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RIESZ TYPE INTEGRATED AND DIFFERENTIATED

SEQUENCE SPACES

(COMMUNICATED BY FEYZI BASAR)

MURAT KIRIŞCI

Abstract. Let
∫
bv and d(bv) denote the spaces of integrated and differenti-

ated sequence spaces, which introduced by [4] and
∫
bv(R) and d(bv(R)) also

be matrix domain of the Riesz mean in the sequence spaces
∫
bv and d(bv).

In this paper, some important properties of these spaces are studied and dual
spaces of the spaces

∫
bv(R) and d(bv(R)) are determined. Finally, the classes

(
∫
bv(R) : Y ), (d(bv(R)) : Y ), (Y :

∫
bv(R)) and (Y : (d(bv(R))) of infinite

matrices are characterized, where Y is any given sequence space.

1. Introduction

The theory of sequence spaces is the fundamental of summability. Summability
is wide field of mathematics, mainly in analysis and functional analysis, and has
many applications, for instance in numerical analysis to speed up the rate of conver-
gence, in operator theory, the theory of orthogonal series and approximation theory.

The classical summability theory deals with the generalization of the conver-
gence of sequences or series of real or complex numbers. The idea is to assign a
limit of some sort to divergent sequences or series by considering a transform of a
sequence or series rather than original sequence or series.

One can ask why we employ the special transformations represented by infinite
matrices instead of general linear operators? The answer to this question is, in
many cases, the most general linear operators between two sequence spaces is given
by an infinite matrix. So the theory of matrix transformations has always been of
great inretest in the study of sequence spaces. The study of the general theory of
matrix transformations was motivated by special results in summability theory.

The approach constructing a new sequence space by means of the matrix domain
of a particular limitation method has recently been employed by several authors.
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In [7], it can be seen the qualified studies related to the matrix domains. Although
in most cases the new sequence space XA generated by the summability matrix A
from a sequence space X is the expansion or the contraction of the original space
X, it may be observed in some cases that those spaces are overlap.

Now, we introduce the necessary information and definitions which will be used
throughout the paper.

The set of all sequences denotes with ω := CN := {x = (xk) : x : N → C, k →
xk := x(k)} where C denotes the complex field and N is the set of positive integers.
Each linear subspace of ω (with the induced addition and scalar multiplication) is
called a sequence space. The following subsets of ω are obviously sequence spaces:

`∞ = {x = (xk) ∈ ω : sup
k
|xk| <∞} c = {x = (xk) ∈ ω : lim

k
xk exists }

c0 = {x = (xk) ∈ ω : lim
k
xk = 0} bs =

{
x = (xk) ∈ ω : sup

n

∣∣∣∣∣
n∑
k=1

xk

∣∣∣∣∣ <∞
}

cs =

{
x = (xk) ∈ ω :

(
n∑
k=1

xk

)
∈ c

}
`p =

{
x = (xk) ∈ ω :

∑
k

|xk|p <∞, 1 ≤ p <∞

}
.

These sequence spaces are Banach space with the norms; ‖x‖`∞ = supk |xk|,
‖x‖bs = ‖x‖cs = supn |

∑n
k=1 xk| and ‖x‖`p = (

∑
k |xk|p)

1/p
as usual, respectively.

Let X is one of the above mentioned sequence spaces. The concept of integrated
and differentiated sequence spaces was employed as∫
X = {x = (xk) ∈ ω : (kxk) ∈ X} and d(X) =

{
x = (xk) ∈ ω : (k−1xk) ∈ X

}
,

in [4].

By F , we will denote the collection of all finite subsets on N. For simplicity in
notation, here and in what follows, the summation without limits runs from 1 to
∞. Also we use the convention that any term with negative subscript is equal to
zero.

A coordinate space (or K−space) is a vector space of numerical sequences, where
addition and scalar multiplication are defined pointwise. That is, a sequence space
X with a linear topology is called a K-space provided each of the maps pi : X → C
defined by pi(x) = xi is continuous for all i ∈ N. A K−space is called an FK−space
provided X is a complete linear metric space. An FK−space whose topology is
normable is called a BK− space.

If a normed sequence space X contains a sequence (bn) with the property that
for every x ∈ X there is unique sequence of scalars (αn) such that

lim
n→∞

‖x− (α0b0 + α1b1 + ...+ αnbn)‖ = 0

then (bn) is called Schauder basis for X. The series
∑
αkbk which has the sum x

is then called the expansion of x with respect to (bn), and written as x =
∑
αkbk.

An FK−space X is said to have AK property, if φ ⊂ X and {ek} is a basis for X,
where ek is a sequence whose only non-zero term is a 1 in kth place for each k ∈ N
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and φ = span{ek}, the set of all finitely non-zero sequences.

