$ and $\mathcal{R}: E^{*} \rightarrow E_{d}^{*}$ be synthesis and analysis operators associated to frame $\left\{x_{n}\right\}$. Then, the following conditions are equivalent.
(1) $\mathcal{T}^{*}\left(E^{*}\right)$ is complemented subspace of E_{d}^{*}.
(2) There exists a bounded linear operator $\mathcal{J}: Y_{d} \rightarrow E^{*}$ such that $\left(\left\{x_{n}\right\}, \mathcal{J}\right)$ is a retro Banach frame for E^{*} with respect to Y_{d}.
(3) \mathcal{T}^{*} has pseudoinverse $\left(\mathcal{T}^{*}\right)^{\dagger}$.
(4) $\operatorname{ker} \mathcal{T}$ is complemented subspace of E_{d}.
(5) \mathcal{T} has pseudoinverse \mathcal{T}^{\dagger}.
(6) There exists an E_{d}-Bessel $\left\{f_{n}\right\}_{n=1}^{\infty} \subseteq E^{*}$ such that

$$
x=\sum_{n=1}^{\infty} f_{n}(x) x_{n}, \text { for all } x \in E .
$$

(7) \mathcal{R} has pseudoinverse \mathcal{R}^{\dagger}.

Proof. (5) \Rightarrow (2) By given hypotheses, \mathcal{T} has a pseudoinverse $\mathcal{T}^{\dagger}: E \rightarrow E_{d}$ and $\mathcal{T} \mathcal{T}^{\dagger}$ is a projection from E onto $\mathcal{T}\left(E_{d}\right)$. But, $\mathcal{T}\left(E_{d}\right)=E$. So, $\mathcal{T} \mathcal{T}^{\dagger}=I_{E}$ and $I_{E^{*}}=\left(\mathcal{T}^{*}\right)^{\dagger} \mathcal{T}^{*}$. Take $\mathcal{J}=\left(\mathcal{T}^{*}\right)^{\dagger} j_{d}: Y_{d} \rightarrow E^{*}$ and we have

$$
f=\left(\mathcal{T}^{*}\right)^{\dagger} \mathcal{T}^{*}(f)=\left(\mathcal{T}^{*}\right)^{\dagger} j_{d} \mathcal{R}(f)=\mathcal{J}\left\{f\left(x_{n}\right)\right\}, \text { for all } f \in E^{*}
$$

Hence, $\left(\left\{x_{n}\right\}, \mathcal{J}\right)$ is a retro Banach frame for E^{*} with respect to Y_{d}.
$(2) \Rightarrow(3)$ Given that $f=\mathcal{J}(\mathcal{R}(f))=\mathcal{J} j_{d}^{-1} \mathcal{T}^{*}(f)$ for all $f \in E^{*}$. Thus $\mathcal{T}^{*} \mathcal{J} j_{d}^{-1} \mathcal{T}^{*}=$
\mathcal{T}^{*}. Thus, $\mathcal{J} j_{d}^{-1}$ is a pseudoinverse of \mathcal{T}^{*}.
(1) $\Leftrightarrow(3)$ Since $\operatorname{ker} \mathcal{T}^{*}=\{0\}$ and by Lemma 1.4. it follows.
(3) $\Leftrightarrow(5)$ obvious.
(4) $\Leftrightarrow(5)$ Since, $\mathcal{T}\left(E_{d}\right)=E$ and by Lemma 1.4 it follows.
(7) \Leftrightarrow (3) Obvious.
$(6) \Rightarrow(5)$ By hypothesis, there exists an E_{d}-Bessel sequence $\left\{f_{n}\right\} \subseteq E^{*}$ such that

$$
x=\sum_{n=1}^{\infty} f_{n}(x) x_{n}, \text { for all } x \in E
$$

Let $U: E \rightarrow E_{d}$ be the associated analysis operator of E_{d}-Bessel sequence $\left\{f_{n}\right\}$ given by $U(x)=\left\{f_{n}(x)\right\}, x \in E$. Then, $\mathcal{T} U=I_{E}$ and $\mathcal{T} U \mathcal{T}=\mathcal{T}$. Hence, \mathcal{T} has pseudoinverse.
(5) \Rightarrow (6) $\mathcal{T}^{\dagger}{ }^{\dagger}$ is a projection from E onto $\mathcal{T}\left(E_{d}\right)=E$. So $\mathcal{T} \mathcal{T}^{\dagger}=I_{E}$. Take $f_{n}=\left(\mathcal{T}^{\dagger}\right)^{*}\left(l_{n}\right), n \in \mathbb{N}$, where $\left\{l_{n}\right\} \subseteq E_{d}^{*}$ is a sequence of coordinate functionals on E_{d}. So, for $x \in E$, we have

$$
f_{n}(x)=\left(\mathcal{T}^{\dagger}\right)^{*}\left(l_{n}(x)\right)=l_{n}\left(\mathcal{T}^{\dagger}(x)\right)
$$

This gives $\left\{f_{n}(x)\right\}=\mathcal{T}^{\dagger}(x) \in E_{d}$, for all $x \in E$. Further

$$
\left\|\left\{f_{n}(x)\right\}\right\| \leq\left\|\mathcal{T}^{\dagger}\right\|\|x\|, \text { for all } x \in E
$$