Let A = (ank) be an infinite matrix of complex numbers ank and x = (xk) ∈ ω,
where k, n ∈ N. Then the sequence Ax is called as the A−transform of x defined by
the usual matrix product. Hence, we transform the sequence x into the sequence
Ax = {(Ax)n} where

(Ax)n =
∑
k

ankxk (1.1)

for each n ∈ N, provided the series on the right hand side of (1.1) converges for
each n ∈ N.

Let X and Y be two sequence spaces. If Ax exists and is in Y for every sequence
x = (xk) ∈ X, then we say that A defines a matrix mapping from X into Y , and
we denote it by writing A : X → Y if and only if the series on the right hand side of
(1.1) converges for each n ∈ N and every x ∈ X, and we have Ax = {(Ax)n}n∈N ∈ Y
for all x ∈ X. A sequence x is said to be A-summable to l if Ax converges to l
which is called the A-limit of x.

Let X be a sequence space and A be an infinite matrix. The sequence space

XA = {x = (xk) ∈ ω : Ax ∈ X} (1.2)

is called the domain of A in X which is a sequence space.

Let (qk) be a sequence of positive numbers and Qn =
∑n
k=0 qk for all n ∈ N.

Then the matrix Rq = (rqnk) of the Riesz mean [1] is given by

rqnk =

{ qk
Qn

, (0 ≤ k ≤ n)

0 , (k > n)

It is known that the Riesz mean is regular if and only if Qn → ∞ as n → ∞.
Also, for every Riesz mean

∑∞
k=1 r

q
nk =

∑∞
k=1 |r

q
nk| = 1. This means that every

Riesz mean is a limitation method, [8, p.10].

Let p = (pk) be a bounded sequence of strictly positive real numbers with
sup pk = H and M = max{1, H}. Altay and Baar [1] defined the Riesz sequence
spaces as

rq(p) =

x = (xk) ∈ w :
∑
k

∣∣∣∣∣∣ 1

Qk

k∑
j=0

qjxj

∣∣∣∣∣∣
pk

<∞

 , (0 < pk ≤ H <∞)

In [3], Başar and Altay have studied the sequence space bvp which consists of all
sequences whose ∆-transforms are in `p; i.e.,

bvp =

{
x = (xk) ∈ w :

∑
k

|xk − xk−1|p <∞

}
, (1 ≤ p <∞).

where ∆ denotes the matrix ∆ = (δnk)

δnk =

{
(−1)n−k , (n− 1 ≤ k ≤ n)

0 , (0 ≤ k < n− 1 or k > n)
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for all k, n ∈ N.

If we state the matrix domain of the space bvp as the notation (1.2), then we
can write bvp = (`p)∆.

We define the matrices C = (cnk) and D = (dnk) by

cnk =

 k(qk − qk+1)/Qn , (k < n)
nqn/Qn , (n = k)

0 , (k > n)
(1.3)

dnk =

 (qk − qk+1)/kQn , (k < n)
qn/(nQn) , (n = k)

0 , (k > n)
(1.4)

for all k, n ∈ N.

Now, we can give the matrices C−1 = (enk) and D−1 = (fnk) which are inverse
of above matrices, by

enk :=


1
nQk

(
1
qk
− 1

qk+1

)
, (k < n)

Qn/(nqn) , (n = k)
0 , (k > n)

and fnk :=


nQk

(
1
qk
− 1

qk+1

)
, (k < n)

nQn/qn , (n = k)
0 , (k > n)

Now, we give the following lemmas which are needed in the text. Especially, in
[2], Başar and Altay developed very useful tools for duals and matrix transforma-
tions of sequence spaces as Lemma 1.2 and Lemma 1.3.

Lemma 1.1. Matrix transformations between BK−spaces are continuous.

Lemma 1.2. [3, Lemma 5.3] Let X,Y be any two sequence spaces, A be an infinite
matrix and U a triangle matrix matrix.Then, A ∈ (X : YU ) if and only if UA ∈
(X : Y ).

Lemma 1.3. [2, Theorem 3.1] BU = (bnk) be defined via a sequence a = (ak) ∈ ω
and inverse of the triangle matrix U = (unk) by

bnk =

n∑
j=k

ajvjk

for all k, n ∈ N. Then,

λβU = {a = (ak) ∈ ω : BU ∈ (λ : c)}

and

λγU = {a = (ak) ∈ ω : BU ∈ (λ : `∞)}.

Let
∫
bv and d(`1) denote the integrated and differentiated spaces of bv and `1,

respectively. These spaces are given in [4]. The main purpose of this paper is to
define the new integrated and differentiated sequence spaces using the Riesz mean
and is to study their some properties. In section 3, we compute the alpha-, beta-
and gamma duals of these spaces. Afterward, we characterize the classes of matrix
transformations from these spaces to the well-known sequence spaces such as `∞,
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c, c0, bs, cs and c0s.

2. Riesz Type New Sequence Spaces

In this section, we will give new spaces defined by a weighted mean.

Goes and Goes [4] firstly mentioned the integrated and differentiated sequence
spaces. In Section 2 of [4], it was given some definitions which also including the
integarted and differentiated sequence spaces. In Section 3 of the same paper, it
was defined the Hahn sequence space by h = {x = (xk) ∈ w :

∑
k k|xk − xk+1| <

∞ and limk→∞ xk = 0}. Hahn [5] was proved that h ⊂ `1 ∩
∫
c0, where

∫
c0

denotes the integrated sequence space. In this section, the functional analytic prop-
erties of the space h = `1 ∩

∫
bv and dh = bv0 ∩ d`1 are investigated. In Theorem

3.2, Goes and Goes proved that the Hahn space is in the intersection of the spaces
`1 and

∫
bv. Also, Goes and Goes defined the differentiated spaces dh depending in

Theorem 3.2 by dh = bv0 ∩ d`1. Therefore, in [4], it was shown that the integrated
and differentiated sequence spaces are associated with each other.

In [6], new integrated and differentiated sequence spaces and matrices related
to these spaces are constructed and some properties of the integrated and differ-
entiated sequence spaces which are both new spaces and mentioned in [4], were
discussed. The space

∫
bv was defined in [4]. The new spaces

∫
`1, d(`1) and

d(bv) were defined which is mentioned paper. In Section 2 of [6], the properties
Banach spaces, BK−spaces, monotone norms, Schauder base, separability and,
AK−property, AB−property and, isomorphism between new spaces and original
space, were investigated. Besides this, dual spaces are computed and matrix classes
are characterized by Kirişci[6].

Following Hahn [5], Goes and Goes [4], Altay and Başar [1] and Kirişci [6], we
will define the new integrated and differentiated sequence spaces using the Riesz
mean.

The Riesz type integrated spaces defined by∫
bv(R) =

{
x = (xk) ∈ ω :

n∑
k=1

(qk∆(kxk))/Qn <∞

}
and the Riesz type differentiated spaces defined by

d(bv(R)) =

{
x = (xk) ∈ ω :

n∑
k=1

(qk∆(k−1xk))/Qn <∞

}
where ∆(kxk) = kxk − (k − 1)xk−1 and ∆(k−1xk) = k−1xk − (k − 1)−1xk−1.

Consider the notation (1.2) and the matrices (1.3), (1.4). From here, we can
re-define the spaces

∫
bv(R) and d(bv(R)) by

(`1)C =

∫
bv(R) (2.1)
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and

(`1)D = d(bv(R)). (2.2)

Let x = (xk) ∈
∫
bv(R). The C−transform of a sequence x = (xk) is defined by

yn =

n−1∑
k=1

[k(qk − qk+1)/Qn]xk + [(nqn)/Qn]xn (2.3)

where C is defined by (1.3). Let x = (xk) ∈ d(bv(R)). The D−transform of a
sequence x = (xk) is defined by

yn =

n−1∑
k=1

[
k−1(qk − qk+1)/Qn

]
xk + [qn/(nQn)]/xn (2.4)

where D is defined by (1.4).

Theorem 2.1. The following statements hold:

(i) The space
∫
bv(R) is a BK−space with the norm ‖x‖∫ bv(R) = ‖Cx‖`1 .

(ii) The space d(bv(R)) is a BK−space with the norm ‖x‖d(bv(R)) = ‖Dx‖`1 .

Proof. Since
∫
bv(R) = [`1]C and d(bv(R)) = [`1]D holds, `1 is a BK−space

with the norm ‖.‖`1 and C and D are triangle matrices, then Theorem 4.3.2 of
Wilansky[9] gives the fact that the spaces

∫
bv(R) and d(bv(R)) are BK−spaces.

�

Theorem 2.2. The spaces
∫
bv(R) and d(bv(R)) are norm isomorphic to `1.

Proof. We consider the spaces
∫
bv(R) and `1. To prove the theorem, we should

show the existence of a linear bijection between these spaces.

Now, with the notation (2.3), we define the transformation T from
∫
bv(R) to

`1 by x 7→ y = Tx. It is clear that T is linear and also x = θ whenever Tx = θ.
Therefore, T is injective.