Thus, $\left\{f_{n}\right\}$ is an E_{d}-Bessel sequence for E. Also, for $x \in E$, we have

$$
x=\mathcal{T} \mathcal{T}^{\dagger}(x)=\mathcal{T}\left(\left\{f_{n}(x)\right\}\right)=\sum_{n=1}^{\infty} f_{n}(x) x_{n}
$$

Remark 2.5. Let $\left(\left\{x_{n}\right\}, \mathcal{J}\right)$ be a retro Banach frame for E^{*} with respect Y_{d}. By Theorem 2.4, there exists an E_{d}-Bessel sequence $\left\{f_{n}\right\}$ such that $x=\sum_{n=1}^{\infty} f_{n}(x) x_{n}$, for all $x \in \mathbb{N}$. We will call $\left\{f_{n}\right\}$ as the associated E_{d}-Bessel sequence to retro Banach frame $\left(\left\{x_{n}\right\}, \mathcal{J}\right)$. Let U be the analysis operator of $\left\{f_{n}\right\}$. So, $I_{E}=\mathcal{T} U$. Also, $U \mathcal{T} U=U$ and $\mathcal{T} U \mathcal{T}=\mathcal{T}$. Moreover, $U \mathcal{T}$ is a projection from E_{d} onto $U(E)$. So, $E_{d}=U(E) \oplus \operatorname{ker} U \mathcal{T}$. It is obvious that $\operatorname{ker} \mathcal{T} \subseteq \operatorname{ker} U \mathcal{T}$. Let $\alpha \in \operatorname{ker} U \mathcal{T}$, then $U \mathcal{T}(\alpha)=0$ and $\mathcal{T} U \mathcal{T}(\alpha)=0$. Thus, $\operatorname{ker} \mathcal{T}=\operatorname{ker} U \mathcal{T}$. Hence, $E_{d}=U(E) \oplus \operatorname{ker} \mathcal{T}$.

Theorem 2.6. Let $\left(\left\{x_{n}\right\}, \mathcal{J}\right)$ be a retro Banach frame for E^{*} with respect to Y_{d}. Then, removal of one element x_{k} from $\left\{x_{n}\right\}_{n=1}^{\infty}$ leaves $\left\{x_{n}\right\}_{n \neq k}$ either incomplete or a frame.
Proof. Since $\left(\left\{x_{n}\right\}, \mathcal{J}\right)$ is a retro Banach frame, so by Theorem 2.4 there exists an E_{d}-Bessel sequence $\left\{f_{n}\right\} \subseteq E^{*}$ and for $k \in \mathbb{N}$ we have

$$
x_{k}=\sum_{n=1}^{\infty} f_{n}\left(x_{k}\right) x_{n}=\mathcal{T}\left(\left\{f_{n}\left(x_{k}\right)\right\}_{n=1}^{\infty}\right)
$$

In the first case let $f_{n}\left(x_{n}\right)=1$, for all $n \in \mathbb{N}$. Also, we have $x_{k}=\mathcal{T}\left(e_{k}\right)$. Then

$$
0=\mathcal{T}\left(\left\{f_{n}\left(x_{k}\right)\right\}_{n=1}^{\infty}-e_{k}\right)=\mathcal{T}\left(\left\{f_{n}\left(x_{k}\right)\right\}_{n \neq k}\right)
$$

Therefore, $\left\{f_{n}\left(x_{k}\right)\right\}_{n \neq k} \in \operatorname{ker} \mathcal{T}$. Let U be the analysis operator of $\left\{f_{n}\right\}$ and $\left\{f_{n}\left(x_{k}\right)\right\}_{n=1}^{\infty} \in U(E)$. Therefore, $\left\{f_{n}\left(x_{k}\right)\right\}_{n \neq k} \in U(E)$. Moreover, from the Remark 2.5 $\operatorname{ker} \mathcal{T} \cap U(E)=\{0\}$. Thus, $f_{n}\left(x_{k}\right)=0$, for all $n \neq k$. In this case $\left\{f_{n}\right\}$ is
a biorthogonal system for $\left\{x_{n}\right\}$ and hence $\left\{x_{n}\right\}_{n \neq k}$ is incomplete.
In the second case, suppose that there is a $k \in \mathbb{N}$ such that $f_{k}\left(x_{k}\right) \neq 1$. Then we have

$$
x=\sum_{n=1}^{\infty} f_{n}(x) x_{n}=f_{k}(x) x_{k}+\sum_{n \neq k} f_{n}(x) x_{n}, \text { for all } x \in E
$$

and also

$$
x_{k}=\sum_{n=1}^{\infty} f_{n}\left(x_{k}\right) x_{n}=f_{k}\left(x_{k}\right) x_{k}+\sum_{n \neq k} f_{n}\left(x_{k}\right) x_{n}
$$

So, $x_{k}=A \sum_{n \neq k} f_{n}\left(x_{k}\right) x_{n}$, where $A=\frac{1}{1-f_{k}\left(x_{k}\right)}$. From the above equations we have

$$
\begin{aligned}
x & =\sum_{n \neq k}\left(f_{k}(x) A f_{n}\left(x_{k}\right)+f_{n}(x)\right) x_{n} \\
& =\sum_{n \neq k}\left(f_{k}(x) A f_{n}\left(x_{k}\right)+f_{n}(x)\right) \mathcal{T}\left(e_{n}\right) \\
& =\mathcal{T}\left(\sum_{n \neq k}\left(f_{k}(x) A f_{n}\left(x_{k}\right)+f_{n}(x)\right) e_{n}\right) \\
& =\mathcal{T}\left(\left\{f_{k}(x) A f_{n}\left(x_{k}\right)+f_{n}(x)\right\}_{n \neq k}\right)
\end{aligned}
$$

But $\left\{f_{k}(x) A f_{n}\left(x_{k}\right)+f_{n}(x)\right\}_{n \neq k} \in E_{d}$, so \mathcal{T} is bounded linear operator from E_{d} onto E for which $\mathcal{T}\left(e_{n}\right)=x_{n}$, for all $n \neq k$. So, by Theorem $2.2\left\{x_{n}\right\}_{n \neq k}$ is a frame for E with respect to E_{d}.

Definition 2.7. A retro Banach frame $\left(\left\{x_{n}\right\}, \mathcal{J}\right)$ is said to be almost exact if on removal of one element x_{k} from $\left\{x_{n}\right\}_{n=1}^{\infty}$ leaves $\left\{x_{n}\right\}_{n \neq k}$ not longer a frame.

Next, we give relation between almost retro Banach frame and Schauder basis in Banach spaces.
Theorem 2.8. Let $\left(\left\{x_{n}\right\}, J\right)$ be almost exact retro Banach frame for E^{*}. Then, $\left\{x_{n}\right\}$ is a Schauder basis for E.
Proof. Let $\left\{f_{n}\right\}$ be associated E_{d}-Bessel sequence of retro Banach frame $\left(\left\{x_{n}\right\}, J\right)$. In view of Theorem 2.6, $\left\{f_{n}\right\}$ is biorthogonal to $\left\{x_{n}\right\}$. Also, from Theorem 2.4 , $x=\sum_{n=1}^{\infty} f_{n}(x) x_{n}$, for all $x \in E$.
Hence, $\left\{x_{n}\right\}$ is a Schauder basis for E .
Remark 2.9. Let $\left(\left\{x_{n}\right\}, \mathcal{J}\right)$ be a retro Banach frame which is not almost exact. Then, $\left\{x_{n}\right\}$ is not a basis. Indeed, by Definition 2.7, there is a $k \in \mathbb{N}$ such that $\left\{x_{n}\right\}_{n \neq k}$ is a frame. So, $\overline{\operatorname{span}}\left\{x_{n}\right\}_{n \neq k}=E$. But, no proper subset of a basis can be complete. Hence, $\left\{x_{n}\right\}$ cannot be a basis.

Next, we give the characterization of almost exact retro Banach frame for E^{*}.
Theorem 2.10. Let $\left\{x_{n}\right\}$ be a frame for E with respect to E_{d} and \mathcal{T} as its synthesis operator. Then the following are equivalent.
(1) $\left\{x_{n}\right\}$ is an E_{d}-Riesz basis.
(2) \mathcal{T} is one-one.
(3) There exists a bounded linear operator $\mathcal{J}: Y_{d} \rightarrow E^{*}$ from Y_{d} into E^{*} such that $\left(\left\{x_{n}\right\}, \mathcal{J}\right)$ is almost exact retro Banach frame for E^{*}.

Proof. (1) $\Leftrightarrow(2)$ Obvious.
$(3) \Rightarrow(2)$ We know that \mathcal{T} is bounded linear operator from E_{d} onto E for which $\mathcal{T}\left(e_{n}\right)=x_{n}$, for all $n \in \mathbb{N}$. From Theorem 2.8, $\left\{x_{n}\right\}$ is a Schauder basis for E. Let $\left\{a_{n}\right\} \in E_{d}$ such that $\mathcal{T}\left(\left\{a_{n}\right\}\right)=0$. Then, $\sum_{n=1}^{\infty} a_{n} x_{n}=0$. Thus, $a_{n}=0$ for all $n \in \mathbb{N}$. Hence, \mathcal{T} is one-one.
$(2) \Rightarrow(3)$ By given hypothesis, \mathcal{T} is invertible, so also \mathcal{T}^{*} is also invertible. Take $\mathcal{J}=\left(\mathcal{T}^{*}\right)^{-1} j_{d}: Y_{d} \rightarrow E^{*}$, then

$$
\mathcal{J}\left(\left\{f\left(x_{n}\right)\right\}\right)=\left(\mathcal{T}^{*}\right)^{-1} j_{d} \mathcal{R}(f)=\left(\mathcal{T}^{*}\right)^{-1} \mathcal{T}^{*}(f)=f, \text { for all } f \in E^{*}
$$

Also, it is clear that $\left\{x_{n}\right\}$ is a Schauder basis for E . So for $k \in \mathbb{N},\left\{x_{n}\right\}_{n \neq k}$ is incomplete in E. Hence, $\left\{x_{n}\right\}_{n \neq k}$ is not a frame.