Let us take y = (yk) ∈ `1 and consider the sequence x = (xk) using the inverse
C−1, defined by

xk =

k−1∑
j=1

1

k
Qj

(
1

qj
− 1

qj+1

)
yj +

Qkyk
k.qk

.

for all k ∈ N. Then, we have

‖x‖∫ bv(R) =
∑
k

∣∣∣∣∣∣
k−1∑
j=1

k
1

Qk
(qj − qj+1)xj +

1

Qk
kqkxk

∣∣∣∣∣∣ =
∑
k

|yk| = ‖y‖`1 <∞.

for all k ∈ N, which leads us to the fact that x ∈
∫
bv(R). Consequently, we see

from here that T is surjective and norm preserving. Hence T is a linear bijection,
which therefore says that the spaces

∫
bv(R) and `1 are norm isomorphic.

Similarly, using the relation (2.4), we can define the transformation S from
d(bv(R)) to `1 by x 7→ y = Sx. Therefore, by using the inverse D−1 we obtain the
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sequence x = (xk) as follows

xk =

k−1∑
j=1

kQj

(
1

qj
− 1

qj+1

)
yj + k

Qkyk
qk

while y ∈ `1, then we obtain the space d(bv(R)) is norm isomorphic to `1 with the
norm ‖x‖d(bv(R)). �

Theorem 2.3. The space d(bv(R)) has AK−property.

Proof. Let x = (xk) ∈ d(bv(R)) and x[n] = {x1, x2, · · · , xn, 0, 0, · · · }. Hence,

x− x[n] = {0, 0, · · · , 0, xn+1, xn+2, · · · } ⇒ ‖x− x[n]‖d(bv(R)) = ‖(0, 0, · · · , 0, xn+1, xn+2, · · · )‖

and since x ∈ d(bv(R)),

‖x− x[n]‖d(bv(R)) =
∑

k≥n+1

∣∣∣∣1k 1

Qn
(qk − qk+1)xk +

1

n

qn
Qn

xn

∣∣∣∣→ 0 as n→∞

⇒ lim
n→∞

‖x− x[n]‖d(bv(R)) = 0⇒ x[n] → x as n→∞ in d(bv(R)).

Then the space d(bv(R)) has AK−property. �

Theorem 2.4. Define a sequence s(k)(q) = {s(k)
n (q)}n∈N of elements of the space∫

bv(R) for every fixed k ∈ N by

s(k)
n (q) =


1
nQk

(
1
qk
− 1

qk+1

)
, (1 < k < n)

Qn

nqn
, (n = k)

0 , (k > n)

Therefore, the sequence {s(k)(q)}k∈N is a basis for the space
∫
bv(R) and any x ∈∫

bv(R) has a unique representation of the form

x =
∑
k

(Cx)k(q)s(k)(q). (2.5)

Proof. Let e(k) be a sequence whose only non-zero term is a 1 in kth place for each
k ∈ N. We know that

Cs(k)(q) = e(k) ∈ `1 (2.6)

for all k ∈ N. Then, we have {s(k)(q)} ⊂
∫
bv(R).

We take x ∈
∫
bv(R). Then, we put,

x[m] =

m∑
k=1

(Cx)k(q)s(k)(q), (2.7)

for every positive integer m. Then, we have

Cx[m] =

m∑
k=1

(Cx)k(q)Cs(k)(q) =

m∑
k=1

(Cx)k(q)e(k)

and (
C(x− x[m])

)
i

=

{
0 , (1 ≤ i < m)

(Cx)i , (i > m)
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by applying C to (2.7) with (2.6), for i,m ∈ N. For ε > 0, there exists an integer
m0 such that [ ∞∑

i=m

|(Cx)i|

]
< ε/2

for all m ≥ m0. Hence,

‖x− x[m]‖∫ bv(R) =

for all m ≥ m0. Therefore, x ∈
∫
bv(R) is represented as in (2.5), as we desired. �

Theorem 2.5. Define a sequence t(k)(q) = {t(k)
n (q)}n∈N of elements of the space

d(bv(R)) for every fixed k ∈ N by

t(k)
n (q) =


nQk

(
1
qk
− 1

qk+1

)
, (1 < k < n)

nQn

qn
, (n = k)

0 , (k > n)

Therefore, the sequence {t(k)(q)}k∈N is a basis for the space d(bv(R)) and any x ∈
d(bv(R)) has a unique representation of the form

x =
∑
k

(Dx)k(q)t(k)(q).

Remark. It is well known that every Banach space X with a Schauder basis is
separable

From Theorem 2.4, Theorem 2.5 and Remark 2, we can give following corollary:

Corollary 2.6. The spaces
∫
bv(R) and d(bv(R)) are separable.