Remark 2.11. If $\left(\left\{x_{n}\right\}, J\right)$ is an almost exact retro Banach frame for E^{*}, then $\left\{x_{n}\right\}$ is minimal and there exists a sequence $\left\{f_{n}\right\} \subseteq E^{*}$ which is biorthogonal to $\left\{x_{n}\right\}$.

3. Perturbation of frames and retro Banach frames

Perturbation theory is a very important tool in various area of applied mathematics. In frame theory, it begin with the fundamental perturbation result of Paley and Wiener. P.G.Casazza and O.Christensen [2] studied the perturbation of operator and its application to frame theory. Also, O.Christensen and C.Heil 4, Y.C.Zhu and S.Y.Wang [17] and T. Stoeva [6] gave various results related to the perturbation of atomic decompositions and Banach frames in Banach spaces. In this section, we give some perturbation results related to almost exact retro Banach frames and retro Banach frames in Banach spaces.

Theorem 3.1. Let $\left(\left\{x_{n}\right\}, \mathcal{J}\right)$ be an almost exact retro Banach frame for E^{*} and $\left\{f_{n}\right\} \subset E^{*}$ be its associated E_{d}-Bessel sequence. If for every non zero element $x_{0} \in E$ there exists a reconstruction operator $J_{1}: Y_{d} \rightarrow E^{*}$ such that $\left(\left\{x_{n}+x_{0}\right\}, J_{1}\right)$ is a retro Banach frame for E^{*} with respect to Y_{d}, then there exists an x_{0} such that the retro Banach frame $\left(\left\{x_{n}+x_{0}\right\}, J_{1}\right)$ is not almost exact.

Proof. Since, $\left\{f_{n}\right\}$ is orthogonal to $\left\{x_{n}\right\}$ so $f_{j}\left(x_{i}\right)=\delta_{j i}$, for all $j, i \in \mathbb{N}$. Suppose, $\left(\left\{x_{n}+x_{0}\right\}, J_{1}\right)$ is almost exact. By Remark 2.11, there a sequence $\left\{g_{n}\right\} \subseteq E^{*}$ which is orthogonal to $\left\{x_{n}+x_{0}\right\}$ such that $g_{j}\left(x_{i}+x_{0}\right)=\delta_{j i}$ for all $j, i \in \mathbb{N}$. As $x_{0} \neq 0$, so there exists $p \in \mathbb{N}$ such that $f_{p}\left(x_{0}\right) \neq 0$. Let $m \in \mathbb{N}$ such that $m \geq p$ and $a_{1}, a_{2}, a_{3}, \ldots, a_{m}$ be any m scalars. Then

$$
\begin{aligned}
\left|\sum_{k=1}^{m} a_{k} f_{p}\left(x_{k}+x_{0}\right)\right| & =\left|a_{p}+\sum_{k=1}^{m} a_{k} f_{p}\left(x_{0}\right)\right| \\
& \geq\left|\sum_{k=1}^{m} a_{k}\right|\left|f_{p}\left(x_{0}\right)\right|-\left|a_{p}\right| \\
& =\left|\sum_{k=1}^{m} a_{k}\right|\left|f_{p}\left(x_{0}\right)\right|-\left|\sum_{k=1}^{m} a_{k} g_{p}\left(x_{k}+x_{0}\right)\right|
\end{aligned}
$$

This gives us

$$
\left|\sum_{k=1}^{m} a_{k}\right| \leq\left(\frac{\left\|f_{p}\right\|+\left\|g_{p}\right\|}{\left|f_{p}\left(x_{0}\right)\right|}\right)\left\|\sum_{k=1}^{m} a_{k}\left(x_{k}+x_{0}\right)\right\|
$$

Therefore, by Theorem 5 in [1], p35] there exist linear functional $f \in E^{*}$ on E such that $f\left(x_{n}+x_{0}\right)=1$, for all $n \in \mathbb{N}$. If $f\left(x_{0}\right)=1$, then $f\left(x_{n}\right)=0$ for all $n \in \mathbb{N}$. But $\operatorname{span}\left\{x_{n}\right\}_{n=1}^{\infty}=E$, so $f=0$ which a contradiction. Thus $f\left(x_{0}\right) \neq 1$. Now take $g=\frac{1}{1-f\left(x_{0}\right)} f$. Then $g \in E^{*}$ such that $g\left(x_{n}\right)=\frac{1}{1-f\left(x_{0}\right)} f\left(x_{n}\right)=1$, for all $n \in \mathbb{N}$. Let $y \in E$ such that $g(y) \neq 0$. Take $x_{0}=\frac{-1}{g(y)} y$ which is a non zero element in E. Then, $g\left(x_{n}+x_{0}\right)=1+\frac{-1}{g(y)} g(y)=0$, for all $n \in \mathbb{N}$. Since, $\overline{\operatorname{span}}\left\{x_{n}+x_{0}\right\}_{n=1}^{\infty}=E$, so $g=0$ which is a contradiction. Hence, retro Banach frame $\left(\left\{x_{n}+x_{0}\right\}, J_{1}\right)$ is not almost exact.

Theorem 3.2. Let $\left(\left\{x_{n}\right\}, \mathcal{J}\right)$ be a retro Banach frame for E^{*} with respect to Y_{d} with bounds A and B. Let there exist constants $\lambda, \mu>0$ and $\beta \in[0,1)$ satisfying $\lambda+\mu\left\|\mathcal{T}^{\dagger}\right\|<1$, where \mathcal{T} is the associated synthesis operator of retro Banach frame $\left(\left\{x_{n}\right\}, \mathcal{J}\right)$ and \mathcal{T}^{\dagger} is the pseudoinverse of \mathcal{T} (see Theorem 2.4). Let a sequence $\left\{y_{n}\right\} \subset E$ satisfy the conditions $\left\{f\left(y_{n}\right)\right\} \in Y_{d}$ for all $f \in E^{*}$ and

$$
\left\|\sum \alpha_{n}\left(x_{n}-y_{n}\right)\right\| \leq \lambda\left\|\sum \alpha_{n} x_{n}\right\|+\beta\left\|\sum \alpha_{n} y_{n}\right\|+\mu\|\alpha\|
$$

for all finite sequences $\alpha=\left\{\alpha_{n}\right\} \in E_{d}$. Then there exists a bounded linear operator $\mathcal{J}_{1}: Y_{d} \rightarrow E^{*}$ such that $\left(\left\{y_{n}\right\}, J_{1}\right)$ is a retro Banach frame for E^{*} with respect to Y_{d} with bounds $\frac{1-\left(\lambda+\mu\left\|\mathcal{T}^{\dagger}\right\|\right)}{(1+\beta)\left\|\mathcal{T}^{\dagger}\right\|}$ and $\frac{(1+\lambda) B+\mu}{1-\beta}$.

Proof. By Theorem 2.4, \mathcal{T} has a pseudoinverse \mathcal{T}^{\dagger} such that $\mathcal{T}^{\dagger}(x)=x$, for all $x \in E$. By given conditions, for all finite sequences $\alpha=\left\{\alpha_{n}\right\} \in E_{d}$ we have

$$
\left\|\sum \alpha_{n} y_{n}\right\| \leq \frac{(1+\lambda)\left\|\sum \alpha_{n} x_{n}\right\|+\mu\|\alpha\|}{1-\beta} \leq \frac{(1+\lambda) B+\mu}{1-\beta}\left\|\sum \alpha_{n} e_{n}\right\|
$$

By Cauchy, it follows that the series $\left\|\sum_{n=1}^{\infty} \alpha_{n} y_{n}\right\|$ is convergent for all $\alpha \in E_{d}$ and also that the operator $\mathcal{T}_{1}: E_{d} \rightarrow E$, given by $\mathcal{T}_{1}(\alpha)=\sum_{n=1}^{\infty} \alpha_{n} y_{n}$, is well defined; moreover, for every $\alpha \in E_{d}$

$$
\left\|\mathcal{T}_{1}(\alpha)\right\| \leq \frac{(1+\lambda) B+\mu}{1-\beta}\left\|\sum_{n=1}^{\infty} \alpha_{n} e_{n}\right\|
$$

Thus, $\left\{y_{n}\right\}$ is a Bessel sequence for E with respect to E_{d} and \mathcal{T}_{1} is the associated operator of $\left\{y_{n}\right\}$. Let $\mathcal{R}_{1}(f)=\left\{f\left(y_{n}\right)\right\}$ be the analysis operator of $\left\{y_{n}\right\}$. Then for all $f \in E^{*}$ we have

$$
\left\|\left\{f\left(y_{n}\right)\right\}\right\|=\left\|\mathcal{R}_{1}(f)\right\|=\left\|j_{d}^{-1} \mathcal{T}_{1}^{*}(f)\right\|=\left\|\mathcal{T}_{1}^{*} f\right\| \leq \frac{(1+\lambda) B+\mu}{1-\beta}\|f\|
$$

By the given condition and for $x \in E$, we have

$$
\begin{aligned}
\left\|x-\mathcal{T}_{1} \mathcal{T}^{\dagger}(x)\right\| & =\left\|\left(\mathcal{T}-\mathcal{T}_{1}\right) \mathcal{T}^{+}(x)\right\| \\
& \leq \lambda\left\|\mathcal{T} \mathcal{T}^{+}(x)\right\|+\beta\left\|\mathcal{T}_{1} \mathcal{T}^{\dagger}(x)\right\|+\mu\left\|\mathcal{T}^{\dagger}(x)\right\| \\
& \leq\left(\lambda+\mu\left\|\mathcal{T}^{\dagger}\right\|\right)\|x\|+\beta\left\|\mathcal{T}_{1} \mathcal{T}^{\dagger}(x)\right\|
\end{aligned}
$$

Take $L=\mathcal{T}_{1} \mathcal{T}^{\dagger}$, by Lemma 1.6 L is invertible and $L^{*}=\left(\mathcal{T}^{\dagger}\right)^{*} \mathcal{T}_{1}^{*}$. Now for $f \in E^{*}$ we have

$$
\|f\|=\left\|\left(L^{*}\right)^{-1} L^{*}(f)\right\| \leq\left\|\left(L^{*}\right)^{-1}\right\|\left\|\left(\mathcal{T}^{\dagger}\right)^{*}\right\|\left\{f\left(y_{n}\right)\right\} \| .
$$