3. Dual Spaces of the Spaces
∫
bv(R) and d(bv(R))

In this section, we state and prove the theorems determining the α-, β- and
γ-duals of the sequence spaces

∫
bv(R) and d(bv(R)).

The set S(λ, µ) defined by

S(λ, µ) = {z = (zk) ∈ ω : xz = (xkzk) ∈ µ for all x = (xk) ∈ λ} (3.1)

is called the multiplier space of the sequence spaces λ and µ. One can eaisly observe
for a sequence space υ with λ ⊃ υ ⊃ µ that the inclusions

S(λ, µ) ⊂ S(υ, µ) and S(λ, µ) ⊂ S(λ, υ)

hold. With the notation of (3.1), the alpha-, beta- and gamma-duals of a sequence
space λ, which are respectively denoted by λα, λβ and λγ are defined by

λα = S(λ, `1), λβ = S(λ, cs) and λγ = S(λ, bs).

The alpha-, beta- and gamma-duals of a sequence space are also referred as Köthe-
Toeplitz dual, generalized Köthe-Toeplitz dual and Garling dual of a sequence space,
respectively.
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To give the alpha-, beta- and gamma- duals of the spaces
∫
bv(R) and d(bv(R)),

we need the following lemmas:

Lemma 3.1. Let A = (ank) be an infinite matrix. A ∈ (`1 : `∞) if and only if

sup
k,n∈N

|ank| <∞. (3.2)

Lemma 3.2. Let A = (ank) be an infinite matrix. A ∈ (`1 : c) if and only if (3.2)
holds, and there is αk ∈ C such that

lim
n→∞

ank = αk for each k ∈ N. (3.3)

Lemma 3.3. Let A = (ank) be an infinite matrix. A ∈ (`1 : `1) if and only if

sup
k∈N

∑
n

|ank| <∞. (3.4)

Theorem 3.4. We define the matrix M = (mnk) as

mnk =


1
nQk

(
1
qk
− 1

qk+1

)
an , (1 ≤ k < n)

Qnan
nqn

, (n = k)

0 , (k > n)

(3.5)

for all k, n ∈ N, where a = (ak) ∈ ω. The α−dual of the space
∫
bv(R) is the set

d1 =

{
a = (ak) ∈ ω : sup

N∈F

∑
k

∣∣∣∣∣∑
n∈N

mnk

∣∣∣∣∣ <∞
}

Proof. Let a = (ak) ∈ ω. We can easily derive that with the notation (2.3) that

anxn =

n−1∑
k=1

Qk
n

(
1

qk
− 1

qk+1

)
anyk +

Qnan
nqn

yn =

n∑
k=1

mnkyk = (My)n (3.6)

for all k, n ∈ N, where M = (mnk) is defined by (3.5). It follows from (3.6) that
ax = (anxn) ∈ `1 whenever x ∈

∫
bv(R) if and only if My ∈ `1 whenever y ∈ `1.

We obtain that a ∈ [
∫
bv(R)]α whenever x ∈

∫
bv(R) if and only if M ∈ (`1 : `1).

Therefore, we get by Lemma 3.3 with M instead of A that a ∈
[∫
bv(R)

]α
if and

only if supk∈N
∑
n |mnk| <∞. This gives us the result that

[∫
bv(R)

]α
= d1. �

Theorem 3.5. The α−dual of the space d(bv(R)) is the set

d2 =

{
a = (ak) ∈ ω : sup

N∈F

∑
k

∣∣∣∣∣∑
n∈N

pnk

∣∣∣∣∣ <∞
}
.

Theorem 3.6. The β−dual of the space
∫
bv(R) is d3 ∩ cs, where

d3 =

a = (ak) ∈ ω :

n∑
k=1

∣∣∣∣∣∣1k Qkakqk
+Qk

(
1

qk
− 1

qk+1

) n∑
j=k+1

1

j
aj

∣∣∣∣∣∣ <∞


Proof. Consider the equality

n∑
k=1

akxk =

n∑
k=1

ak

k−1∑
j=1

1

k

(
1

qj
− 1

qj+1

)
Qjyj +

Qkyk
kqk

 (3.7)
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=

n∑
k=1

∣∣∣∣∣∣1k Qkakykqk
+

(
1

qk
− 1

qk+1

)
Qkyk

n∑
j=k+1

1

j
aj

∣∣∣∣∣∣ = (Sy)n

for all n ∈ N, where the matrix S = (snk) is defined by

snk =


(

1
qk
− 1

qk+1

)
Qk
∑n
j=k+1

1
j aj , (k > n

1
n
Qnan
qn

, (n = k)

0 , (k < n)

(3.8)

for all k, n ∈ N. Therefore, we deduce from Lemma 3.2 with (3.7) that ax =
(anxn) ∈ cs whenever x ∈

∫
bv(R) if and only if Sy ∈ c whenever y ∈ `1. From

(3.2) and (3.3), we have

lim
n
snk = αk and sup

k

∑
n

|snk| <∞

which shows that
[∫
bv(R)

]β
= d3 ∩ cs. �

Theorem 3.7.
[∫
bv(R)

]γ
= d3.

Proof. We obtain from Lemma 3.1 with (3.7) that ax = (anxn) ∈ bs whenever
x ∈

∫
bv(R) if and only if Sy ∈ `∞ whenever y ∈ `1. Then, we see from (3.2) that[∫

bv(R)
]γ

= d3.
�

Theorem 3.8. The β−dual of the space d(bv(R)) is d4 ∩ cs, where

d4 =

a = (ak) ∈ ω :

n∑
k=1

∣∣∣∣∣∣kQkakqk
+

(
1

qk
− 1

qk+1

)
Qk

n∑
j=k+1

jaj

∣∣∣∣∣∣ <∞


Theorem 3.9. [d(bv(R))]
γ

= d4.

4. Matrix transformations

In this section, we characterize the matrix transformations from new spaces into
any given sequence space X.

We shall write for brevity that

ank =

n∑
k=1

∣∣∣∣∣∣1k Qkankqk
+

(
1

qk
− 1

qk+1

)
Qk

n∑
j=k+1

1

j
anj

∣∣∣∣∣∣ ,
ãnk =

n∑
k=1

∣∣∣∣∣∣kQkankqk
+

(
1

qk
− 1

qk+1

)
Qk

n∑
j=k+1

janj

∣∣∣∣∣∣ ,
bnk =

n−1∑
j=1

j
1

Qn
(qj − qj+1)ajk + n

qn
Qn

ank,

b̃nk =

n−1∑
j=1

1

j

1

Qn
(qj − qj+1)ajk +

1

n

qn
Qn

ank

for all k, n ∈ N.
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Theorem 4.1. Suppose that the entries of the infinite matrices A = (ank) and
B = (bnk) are connected with the relation

ank =

∞∑
j=k

1

Qj
j(qk − qk+1)bnj or bnk = ank (4.1)

for all k, n ∈ N and Y be any given sequence space. Then A ∈ (
∫
bv(R) : Y ) if and

only if {ank}k∈N ∈ {
∫
bv(R)}β for all n ∈ N and B ∈ (`1 : Y ).

Proof. Let Y be any given sequence. Suppose that (4.1) holds between the infinite
matrices A = (ank) and B = (bnk), and take into account that the spaces

∫
bv(R)

and `1 are linearly isomorphic.
Let A ∈ (

∫
bv(R) : Y ) and take any y = (yk) ∈ `1. Then BC exists and

{ank}k∈N ∈ {
∫
bv(R)}β which yields that (4.1) is necessary and {bnk}k∈N ∈ `β1 for

each n ∈ N. Hence, By exists for each y ∈ `1 and thus by letting m → ∞ in the
equality

m∑
k=1

ankxk =

m∑
k=1

∣∣∣∣∣∣1k Qkykqk
ank +

(
1

qk
− 1

qk+1

)
Qkyk

m∑
j=k+1

1

j
anj

∣∣∣∣∣∣
for all m,n ∈ N. Therefore, we obtain that Ax = By which leads us to the
consequence B ∈ (`1 : Y ).

Conversely, let {ank}k∈N ∈ {
∫
bv(R)}β for each n ∈ N and B ∈ (`1 : Y ), and

take any x = (xk) ∈
∫
bv(R). Then, Ax exists. Therefore, we obtain from the

equality
m∑
k=1

bnkyk =

m∑
k=1

ankxk

for all m,n ∈ N, as m → ∞ the result that By = Ax and this shows that A ∈
(
∫
bv(R) : Y ). This completes the proof. �

Theorem 4.2. Suppose that the entries of the infinite matrices A = (ank) and
G = (gnk) are connected with the relation gnk = bnk for all k, n ∈ N and Y be any
given sequence space. Then, A ∈ (Y :

∫
bv(R)) if and only if G ∈ (Y : `1).