Also, for $x \in E$ we obtain

$$
\begin{aligned}
\|L(x)\| & \geq\|x\|-\left\|\left(I_{E}-L\right)(x)\right\| \\
& \geq\|x\|-\left(\left(\lambda+\mu\left\|\mathcal{T}^{\dagger}\right\|\right)\|x\|+\beta\|L(x)\|\right)
\end{aligned}
$$

From here we get

$$
\frac{1-\left(\lambda+\mu\left\|\mathcal{T}^{\dagger}\right\|\right)}{1+\beta}\|x\| \leq\|L(x)\|, \text { for } x \in E
$$

and

$$
\left\|L^{-1}\right\| \leq \frac{1+\beta}{1-\left(\lambda+\mu\left\|\mathcal{T}^{\dagger}\right\|\right)}
$$

Thus, for $f \in E^{*}$ we have $\frac{1-\left(\lambda+\mu\left\|\mathcal{T}^{\dagger}\right\|\right)}{(1+\beta)\left\|\mathcal{T}^{\dagger}\right\|}\|f\| \leq\left\|\left\{f\left(y_{n}\right)\right\}\right\|$.
Hence, $\left\{y_{n}\right\}$ is a frame for E with bounds $\frac{1-\left(\lambda+\mu\left\|\mathcal{T}^{\dagger}\right\|\right)}{(1+\beta)\left\|\mathcal{T}^{\dagger}\right\|}, \frac{(1+\lambda) B+\mu}{1-\beta}$. Since, L is invertible so $I_{E}=L L^{-1}=\mathcal{T}_{1} \mathcal{T}^{+} L^{-1}$. That gives us $\mathcal{T}_{1}=\mathcal{T}_{1} \mathcal{T}^{\dagger} L^{-1} \mathcal{T}_{1}$. Thus \mathcal{T}_{1} has pseudoinverse $\mathcal{T}_{1}^{\dagger}=\mathcal{T}^{\dagger} L^{-1}$. Hence, by Theorem 2.4 there exists a bounded linear operator $\mathcal{J}_{1}: Y_{d} \rightarrow E^{*}$ such that $\left(\left\{y_{n}\right\}, \mathcal{J}_{1}\right)$ is retro Banach frame for E^{*} with respect to Y_{d}.

Theorem 3.3. Let $\left(\left\{x_{n}\right\}, \mathcal{J}\right)$ be a retro Banach frame for E^{*} with respect to Y_{d} with bounds A and B and \mathcal{T}, \mathcal{R} be its associated synthesis operator, analysis operator. Let $\lambda, \beta \in[0,1)$ and $\mu \geq 0$ with $\lambda\|Q\|+\beta\|I-Q\|+\mu\left\|\left(\mathcal{T}^{*}\right)^{\dagger}\right\|<1$, where $Q=\mathcal{R}^{\dagger}$ is a projection from Y_{d} onto $\mathcal{R}\left(E^{*}\right)$ and $\left(\mathcal{T}^{*}\right)^{\dagger}$ is the pseudoinverse of \mathcal{T}^{*}. If a sequence $\left\{y_{n}\right\} \subset E$ satisfies the conditions $\left\{f\left(y_{n}\right)\right\} \in Y_{d}$ for all $f \in E^{*}$ and $\left\|\left\{f\left(x_{n}\right)-f\left(y_{n}\right)\right\}\right\| \leq \lambda\left\|\left\{f\left(x_{n}\right)\right\}\right\|+\beta\left\|\left\{f\left(y_{n}\right)\right\}\right\|+\mu\|f\|$, for all $f \in E^{*}$. Then, there exists a bounded linear operator $\mathcal{J}_{1}: Y_{d} \rightarrow E^{*}$ such that $\left(\left\{y_{n}\right\}, \mathcal{J}_{1}\right)$ is a retro Banach frame for E^{*} with respect to Y_{d} with bounds $\frac{(1-\lambda)\left\|\left(\mathcal{T}^{*}\right)^{\dagger}\right\|^{-1}-\mu}{1+\beta}$ and $\frac{(1+\lambda) B+\mu}{1-\beta}$.

Proof. By Theorem 2.4 $\mathcal{T} \mathcal{T}^{\dagger}=I_{E}$ and therefore $\left(\mathcal{T}^{*}\right)^{\dagger} \mathcal{T}^{*}=I_{E^{*}}$. So, for all $f \in E^{*}$ we have

$$
\|f\| \leq\left\|\left(\mathcal{T}^{*}\right)^{\dagger}\right\|\left\|\mathcal{T}^{*}(f)\right\|=\left\|\left(\mathcal{T}^{*}\right)^{\dagger}\right\|\left\|j_{d} \mathcal{R}(f)\right\|=\left\|\left(\mathcal{T}^{*}\right)^{\dagger}\right\|\|\mathcal{R}(f)\|
$$

Define $\mathcal{R}_{1}: E^{*} \rightarrow Y_{d}$ as $\mathcal{R}_{1}(f)=\left\{f\left(y_{n}\right)\right\}$, for $f \in E^{*}$. By given condition we have

$$
\left\|\mathcal{R}(f)-\mathcal{R}_{1}(f)\right\| \mid \leq \lambda\|\mathcal{R}(f)\|+\beta\left\|\mathcal{R}_{1}(f)\right\|+\mu\|f\|, f \in E^{*} .
$$

It follows that

$$
\begin{aligned}
\left\|\mathcal{R}_{1}(f)\right\| & \leq \frac{1+\lambda}{1-\beta}\|\mathcal{R}(f)\|+\frac{\mu}{1-\beta}\|f\| \\
& \leq \frac{(1+\lambda) B+\mu}{1-\beta}\|f\|, \text { for all } f \in E^{*}
\end{aligned}
$$

Therefore, $\left\{y_{n}\right\}$ is a Bessel sequence for E with respect to E_{d} with \mathcal{R}_{1} as its analysis operator. Moreover,

$$
\begin{aligned}
\left\|\mathcal{R}_{1}(f)\right\| & \geq \frac{1-\lambda}{1+\beta}\|\mathcal{R}(f)\|-\frac{\mu}{1+\beta}\|f\| \\
& \geq \frac{(1-\lambda)\left\|\left(\mathcal{T}^{*}\right)^{\dagger}\right\|^{-1}-\mu}{1+\beta}\|f\|, \text { for all } f \in E^{*}
\end{aligned}
$$

But $1>\lambda\|Q\|+\beta\|I-Q\|+\mu\left\|\left(\mathcal{T}^{*}\right)^{\dagger}\right\| \geq \lambda+\mu\left\|\left(\mathcal{T}^{*}\right)^{\dagger}\right\| \geq 0$. So $\frac{(1-\lambda)\left\|\left(\mathcal{T}^{*}\right)^{\dagger}\right\|^{-1}-\mu}{1+\beta}>$
0. Therefore $\left\{y_{n}\right\}$ is a frame for E with respect to E_{d} with bounds $\frac{(1-\lambda)\left\|\left(\mathcal{T}^{*}\right)^{\dagger}\right\|^{-1}-\mu}{1+\beta}$ and $\frac{(1+\lambda) B+\mu}{1-\beta}$. Let \mathcal{T}_{1} be synthesis operator of frame $\left\{y_{n}\right\}$. As we know, \mathcal{R} has pseudoinverse $\mathcal{R}^{\dagger}=\left(\mathcal{T}^{*}\right)^{\dagger} j_{d}$. Let $\alpha \in Y_{d}$ and we have

$$
\begin{aligned}
\left\|\left(\mathcal{R}_{1}-\mathcal{R}\right) \mathcal{R}^{\dagger}(\alpha)\right\| & \leq \lambda\left\|\mathcal{R} \mathcal{R}^{\dagger}(\alpha)\right\|+\beta\left\|\mathcal{R}_{1} \mathcal{R}(\alpha)\right\|+\mu\left\|\mathcal{R}^{\dagger}(\alpha)\right\| \\
& \leq\left(\lambda\|Q\|+\mu\left\|\mathcal{R}^{\dagger}\right\|\right)\|\alpha\| \\
& +\beta \| \alpha+\left(\mathcal{R}_{1}-\mathcal{R}\right) \mathcal{R}^{\dagger}(\alpha)-\left(I_{Y_{d}}^{*}-\mathcal{R}^{\dagger}(\alpha) \|\right. \\
& \leq\left(\lambda\|Q\|+\beta\left\|I_{Y_{d}}-Q\right\|+\mu\left\|R^{\dagger}\right\|\right)\|\alpha\| \\
& +\beta\left\|I_{Y_{d}}+\left(\mathcal{R}_{1}-\mathcal{R}\right) \mathcal{R}^{\dagger}(\alpha)\right\| .
\end{aligned}
$$

Let $L=I_{Y_{d}}+\left(\mathcal{R}_{1}-\mathcal{R}\right) \mathcal{R}^{\dagger}$, so L is a bounded linear operator from Y_{d} into Y_{d}. Also, for $\alpha \in Y_{d}$ we have

$$
\|L(\alpha)-\alpha\| \leq\left(\alpha\|Q\|+\beta\left\|I_{Y_{d}}-Q\right\|+\mu\left\|\mathcal{R}^{\dagger}\right\|\right)\|\alpha\|+\beta\|L(\alpha)\|
$$

Thus, by Lemma 1.6 L is invertible. Also $\left(\mathcal{T}^{*}\right)^{\dagger} T^{*}=I_{E^{*}}$, so we have $\mathcal{R}^{\dagger} \mathcal{R}=$ $\left(\mathcal{T}^{*}\right)^{-1} j_{d} j_{d}^{-1} \mathcal{T}^{*}=(\mathcal{T} *)^{\dagger} \mathcal{T}^{*}=I_{E^{*}}$

$$
L \mathcal{R}=\left(I_{E^{*}}+\left(\mathcal{R}_{1}-\mathcal{R}\right)(\mathcal{R})^{\dagger}\right) \mathcal{R}=\mathcal{R}_{1}
$$