Proof. Let z = (zk) ∈ Y and consider the following equality:

m∑
k=1

gnkzk =
1

Qn

m∑
j=1

j(qj − qj+1)ajk

(
m∑
k=1

ajkzk

)
(4.2)

for all m,n ∈ N. Equation (4.2) yields as m → ∞ the result that (Gz)n =
{C(Az)}n. Therefore, one can immediately observe from this that Az ∈

∫
bv(R)

whenever z ∈ Y if and only if Gz ∈ `1 whenever z ∈ Y . �

Theorem 4.3. Suppose that the entries of the infinite matrices A = (ank) and
H = (hnk) are connected with the relation

ank =

∞∑
j=k

1

j

1

Qj
(qk − qk+1)hnj or hnk = ãnk
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for all k, n ∈ N and Y be any given sequence space. Then A ∈ (d(bv(R)) : Y ) if
and only if {ank}k∈N ∈ {d(bv(R))}β for all n ∈ N and H ∈ (`1 : Y ).

Theorem 4.4. Suppose that the entries of the infinite matrices A = (ank) and

J = (jnk) are connected with the relation jnk = b̃nk for all k, n ∈ N and Y be any
given sequence space. Then, A ∈ (Y : d(bv(R))) if and only if J ∈ (Y : `1).

Lemma 4.5. (i) A ∈ (`∞ : `1) = (c : `1) = (c0 : `1) if and only if

sup
N,K∈F

∣∣∣∣∣∑
n∈N

∑
k∈K

ank

∣∣∣∣∣ <∞ (4.3)

(ii) A ∈ (bs : `1) if and only if

lim
k
ank = 0 for each n ∈ N. (4.4)

sup
N,K∈F

∣∣∣∣∣∑
n∈N

∑
k∈K

(ank − an,k+1)

∣∣∣∣∣ <∞ (4.5)

(iii) A ∈ (cs : `1) if and only if

sup
N,K∈F

∣∣∣∣∣∑
n∈N

∑
k∈K

(ank − an,k−1)

∣∣∣∣∣ <∞ (4.6)

(iv) A ∈ (c0s : `1) if and only if (4.5) holds.

Lemma 4.6. (i) A ∈ (`1 : bs) if and only if

sup
k,m∈N

∣∣∣∣∣
m∑
n=0

ank

∣∣∣∣∣ <∞. (4.7)

(ii) A ∈ (`1 : cs) if and only if (4.7) holds, and∑
n

ank convergent for each k ∈ N. (4.8)

(iii) A ∈ (`1 : c0s) if and only if (4.7) holds, and∑
n

ank = 0 for each k ∈ N. (4.9)

Now, we can give the following results:

Corollary 4.7. The following statements hold:

(i) A = (ank) ∈ (
∫
bv(R) : `∞) if and only if {ank}k∈N ∈ {

∫
bv(R)}β for all

n ∈ N and (3.2) holds with ank instead of ank.
(ii) A = (ank) ∈ (

∫
bv(R) : c) if and only if {ank}k∈N ∈ {

∫
bv(R)}β for all

n ∈ N and (3.2) and (3.3) hold with ank instead of ank.
(iii) A ∈ (

∫
bv(R) : c0) if and only if {ank}k∈N ∈ {

∫
bv(R)}β for all n ∈ N and

(3.2) and (3.3) hold with αk = 0 as ank instead of ank.
(iv) A = (ank) ∈ (

∫
bv(R) : bs) if and only if {ank}k∈N ∈ {

∫
bv(R)}β for all

n ∈ N and (4.7) holds with ank instead of ank.
(v) A = (ank) ∈ (

∫
bv(R) : cs) if and only if {ank}k∈N ∈ {

∫
bv(R)}β for all

n ∈ N and (4.7), (4.8) hold with ank instead of ank.
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(vi) A = (ank) ∈ (
∫
bv(R) : c0s) if and only if {ank}k∈N ∈ {

∫
bv(R)}β for all

n ∈ N and (4.7), (4.9) hold with ank instead of ank.

Corollary 4.8. The following statements hold:

(i) A = (ank) ∈ (d(bv(R)) : `∞) if and only if {ank}k∈N ∈ {d(bv(R))}β for all
n ∈ N and (3.2) holds with ãnk instead of ank.

(ii) A = (ank) ∈ (d(bv(R)) : c) if and only if {ank}k∈N ∈ {d(bv(R))}β for all
n ∈ N and (3.2) and (3.3) hold with ãnk instead of ank.

(iii) A ∈ (d(bv(R)) : c0) if and only if {ank}k∈N ∈ {d(bv(R))}β for all n ∈ N
and (3.2) and (3.3) hold with αk = 0 as ãnk instead of ank.

(iv) A = (ank) ∈ (d(bv(R)) : bs) if and only if {ank}k∈N ∈ {d(bv(R))}β for all
n ∈ N and (4.7) holds with ãnk instead of ank.

(v) A = (ank) ∈ (d(bv(R)) : cs) if and only if {ank}k∈N ∈ {d(bv(R))}β for all
n ∈ N and (4.7), (4.8) hold with ãnk instead of ank.

(vi) A = (ank) ∈ (d(bv(R)) : c0s) if and only if {ank}k∈N ∈ {
∫
bv(R)}β for all

n ∈ N and (4.7), (4.9) hold with ãnk instead of ank.

Corollary 4.9. We have:

(i) A = (ank) ∈ (`∞ :
∫
bv(R)) = (c :

∫
bv(R)) = (c0 :

∫
bv(R)) if and only if

(4.3) hold with bnk instead of ank.
(ii) A = (ank) ∈ (bs :

∫
bv(R)) if and only if (4.4) and (4.5) hold with bnk

instead of ank.
(iii) A = (ank) ∈ (cs :

∫
bv(R)) if and only if (4.6) holds with bnk instead of

ank.
(iv) A = (ank) ∈ (c0s :

∫
bv(R)) if and only if (4.5) holds with bnk instead of

ank.

Corollary 4.10. We have:

(i) A = (ank) ∈ (`∞ : d(bv(R))) = (c : d(bv(R))) = (c0 : d(bv(R))) if and only

if (4.3) hold with b̃nk instead of ank.

(ii) A = (ank) ∈ (bs : d(bv(R))) if and only if (4.4) and (4.5) hold with b̃nk
instead of ank.

(iii) A = (ank) ∈ (cs : d(bv(R))) if and only if (4.6) holds with b̃nk instead of
ank.

(iv) A = (ank) ∈ (c0s : d(bv(R))) if and only if (4.5) holds with b̃nk instead of
ank.

5. Conclusion

Goes and Goes [4] firstly mentioned to the integrated and differentiated sequence
spaces. In Section 2 of [4], it was given some definitions which also including the
integarted and differentiated sequence spaces. In Section 3 of the same paper, it
was defined the Hahn sequence spaces by h = {x = (xk) ∈ w :

∑
k k|xk − xk+1| <

∞ and limk→∞ xk = 0}. Hahn [5] was proved that h ⊂ `1∩
∫
c0, where `1 and

∫
c0

are denote the spaces of absolutely summable and the integrated sequences, respec-
tively. In this section, the functional analytic properties of the spaces h = `1 ∩

∫
bv

and dh = bv0 ∩ d`1 are investigated. In Theorem 3.2, Goes and Goes proved that
the Hahn space is in the intersection of the spaces `1 and

∫
bv. Also, Goes and Goes

defined the differentiated spaces dh depending on Theorem 3.2 as dh = bv0 ∩ d`1.
Therefore, in [4], it was shown that the integrated and differentiated sequence spaces
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are associated with each other.

In [6], new integrated and differentiated sequence spaces and matrices related
to these spaces are constructed and some properties of the integrated and differ-
entiated sequence spaces which are both new spaces and mentioned in [4], were
discussed. The space

∫
bv was defined in [4]. The new spaces

∫
`1, d(`1) and

d(bv) were defined which is mentioned paper. In Section 2 of [6], the properties
Banach spaces, BK−spaces, monotone norms, Schauder base, separability and,
AK−property, AB−property and, isomorphism between new spaces and original
space, were investigated. Besides this, dual spaces are computed and matrix classes
are characterized by Kirişci[6].

Let
∫
bv and d(`1) denote the integrated and differentiated spaces, respectively.

The main purpose of this paper is to define the new integrated and differentiated se-
quence spaces using the Riesz mean and to study their some properties. In section 3,
we compute the alpha-, beta- and gamma duals of these spaces. Afterward, we char-
acterize matrix classes (

∫
b(R) : Y ), (d(bv(R)) : Y ) and (Y :

∫
b(R)), (Y : d(bv(R))),

where Y is one of the well-known sequence spaces such as `∞, c, c0, bs, cs and c0s.

As a natural continuation of this paper, one can study the domain of different
matrices instead of Rq. Additionally, sequence spaces in this paper can be defined
by a index p for 1 ≤ p <∞ and a bounded sequence of strictly positive real numbers
(pk) for 0 < pk ≤ 1 and 1 < pk < ∞ and the concept almost convergence. And
also it may be characterized several classes of matrix transformations between new
sequence spaces in this work and sequence spaces which obtained with the domain
of different matrices.
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[6] M. Kirişci, Integrated and differentiated sequence spaces, J. Nonlinear Anal. Appl., 1, (2015),

2-16. doi:10.5899/2015/jnna-00266
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