But $E_{d}^{*}=\mathcal{T}^{*}\left(E^{*}\right) \oplus Z$, for Z is a closed subspace of E_{d}^{*}. So also $Y_{d}=j^{-1}\left(E_{d}^{*}\right)=$ $j^{-1}\left(\mathcal{T}^{*}\left(E^{*}\right) \oplus j^{-1}(Z)=\mathcal{R}\left(E^{*}\right) \oplus j^{-1}(Z)\right.$. From here we have

$$
\begin{aligned}
Y_{d} & =L\left(Y_{d}\right)=L\left(\mathcal{R}\left(E^{*}\right) \oplus j_{d}^{-1}(Z)\right)=L \mathcal{R}\left(E^{*}\right) \oplus L\left(j_{d}^{-1}(Z)\right) \\
& =R_{1}\left(E^{*}\right) \oplus L\left(j_{d}^{-1}(Z)\right)
\end{aligned}
$$

Thus,

$$
E_{d}^{*}=j_{d}\left(Y_{d}\right)=j_{d} \mathcal{R}_{1}\left(E^{*}\right) \oplus j_{d} L\left(j_{d}^{-1}(Z)=\mathcal{T}_{1}^{*}\left(E^{*}\right) \oplus j_{d} L\left(j_{d}^{-1}(Z)\right.\right.
$$

Hence, by Theorem 2.4 there exists a bounded linear operator $\mathcal{J}_{1}: Y_{d} \rightarrow E^{*}$ such that $\left(\left\{y_{n}\right\}, \mathcal{J}_{1}\right)$ is a retro Banach frame for E^{*} with respect to Y_{d}.
Acknowledgments. The authors pay their sincere thanks to Professor Oleg Reinov for his critical remarks and suggestions for the improvement of this paper. Also, we are thankful to him for suggesting the reformulation of the statements of Theorem 3.1. Theorem 3.2 and Theorem 3.3 .

References

[1] S.Banach, Theory of Linear Operations, Elscvier Science Publishers B.V. 1987, ISBN:0 444 701842.
[2] P.G.Casazza, O.Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl. 3, 543-557 (1997).
[3] P.G.Cassaza, O.Christensen, D.T.Stoeva: Frames expansions in seperable Banach space.J.Math.Anal.Appl., 307(2005),710-723.
[4] O.Christensen, Christopher Heil, Perturbations of Banach Frame and Atomic decomposition, Math.Nachr. 185(1997) 33-47.
[5] O.Christensen, An Introduction to Frames and Riesz Bases, Birkhäurer,Bostan-BaselBerlin(2003).
[6] Diana T.Stoeva, Perturbation of frames in Banach space, Asian-European Journal of Mathematics, Vol.5, No.1(2012) 1250011(15 pages), DOI:10.1142/S1793557112500118.
[7] R.J.Duffin and A.C.Schaeffer, A class of non-harmonic Fourier series, Trans.Amer.Math.Soc., 72(1952), 341-366.
[8] N. Dunford and J. Schwartz, Linear operators, I, Interscience, New York, 1963.
[9] Feichtinger and K.Gröchenig, A unified approach to atomic decompositions via integrable group representations,In: Proc. Conf. Function Spaces and Applications", Lecture Notes Math.1302,Berlin-Heidelberg-New York: Springer (1988),52-73.
[10] K.Gröchenig, Describing functions:Atomic decompositions versus frames, Monatsh.Math., 112(1991), 1-41.
[11] P.K.Jain,S.K.Kaushik,L.K.Vashisht, Banach frames for conjugate Banach spaces, Zeitschrift fur Analysis und ihre Anwendungen, 23(2004), 713-720.
[12] P.K.Jain,S.K.Kaushik,L.K.Vashisht, On Perturbation of Banach Frames, International Journal of Wavelets,Multiresolution and Information Processing, Vol.4, No.3(2006) 559-565.
[13] W. Rudin, Functional Analysis, McGrawHill, New York, second edition, 1991.
[14] D.T.Stoeva, X_{d}-Riesz Bases in Separable Banach spaces, Collection of papers, ded. to 60Anniv. of M.Konstantinov, BAS Publ. house, 2008.
[15] Taylor, A. E., Lay, D. C.: Introdution to Functional Analysis, Wiley, New York, 1980.
[16] P.A.Terekhin, Frames in Banach spaces, Functional Analysis and its Application, Vol.44,No.3,pp.199-208,2010.
[17] Y.C.Zhu,S.Y.Wang, The Stability of Banach frames in Banach Spaces, Acta Mathematica Sinica, English Series Dec., 2010,Vol.26, No.12, pp.2369-2376.

Khole Timothy Poumai, Department of Mathematics, University of Delhi, Delhi110007 , IndiA

E-mail address: kholetim@yahoo.co.in
S.K.Kaushik, Kirori mal college, Department of Mathematics, University of Delhi, Delhi-110007, India

E-mail address: shikk2003@yahoo.co.in

[^0]: 2010 Mathematics Subject Classification. 42C15; 46B15.
 Key words and phrases. Frames, Banach frames, retro Banach frames.
 (C)2015 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted January 22, 2015. Published March 13, 2015.

